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Introduction: Multiple sclerosis (MS) is an intricate neurological condition that 
affects many individuals worldwide, and there is a considerable amount of 
research into understanding the pathology and treatment development. Nonlinear 
analysis has been increasingly utilized in analyzing electroencephalography 
(EEG) signals from patients with various neurological disorders, including MS, 
and it has been proven to be an effective tool for comprehending the complex 
nature exhibited by the brain.

Methods: This study seeks to investigate the impact of Interferon-β (IFN-β) 
and dimethyl fumarate (DMF) on MS patients using sample entropy (SampEn) 
and Higuchi’s fractal dimension (HFD) on collected EEG signals. The data were 
collected at Jagiellonian University in Krakow, Poland. In this study, a total of 
175 subjects were included across the groups: IFN-β (n = 39), DMF (n = 53), and 
healthy controls (n = 83).

Results: The analysis indicated that each treatment group exhibited more complex 
EEG signals than the control group. SampEn had demonstrated significant 
sensitivity to the effects of each treatment compared to HFD, while HFD showed 
more sensitivity to changes over time, particularly in the DMF group.

Discussion: These findings enhance our understanding of the complex nature 
of MS, support treatment development, and demonstrate the effectiveness of 
nonlinear analysis methods.
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1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the 
central nervous system (CNS). It is defined by the spread of 
demyelinating lesions in the CNS over space and time (Siffrin et al., 
2010). Neuronal injury occurs early in the disease and is linked to 
inflammatory activity. The remaining stages of neuronal damage after 
focal axonal lesions include axon degeneration and atrophy of 
neuronal cell bodies and dendrites (Siffrin et al., 2010). Atrophy and 
long-term disability in patients with MS can be attributed to the loss 
of neurons and their processes. Since inflammation is one of the 
leading causes of neurodegeneration, a combination of neuroprotective 
agents and anti-inflammatory treatments are encouraged early on 
Siffrin et al. (2010).

There are several treatments for multiple sclerosis; however, this 
paper will focus on two treatments widely used in managing this 
disease: Interferon-β (IFN-β) and dimethyl fumarate (DMF) (Reick 
et al., 2014). There are three main types of Interferon: Interferon-
alpha, Interferon-beta, and Interferon-gamma (Jakimovski et  al., 
2018). Interferon-β treats different types of MS by reducing 
inflammation and regulating the immune response. This drug is 
administered via injection, and common side effects include flu-like 
symptoms, injection-site reactions, myalgia, depression, and increased 
liver enzymes (Jakimovski et al., 2018). Dimethyl fumarate is branded 
as Tecfidera®. Also known as B-12, it is an oral medication that 
regulates the immune system and prevents stress and inflammation 
by activating the nuclear factor erythroid 2-related pathway. Some side 
effects include gastrointestinal issues, flushing, and lymphopenia 
(Linker and Haghikia, 2016; Mills et al., 2018).

It is important to note that Sattarnezhad et al. (2022) recognized 
that patients on IFN-β experienced a higher occurrence of relapses 
and a higher number of magnetic resonance imaging (MRI) lesions. 
In contrast, those on dimethyl fumarate experienced a lower 
occurrence of relapses and a lower number of lesions (Sattarnezhad 
et al., 2022). D’Amico et al. (2021) also observed fewer relapses in 
dimethyl fumarate compared to IFN-β (D’Amico et  al., 2021). To 
further back this up, Lorscheider et  al. (2021) demonstrated that 
dimethyl fumarate had similar efficacy compared to another drug, 
fingolimod, and Cohen et al. (2010) proved fingolimod had a better 
performance than IFN-β (Lorscheider et al., 2021; Cohen et al., 2010). 
Table 1 shows a summary of the characteristics of IFN-β and DMF 
outlined in several studies (Cohen et al., 2010; D’Amico et al., 2021; 
Linker and Haghikia, 2016; Lorscheider et al., 2021; Mills et al., 2018; 
Jakimovski et al., 2018; Sattarnezhad et al., 2022).

Many illnesses exhibit irregular brain wave activity, including 
MS, which can be detected and analyzed by electroencephalography 
(EEG) (Sanei and Chambers, 2007). Structural changes observed in 
the brain wave activity of MS patients can be  identified by EEG 
analysis, as opposed to imaging methods, such as MRI (Carrubba 
et  al., 2012). Despite appearing random, EEG signals exhibit 
complex characteristics with intricate temporal organization and are 
fundamentally deterministic (Rodriguez-Bermudez and Garcia-
Laencina, 2015; Pritchard and Duke, 1995). Nonlinear analysis 
methods have successfully captured the complexities and 
nonlinearities in EEG signals, as opposed to conventional linear 
methods, such as autocorrelation (Rodriguez-Bermