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Introduction: Recently, numerous studies have focused on the semantic

decoding of perceived images based on functional magnetic resonance imaging

(fMRI) activities. However, it remains unclear whether it is possible to establish

relationships between brain activities and semantic features of human actions

in video stimuli. Here we construct a framework for decoding action semantics

by establishing relationships between brain activities and semantic features of

human actions.

Methods: To effectively use a small amount of available brain activity data, our

proposed method employs a pre-trained image action recognition network

model based on an expanding three-dimensional (X3D) deep neural network

framework (DNN). To apply brain activities to the image action recognition

network, we train regression models that learn the relationship between brain

activities and deep-layer image features. To improve decoding accuracy, we

join by adding the nonlocal-attention mechanism module to the X3D model

to capture long-range temporal and spatial dependence, proposing a multilayer

perceptron (MLP) module of multi-task loss constraint to build a more accurate

regression mapping approach and performing data enhancement through linear

interpolation to expand the amount of data to reduce the impact of a small

sample.

Results and discussion: Our findings indicate that the features in the X3D-

DNN are biologically relevant, and capture information useful for perception.

The proposed method enriches the semantic decoding model. We have also

conducted several experiments with data from different subsets of brain regions

known to process visual stimuli. The results suggest that semantic information

for human actions is widespread across the entire visual cortex.

KEYWORDS

functional magnetic resonance imaging, decoding, action semantic, three-dimension
convolutional neural network, multi-subject model

Frontiers in Neuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2025.1526259
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2025.1526259&domain=pdf&date_stamp=2025-02-19
https://doi.org/10.3389/fninf.2025.1526259
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2025.1526259/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-19-1526259 February 14, 2025 Time: 16:29 # 2

Zhang et al. 10.3389/fninf.2025.1526259

1 Introduction

In recent years, the brain’s capacity for semantic decoding of
visual stimuli has become a popular area in cognitive neuroscience
research. The study of semantic decoding of brain activity will not
only provide a better understanding of the cognitive mechanism of
the brain but also the development of artificial intelligence. Among
the many techniques that can be used to measure brain activity,
functional magnetic resonance imaging (fMRI) is advantageous
given its high spatiotemporal resolution (Engel et al., 1997).

Numerous studies have developed various methods to estimate
the semantic information associated with brain activity based
fMRI data (Akamatsu et al., 2018; Li et al., 2021; Stansbury
et al., 2013; Takada et al., 2020; Vodrahalli et al., 2018). In early
studies, statistical methods such as support vector machine (SVM)
classifiers (Cortes and Vapnik, 1995) and linear discriminant
analysis (LDA) (Fisher, 2012) are used to decode semantic
information (Huth et al., 2012; Huth et al., 2016; Stansbury
et al., 2013) for direct classification of categories corresponding
to fMRI activities. Recent studies incorporating technological
advancements in cognitive neuroscience methods have revealed
that deep neural network models (DNNs) can partially explain the
brain’s responses to visual stimuli (Cichy et al., 2016; Eickenberg
et al., 2016; Güçlü and van Gerven, 2015; Yamins et al., 2014).
DNNs representations can provide accurate predictions of neural
responses in both the dorsal (object recognition) and the ventral
(motion processing/recognition) visual pathways. Many decoding
studies have utilized DNN representations to construct models for
decoding semantic information of both observed (Akamatsu et al.,
2020; Horikawa and Kamitani, 2017a; Matsuo et al., 2018; Wen
et al., 2018) and imagined (Horikawa and Kamitani, 2017b) picture
stimuli based on the brain activities. They establish a regression
mapping from fMRI to DNN representations, and convert the
predicted representations into semantic tags through the pre-
trained classifier. As the classifier is separated from the regression
mapping, the model can be expanded by retraining the classifier
with labeled images without changing the semantic representation
space. Compared with models that directly classify fMRI data,
the model based on DNN representations provides an effective
extension of decoding capabilities (Wen et al., 2018).

However, these semantic decoding studies have mainly
explored the scene/object semantic decoding of perceived images
based on DNN representations from fMRI activities (Akamatsu
et al., 2020; Horikawa and Kamitani, 2017a; Matsuo et al., 2018).
By contrast, only a few studies have investigated the semantic
decoding of human actions in videos based on fMRI data, and
it is unclear whether and to what extent the DNN could decode
the brain’s responses to human actions in video stimuli. Among
recent studies, Güçlü and van Gerven (2017) demonstrates that
the spatiotemporal features of natural movies extracted by a
3D Convolutional (C3D) network (Tran et al., 2015) optimized
for action recognition can accurately predict how the dorsal
flow area responds to dynamic changes in natural video stimuli
(Güçlü and van Gerven, 2017). This method extends beyond
the capabilities of the previous models, which can only learn
spatiotemporal representations (Nishimoto and Gallant, 2011; Rust
et al., 2005). However, the DNN used in (Güçlü and van Gerven,
2017) still lacks the ability to model long-term dependence. An

expanding three-dimensional (X3D) (Feichtenhofer, 2020) deep
neural network model has been proposed to expand not only in the
temporal dimension, but also in other dimensions such as spatial
resolution, frame rate, etc., while being extremely light in terms
of network width and parameters. Recently, a vision transformer
and a video vision transformer were proposed for image and video
recognition with a self-attention mechanism was used to capture
the relationship of features globally (Arnab et al., 2021; Dosovitskiy
et al., 2021). Although this improves the problem of neglecting
global integration, the problem of time-consuming computation
becomes more serious since transformers contain many more
trainable parameters than CNNs with the same number of layers. In
some action recognition tasks, convolutional neural networks such
as X3D outperformed the Transformer models (Lai et al., 2023).

Inspired by recent studies, we construct a baseline framework
for decoding human action semantics in videos by establishing
relationships between brain activities and semantic features of
human actions extracted by DNN. We try to determine whether
long-term dependent action features and the use of multi-layer
features of DNNs could help to improve the mapping from fMRI
data to action features. The framework consists of two parts. The
first part aims to capture action features containing spatiotemporal
dynamic information through an X3D (Feichtenhofer, 2020)
deep neural network model. In this part, an non-local attention
mechanism (Wang et al., 2018) is added to the X3D deep
learning model to extract long-term dependent action features,
which helps to overcome the shortcomings of the deep learning
model that can not capture features of long-term dependence.
The second part aims to build a regression model from fMRI
to action features and convert the predicted representations into
semantic tags through the pre-trained classifier to decode the action
semantics in the videos. In this part, we use multi-layer feature
loss constraints as a loss constraint term of the MLP to establish
an accurate mapping relationship from fMRI to action features.
To demonstrate the advantage of the multi-layer feature loss-
constrained MLP approach, we compare its decoding performance
with ridge regression, K-nearest neighbor (KNN), and MLP
regression approaches, which are various visual techniques widely
used in decoding research (Matsuo et al., 2018; Papadimitriou et al.,
2019; Qiao et al., 2018; Wen et al., 2018). In this study, we use
the fMRI dataset published by Tarhan and Konkle (2020), which
consists of fMRI recordings of 13 people watching daily human
behavior videos. We also try to perform fMRI data augmentation
through linear interpolation to expand the amount of data to
improve the decoding effect. Finally, we have conducted several
experiments using reliable voxels acquired from the whole cortex
and reliable voxels from specific brain regions, to gain further
insight into the brain’s understanding of motion video.

2 Materials and methods

2.1 Overview

Figure 1 summarizes the proposed framework for decoding
human action semantics in videos based on fMRI data. The
decoding model is divided into two parts: (1) Extracting
action features by utilizing the action recognition model, X3D.

Frontiers in Neuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2025.1526259
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-19-1526259 February 14, 2025 Time: 16:29 # 3

Zhang et al. 10.3389/fninf.2025.1526259

FIGURE 1

Overview of the proposed method. (a) The X3D model. The orange arrows represent the learning process of the deep learning model X3D from
video input to output action semantics. (b) The MLP regression model. The blue arrows represent the process of predicting action features from
fMRI, and then from the predicted features to action semantics. Images were taken from Tarhan and Konkle (2020) (Creative Commons License CC
BY 4.0, https://creativecommons.org/licenses/by/4.0/).

The X3D model takes a raw video clip as input that is uniformly
sampled 16 frames in the data layer stage. The non-local-attention
mechanism is added to X3D to capture long-range temporal
and spatial dependence so as to overcome the shortcomings of
the deep learning model that cannot capture features of long-
term dependence. The first fully connected layer of X3D is the
action feature extraction layer, and the output of this layer is the
action feature corresponding to the video stimulus. (2) The MLP
regression model is established with a three-layer fully connected
network, mapping from fMRI data to action features. The predicted
action features are then fed into the second fully connected layer
of the X3D model, which serves as the semantic classification
layer as defined by the X3D action recognition model, to extract
semantic content. To achieve a more accurate mapping between
fMRI and deep learning representations, multiple-layer feature
mean square error (MSE) is incorporated into the MLP model’s
loss function. The model is trained using multi-subject fMRI
data and subsequently tested on an unseen subject to evaluate its
generalization capabilities.

2.2 Dataset and preprocessing

Functional magnetic resonance imaging data set published by
Tarhan and Konkle (2020) is used in the study, which contains

information from 13 subjects who have watched videos of typical
daily human behavior. The stimuli consist of 120 videos (duration:
2.5 s) reflecting 60 types of daily human movement (e.g., running,
cooking, riding a bike), which are obtained from YouTube,
Vine, the Human Movement Database (Kuehne et al., 2011) and
the University of Central Florida’s Action Recognition Data Set
(Soomro et al., 2012). Each video stimulus is 512 × 512 pixels in
size and is presented on a 41.5 × 41.5 cm screen, with a viewing
angle of approximately 9 × 9 degrees in the participant’s field of
view.

The 120 videos are divided into two sets, with each set
containing a video for each of the 60 actions. During the
experiment, each participant is required to complete eight runs. In
each run, participants watch all 60 action videos from one of the
two sets. The videos are displayed in a random order, and each
2.5 s video is shown twice consecutively in each run. To avoid
visually jarring transitions between video presentations, a 500 ms
time window is used for fading in and out to a uniform gray
background at the start and end of each presentation, respectively.
The fixation period is 4 s at the beginning of the run and 10 s at
the end. Additionally, four 15 s blocks of fixation are interspersed
throughout the run.

Imaging data are collected using a 3T Siemens Prima
functional magnetic resonance imaging scanner. High-resolution
T1-weighted anatomical scans are obtained using the 3D MPRAGE
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FIGURE 2

Whole-brain map of split-half voxel reliability. And Reliable voxels (r > 0.30) selected based on the Tarhan and Konkle (2019). These results are based
on group data.

protocol [Time of Repetition (TR) = 2,530 ms; Time of Echo
(TE) = 1.69 ms; FoV = 256 mm; 1 × 1 × 1 mm voxel resolution;
176 sagittal slices; gap thickness = 0 mm; Flip Angle (FA) = 7◦].
Blood oxygenation level-dependent (BOLD) contrast functional
scans are obtained using a gradient echo-planar T2∗ sequence (84
oblique axial slices acquired at a 25◦ angle off of the anterior
commissure-posterior commissure line; TR = 2,000 ms; TE = 30 ms;
FoV = 204 mm; 1.5 × 1.5 × 1.5 mm voxel resolution; gap
thickness = 0 mm; FA = 80 degrees; multi-band acceleration
factor = 3). The collected fMRI data undergo the corresponding
preprocessing steps using Brain Voyager QX software, including
slice-scan time correction, three-dimensional motion correction,
linear trend removal, temporal high-pass filtering (cut-off of
0.008 Hz), spatial smoothing [4 mm full-width at half-maximum
(FWHM) kernel], and normalization to Talairach space.

The whole brain random effect general linear models (GLMs)
of each participant are applied to each video set, and to the odd and
even runs of each video set. In all cases, square-wave regressors for
each 5 s stimulus presentation time are convolved with a 2-gamma
function approximating the idealized hemodynamic response, and
the regressors for each conditional block are included in the design
matrix. In these GLMs, the mean variance inflation factor under
the design matrix condition is 1.03 (where values greater than five
are considered problematic) and the mean efficiency is 0.21. The
time series of voxels are z-normalized in each run and corrected for
temporal autocorrelation during GLM fitting. And a second-order
autoregressive, AR(2), is used in the GLM. Because the reliable
coverage of the participants differs, cross-subject comparison is
challenging. Therefore, the decoding model is analyzed in the
same voxel as that obtained in the random effects group GLM.
The experiment selected 39 fMRI data corresponding to action
stimulation videos for subsequent analysis.

2.3 Reliability voxel selection

We adopt the reliable voxels selection method to process the
fMRI data and select reliable voxels (Tarhan and Konkle, 2020). The
reliability-based voxel selection retains voxels that show systematic

differences in activation across the different actions, removing
less reliable voxels and voxels that respond equally to all actions.
Additionally, this method requires voxels to show similar activation
levels across the different actions. Thus, selected voxels necessarily
have some tolerance to very low-level features. Split-half reliability
is calculated for every voxel by correlating betas extracted from
even and odd runs. The reliability is obtained in two ways: The
within-set reliability is calculated by correlating the odd and even
betas of each set separately, and then the resulting r-maps are
averaged. Cross-sets reliability is also calculated by correlating odd
and even betas of glms computed on the two video sets. Cross-sets
reliable voxels have relatively low reliability in early visual areas,
and within-set reliable voxels have better coverage of early visual
cortex. For both types of reliability, a procedure from Tarhan and
Konkle (2019) is used to select reliability-based cutoffs. First, the
reliability of each video’s multi-voxel response pattern is plotted
across a range of candidate cutoffs. Then, the cutoff is chosen based
on where the multi-voxel mode reliability for all videos starts to
stabilize. Using this approach, any voxel with an average reliability
of 0.3 or higher is a reasonable cutoff to be included in the feature
modeling analysis, as it maximizes reliability without sacrificing
too much coverage. This cutoff holds for both group and single-
subject data. Finally, these reliable voxels activated (Figure 2) along
a broad extension of the ventral and parietal cortices, cover the
lateral occipitotemporal cortex (OTC), the ventral OTC and the
intra-parietal sulcus (IPS).

In order to clarify the cognitive mechanism of movement
understanding in the brain, we select several regions of interest
for classification and decoding. According to previous cognitive
neuroscience studies on motion perception, human brain motion
perception not only involves visual regions, but also involves an
Action Observation Network, which is composed of three core
regions of occipito-temporal, parietal, and premotor regions in the
human brain. The primary motor cortex (Brodmann 4), auxiliary
motor cortex/premotor cortex (Brodmann 6), primary visual cortex
(Brodmann 17), secondary visual cortex (Brodmann 18) and higher
visual cortex (Brodmann 19) are selected as areas of interest for
analysis according to the Brodmann template.
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2.4 Extraction of action features

In this study, the three-dimensional convolutional neural
network X3D (Feichtenhofer, 2020) is used to extract action
features from human action videos. The model is pre-trained on
the large-scale action recognition database Kinetics-400 (Kay et al.,
2017). X3D consists of nine layers, the first of which is a three-
dimensional convolutional layer. Then, there are four resnet layers,
each of which contains 3, 5, 11, and 7 resnet blocks. Each resnet
block includes three convolutional layers: 1 × 1 × 1, 3 × 3 × 3,
and 1 × 1 × 1 convolution kernel operations. The last four layers
are a convolutional layer, a global average pooling layer with an
output of 432 dimensions, and two fully connected layers. The
output dimensions of the two fully connected layers are 2,048
and 400, respectively, where 2,048 represents the dimension for
extracting action features, and 400 represents the number of action
categories. The model retains the temporal input resolution of
all elements in the entire network hierarchy and does not start
temporal downsampling until the global average pooling layer.

Normally, the three-dimension CNN model involves the
stacking of spatiotemporal convolution operations. However,
Convolution operations can only be local operations in space or
time. CNN only captures information in a small neighborhood
in time or space, and it is difficult to capture dependence at
further locations. To compensate for this limitation of X3D, we
incorporate a nonlocal-attention mechanism (Affolter et al., 2020)
before the global average pooling layer. The nonlocal-attention
mechanism directly captures remote dependencies by calculating
the relationship between any two locations, regardless of their
distance from one another. In this study, we compare the decoding
effect when we add and do not add a nonlocal-attention mechanism
in X3D to explore whether long-term spatiotemporal dependencies
are more beneficial for decoding.

In addition, due to the small amount of fMRI data, the
2,048-dimensional action features extracted by X3D are not
conducive to the establishment of regression mapping. Therefore,
we make structure modification of X3D model. We set the output
dimensions of the first fully connected layer to 512, 256, and 128,
respectively. We then set the output of the last fully connected
layer to 39, as 39 semantic categories overlap between our set and
the large-scale action recognition database Kinetics. Then we fine-
tune the adjusted X3D model. Finally, the output dimension of
the penultimate layer is set to 128 through a comparison based
on decoding results. To retrain the modified model, we uniformly
sample the corresponding 39 semantic categories of partial videos
from the Kinetics-400 database. The size of the training dataset is
approximately 14,323, while that of the verification dataset is 1,916.
Finally, through transfer learning based on the trained X3D model,
the action features of the stimuli are extracted directly. The main
model structure and model parameters are shown in Table 1.

In the model fine-tuning process, 16 frames are uniformly
selected from each video for input, and the length and width of
each frame are 224 × 224. In the last fully connected layer, the
input is the action feature representation, y, from the penultimate
layer of X3D, and the output is the normalized probability, q, by
which the action video is classified into each category. The model
is trained using the stochastic gradient descent (SGD) to minimize
the cross-entropy loss from the predicted probability q to the true

TABLE 1 The model structure of expanding three-dimensional (X3D).

Stage Filters Output sizes
(T × H × W)

Input Uniformly sample 16 frames 16×224× 224

Conv1 1× 3× 3, 24 16×112× 112

Res2


1 × 1 × 1, 54

3 × 3 × 3, 54

1 × 1 × 1, 24

 × 3 16×56× 56

Res3


1 × 1 × 1, 108

3 × 3 × 3, 108

1 × 1 × 1, 48

 × 5 16×28× 28

Res4


1 × 1 × 1, 216

3 × 3 × 3, 216

1 × 1 × 1, 96

 × 11 16× 14× 14

Res5


1 × 1 × 1, 432

3 × 3 × 3, 432

1 × 1 × 1, 192

 × 7 16× 7× 7

Conv5 1×3× 3, 432 16× 7× 7

Pool5 16× 7× 7 1× 1× 1

Fc1 1× 1× 1, 2,048 1× 1× 1

Fc2 1× 1× 1,39 1×1× 1

value p. Cross-entropy loss mainly describes the distance between
the actual output (probability) and expected output (probability);
that is, the smaller the value of the cross-entropy loss, the closer
the two probability distributions are. The predicted probability is
expressed as:

q = eWy+b∑N
j = 0 eWy+b (1)

where N represents the number of all categories, W and b represent
the weight and bias. To fine-tune the X3D model, the minimized
cross-entropy loss H is expressed as follows:

H
(
p, q

)
= −

∑
x p (x) logq (x) (2)

When fine-tuning the model, the batchsize is set to 8, and the
learning rate is set to 0.005. After training for 15 epochs, the optimal
model on the validation set is selected as the final model, and then
is directly migrated to perform feature extraction on the stimuli.

2.5 Model for decoding action semantics
based on fMRI

The decoding step is mainly divided into two steps: (1)
establishing the regression model from the fMRI data to the action
features; (2) inputting the predicted action feature into the semantic
classification model, which was predefined by the X3D action
recognition model, to obtain semantic content. In addition, we
directly adopt a data-driven approach to achieve brain decoding
for unseen subjects, train the regression model on n-1 subjects,
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and verify it using data from one subject. The final decoding
result is obtained by performing the leave-one-subject-out cross-
validation. This setup of decoding for unseen subjects is remarkably
challenging, since fMRI data are very different across subjects,
among other reasons, owing to a lack of alignment and variable
numbers of voxels between subjects (Affolter et al., 2020).

In this study, we first use the principal component analysis
(PCA) approach to extract principal components on the obtained
43,949 dimension gray matter data of fMRI. The PCA is used
to extract 1,000 principal components from fMRI data, following
which a regression mapping model is established between the
reduced fMRI data and the action features. Due to the small amount
of fMRI data, we hope to introduce X3D’s multi-layer features as
an auxiliary task to help the learning process of regression model,
so that the model gradually approaches the X3D action semantic
space. To achieve this goal, we propose a multi-task loss constraint
MLP approach of three-layer fully connected layers with 1,000,
432, and 128 dimensions, respectively. And we additionally add
the X3D’s penultimate layer feature constraints as another loss
term of regression model. Except for the last layer, we add batch
normalization and dropout at a rate of 0.4 at the end of each layer
to prevent overfitting. The mean square error (MSE) is then used as
the final measurement standard, and the loss function is minimized
to update the parameters of the three-layer fully connected network
model:

Lloss = 1
n
(
w0
∑n

i = 0 (y0 − ŷ0)
2
+ w1

∑n
i = 0 (y1 − ŷ1)

2) (3)

where n represents the number of all samples, y0 and y1 represent
the true value of the output of the last one layer and the penultimate
layer, respectively, and ŷ0 and ŷ1 represent the predicted values. w0
and w1 represent the weights of the first and second loss items,
respectively, and the final values are determined to be 2.2 and
1, respectively according to the accuracy of semantic decoding
on the verification set. In the process of training the three-layer
fully connected layer, we use the SGD optimizer, the batchsize
is set to 16, and the learning rate is set to 0.0001. After 1,000
epochs, training stops.

To evaluate the classification accuracy, we use the prediction
accuracy of Top-1 and Top-5. Specifically, for any given action
video, we rank the action semantic categories in descending order
of probability estimated by fMRI. If the true category is the top
1 of the ranked categories, it is considered to be Top-1 accurate.
If the true category is in the top 5 of the ranked categories, it
is considered to be Top-5 accurate. In addition, we also use the
pairwise classification criterion (Affolter et al., 2020; Papadimitriou
et al., 2019) to obtain whether the regression mapping model can
establish an accurate mapping relationship from fMRI to action
features. For each video, we compute the correlation between the
predicted vector and the actual vector. If the predicted vectors are
more similar to their corresponding action features than to the
alternatives, the decoding is deemed correct. The random baseline
is 50%.

2.6 Data enhancement

Based on the Mixup method idea (Zhang et al., 2018), we
propose a data enhancement approach, which linearly interpolates

the different subjects’ data corresponding to the same category to
generate new fMRI data and target vector. The Mixup method
is a simple method for data enhancement that is independent
of the data. It constructs a new sample by linearly interpolating
two random samples and their target vectors in the training
set. Based on this idea, we first use the data of n-1 subjects to
perform PCA so as to extract principal components on the gray
matter data of fMRI. And then we linearly weight the different
subjects’ principal component features of fMRI data corresponding
to the same category to generate new subject data. Both the
augmented data and the original data have been tested on test
sets.

d = λdsi + (1− λ) dsj (4)

t = λtsi + (1− λ) tsj (5)

Among them, d represents the newly generated fMRI data,
dsi and dsj correspond to two data randomly selected for a
certain category. t represents the newly generated target vectors,
tsi and tsj correspond to the target vector of dsi and dsj . λ

represents the weight, which is a parameter that obeys the B
distribution λBeta(α, α). Through training, the final selection value
of λ is 0.2.

3 Results

3.1 Cross-subject decoding

We first construct a baseline decoding framework that
does not add any other modules, that is, we extract action
features from videos based on the X3D, and then an MLP
model which uses fMRI signals to predict the action features
is built, finally the built-in transformation of the predicted
features to the last layer (or output layer) of X3D is used to
estimate the classification probability. The final assessment
of the results is performed by the leave-one-subject-out
approach. Figure 3 shows Top-5 predicted categories of some
samples. The decoded categories are sorted in descending order
of predicted probability. Correct categories are highlighted
in red.

As shown in Table 2, the baseline decoding accuracies of
Top-1 and Top-5 are 11.00% (random level 2.56%) and 33.53%
(random level 12.82%), respectively, both significantly exceeding
the random level. These results show that the human brain has a
wealth of representation space for action semantic. At the same
time, similar to the literature (Güçlü and van Gerven, 2017), the
brain activities are related to the representations extracted by 3D
deep learning model for action recognition. Its achieved Top-1
accuracy on average reaches 16.56% and Top-5 accuracy reaches
43.13% by adding three different modules. The reason for this
improved result is that the decoding accuracy of each subject
has increased overall, and the generalization of the model to the
unseen subjects has enhanced by adding three different modules
(Figure 4).
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FIGURE 3

Top-5 estimated semantic categories of human action videos. The vertical line shows the top-5 categories determined from fMRI activity which are
shown in the order of descending probabilities from the top to the bottom. The horizontal one shows predicted probability of estimated categories,
and correct categories are highlighted in red. Images were taken from Tarhan and Konkle (2020) (Creative Commons License CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/).

3.2 Comparing algorithmic choices

In this section, we mainly compare the contributions of
the nonlocal-attention mechanism, multi-task loss constraints
regression method, and data enhancement to the decoding model.

3.2.1 Nonlocal-X3D vs. X3D
To compare whether long-range dependent action features are

more helpful for decoding. In the experiments, we add a nonlocal
attention mechanism to the X3D model and compare the decoding
accuracy produced by adding and not adding a nonlocal attention
mechanism to the X3D model, thereby determining whether the
captured long-distance dependent features are more conducive to
decoding. In addition, we also compare the decoding effect by using
different deep learning models to extract action features. These
models are Inflated 3D Convolutional (I3D) network (Carreira
and Zisserman, 2017) and 3D Convolutional (C3D) network
(Tran et al., 2015). Güçlü and van Gerven (2017). used the C3D
model to extract the DNN representation of the movie, and
established the mapping relationship between the backflow region
and the DNN representation to identify different movie stimuli.
I3D and X3D are the latest deep learning models for action
recognition, especially X3D has higher action recognition accuracy.
However, C3D and I3D still lack the ability to model long-term
dependence.

We use the MLP model to construct regression maps from
fMRI to action features and obtain the corresponding results of

TABLE 2 Ablation study. Top-1 and Top-5 accuracy after incrementally
adding the nonlocal attention mechanism, multi-task multilayer
perceptron (MLP) and data augmentation modules to our baseline model.

Model Top-1
accuracy

Top-5
accuracy

Baseline 11.00% 33.51%

Baseline+Nonlocal 12.86% 38.64%

Baseline+Nonlocal+multi-task MLP 15.56% 41.81%

Baseline+Nonlocal+multi-task
MLP+Data Augmentation

16.56% 43.13%

semantic decoding. As shown in Table 3, these results indicate
that the Top-1 accuracy of the X3D model with a nonlocal
attention mechanism is 12.86%, and the Top-5 accuracy is 38.64%.
Compared with not joining the nonlocal attention mechanism, it
has increased by 1.61 and 3.95%, respectively. In addition, the
Top-1 decoding accuracies of C3D and I3D models are 8.51,
and 6.09%, respectively, and the Top-5 accuracies are 30.66, and
22.69%, respectively. The results show that the decoding accuracy
of the action features extracted based on the X3D model is
higher.

3.2.2 Comparison of regression mapping models
To place our model in the context of existing work, we compare

with three competing approaches: ridge regression, KNN and
MLP regression, which are used by previous decoding studies
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FIGURE 4

The performance comparisons of Top-1 and Top-5 after gradually adding different modules to the baseline model. Each point represents a subject.

TABLE 3 The impact of different models for extracting action features
on the accuracy results of Top-1 and Top-5.

Model for extracting
action features

Top-1
accuracy

Top-5
accuracy

Inflated 3D Convolutional network
(I3D) (Carreira and Zisserman, 2017)

6.09% 22.69%

3D Convolutional network (C3D)
(Tran et al., 2015)

8.51% 30.66%

Expanding three-dimensional
network (X3D) (Feichtenhofer, 2020)

11.00% 33.51%

X3D+Nonlocal (ours) 12.86% 38.64%

(Matsuo et al., 2018; Wen et al., 2018) in constructing fMRI-to-
deep learning features. The three approaches are implemented
by using the scikit-learn platform. These three approaches are
used for mapping based on action features extracted by X3D with
a nonlocal attention mechanism, following which we compare
the decoded results. In the experimental settings, the ridge
regression regularization parameter alpha is set to 0.2, the
NEIGHBORS parameter of KNN is set to 7, and the DEGREE
parameter is set to 2. The nonlinear layer of the MLP adopts
the relu activation function. And to prevent overfitting during
regression mapping learning, the dropout is set to 0.4, the
learning rate is set to 0.0001, and the batch size is set to 16.
We have tried to build a deeper network, but the overfitting is
serious.

As shown in Figure 5B, the comparison results of multiple
models show that our model has 4.30% Top-1 improvement
and 5.84% Top-5 improvement compared to ridge regression;
10.58% Top-1 and 20.58% Top-5 improvement compared to
KNN; and compared to MLP it has an increase of 2.77% Top-
1 accuracy and 3.74% Top-5 accuracy. And by using multi-
task MLP regression mapping, the decoding accuracy of each
subject is generally improved (Figure 6). The pairwise classification
corresponding to KNN, ridge regression, MLP and multi_task MLP
are 62.45, 78.74, 81.91, and 83.46%, respectively. Thus showing that
Multi_task MLP can more accurately predict action features from
fMRI.

3.2.3 Data augmentation effect
Data augmentation is based on the Mixup method and then

a linearly weighted combination of data from different subjects
corresponding to the same category. This method not only
increases the size of the dataset but also improves the generalization
of the data. Figure 5A shows that using data augmentation
significantly improves decoding results. When compared with
the non-enhanced dataset (Top-1: 15.56%, Top-5: 41.81%), the
enhanced dataset increased Top-1 and Top-5 accuracy by 1% and
1.32%, respectively.

3.3 Cross-subject decoding based
reliable voxels

In order to analyze the brain’s cognitive mechanism of action
videos, we decode by identifying voxels that can reliably distinguish
different actions. We use the X3D model combined with the
nonlocal attention mechanism to extract action features, and then
predict action features based on reliable voxels to decode action
semantics. The results show that the Top-1 and Top-5 accuracy of
action semantic decoding based on within-set reliable voxels are
14.89 and 39.78%, respectively. The Top-1 and Top-5 accuracy of
action semantic decoding based on cross-sets reliable voxels are
14.10 and 40.42%, respectively. The pairwise classification results
based on within-set reliable voxels and cross-sets reliable voxels are
83.03 and 82.34%, respectively. The results show that the Top-1
and Top-5 accuracy of action semantic decoding based on finally
whole-brain reliable voxels are 16.27 and 43.52%, respectively.

The experimental results in Figure 7 show that the decoding
accuracy of each ROI is significantly higher than the random level.
In particular, Brodmann 18 and Brodmann 19 (high vision area)
have better decoding accuracy. Moreover, the whole-brain reliable
voxel-based semantic decoding method achieves higher decoding
accuracy than ROI alone, which indicates that the whole-brain
reliable voxel-based semantic decoding method in this research
does not rely too much on the application of domain-specific
knowledge.
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FIGURE 5

Comparison of the results of adding different modules. (A) Comparison of the accuracy results of Top-1 and Top-5 with and without data
enhancement. (B) The impact of different regression models on the accuracy results of Top-1 and Top-5.

FIGURE 6

The performance comparisons of Top-1 and Top-5 by using different regression models. Each dot represents a subject decoding performance.

FIGURE 7

The Top-1 and Top-5 accuracy of action semantic decoding based on different brain regions.

4 Discussion

Here, we develop a framework for decoding human action
semantics based on fMRI data by establishing a corresponding

relationship between the action features extracted from video data
and fMRI data. The decoding results of Top-1 and Top-5 accuracy
both significantly exceed chance levels which shows the feasibility
of extracting action-related semantic information in videos.
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Compared to the models used in most research on action
perception, our model can be used to perform semantic decoding
across participants, making it more general and transferable than
traditional methods such as multivariate pattern analysis (MVPA).
When extracting action features, the model in our research based
on X3D-DNN more accurately captures motion-selective receptive
fields for action semantic decoding by extracting spatiotemporal
video features rather than separate spatial features (Nishimoto
et al., 2011; Rust et al., 2005). This is different from previous
video decoding frameworks, which previously extracted spatial
features of video frames based on CNN (Wen et al., 2018) and
focused on object semantic decoding using features extracted by
DNN optimized for object recognition (Horikawa and Kamitani,
2017b; Wen et al., 2018). In addition, the Recurrent Neural
Network (RNN) (Medsker and Jain, 2001) or Long Short-Term
Memory (LSTM) model (Hochreiter and Schmidhuber, 1997)
can also process time-series related data and LSTMs are more
capable of capturing longer-range dependencies than RNNs, which
can be used as an alternative to 3D CNN to extract action
features. We further add nonlocal-attention mechanism to the
DNN model to proof that the extracted long-range dependent
action features are more in line with the cognitive mechanism
of the human brain. Furthermore, a recent study proposed the
Human-Centric Transformer (HCTransformer), which develops
a decoupled human-centric learning paradigm to explicitly
concentrate on human-centric action cues in domain-variant video
feature learning (Lin et al., 2025). In future research, we will further
utilize action features that are more aligned with human cognitive
mechanisms to assist in decoding behavioral semantics from brain
activity. When attempting to decode action semantics, the most
important requirement is the development of an accurate mapping
model between fMRI voxels and action features, which allows for
more accurate decoding of semantic information related to actions.
Compared with KNN, ridge regression (Wen et al., 2018), and
traditional MLP methods (Matsuo et al., 2018; Papadimitriou et al.,
2019), MLP models based on multi-layer feature constraints can
more accurately establish the mapping relationship between fMRI
and action features. Multilayer feature constraints can assist the
learning process of fMRI to action features, making its distribution
closer to that of action features.

In most cases, only a small amount of fMRI data can be
acquired in a single subject. Building models from multiple subject’s
data and transferring them to test subject data is the key to
improving the utility of cognitive neuroscience (Gabrieli et al.,
2015). Our results indicate that a multi-subject decoding model
based on the whole-brain common representation space can predict
unseen individual subjects, which is of great significance. However,
the common representation space of different brain regions has
different contribution in semantic decoding. If the brain regions
can be more accurately located about which brain areas contribute
more to the decoding of the multi-subject model and which regions
can more accurately extract abstract information related to action
semantics according to the decoding accuracy, it will be able to gain
a deeper understanding of brain mechanisms.

In order to analyze the brain cognitive mechanism of action
videos, we conduct semantic decoding experiments using within-
set reliable voxels obtained by correlating the odd and even betas
of each set and cross-sets reliable voxels obtained by correlating
odd and even betas of glms computed on the two video sets.

The decoding results of Top-1, Top-5 and pairwise classification
accuracy based on within-set reliable voxels and cross-set reliable
voxels are all significantly higher than random levels. The Top-
1 and pairwise classification accuracy of within-set reliable voxel
decoding is slightly higher than that of cross-set reliable voxel
decoding. And the within-set reliable voxels have relatively higher
coverage of the early visual cortex than the cross-set reliable voxels.
This reveals early visual regions are correlated with action semantic
features. It has been shown that the layer depth of the optimal
encoding layer of the deep learning model is positively correlated
with V1, V2, V3 in the early visual area and the position of the MT
in the dorsal flow area (Güçlü and van Gerven, 2017). The decoding
results based on different brain regions show that the visual cortex
can effectively decode the semantic information of action, and the
decoding accuracy of the higher visual cortex is higher than that
of the primary visual cortex. Similar to the results of Urgen et al.
(2019), the visual region can have a good similarity to the visual
computational model. And higher visual areas are associated with
higher semantic features than the primary visual cortex.

The lower visual cortex is mainly responsible for receiving
and initially processing visual information, such as detecting
lines, contours, colors, etc., while the higher visual cortex is
responsible for more complex visual processing, such as object
recognition and spatial cognition. Accurate recognition of actions is
a highly challenging task due to cluttered backgrounds, occlusions,
and viewpoint variations, etc. Primary visual features may be
less capable of reflecting differences between action categories.
Additionally, our approaches differ in the granularity at voxel
fitting models. Huth et al. (2012) constructed a semantic space
containing action categories which suggested that a voxel’s response
could be fit by putting weights on over 1,000 predictors, including
verbs like “cooking,” “talking,” and “crawl.” Category labels need
to be manually labeled. Our approaches uses features learned from
natural images, which indicates that the features in the X3D-
DNN are biologically relevant, and capture information useful
for perception. The features we used my contain more abstract
information and this level of representation may therefore be
more appropriate for characterizing the response tuning of mid-
to-high-level visual cortex. Future work on analyzing the features
extracted from each layer of the model can further explore their
correspondence with brain regions.

In addition to improving the deep learning model, data
enhancement can be used to improve decoding accuracy. Data
augmentation constructs new samples by interpolating the fMRI
vectors of two random subjects under the same class and
their corresponding target vectors. Data augmentation intuitively
extends the distribution of a given training set by providing
successive data samples for different target vectors, thus making the
network more robust in the test phase. Although we perform data
augmentation through linear interpolation and improve decoding
accuracy, the improvement does not seem to be significant.
Recently, deep learning models such as deep recurrent variational
auto-encoder and Generative adversarial networks (GAN) have
been used to generate EEG or fMRI data with remarkable results
(Panwar et al., 2020; Qiang et al., 2021). But the training of such
complex models with small samples is still a challenge. On the basis
of simply increasing the sample size using our data augmentation
method, future research will explore more complex and effective
data augmentation models.
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5 Conclusion

In this paper, we explore the possibility of action semantic
decoding based on fMRI data. We construct a more extensible
model based on the action representations extracted by a three-
dimensional DNN. The difference between this model and
the previous models based on deep learning representation
is that it uses a three-dimensional DNN model to extract
spatiotemporal dynamic features to establish a connection with
fMRI, instead of only extracting spatial image features. The
model first extracts action features based on the three-dimensional
action recognition model X3D, and an MLP model is built
to establish the relationship between fMRI and action features
so as to decode the action semantics corresponding to brain
activities. Considering that it is difficult to obtain single subject
data, the model uses multi-subject data for training and tests
on unseen subjects. The final results significantly exceed the
random level. In addition, the decoding results are further
improved by adding a nonlocal attention mechanism, multi-task
loss constraint’s MLP model and data enhancement. Moreover,
by examining the results obtained from models trained with data
from different regions of the cortex, our results suggest that
semantic information for human actions is widespread across the
entire visual cortex.
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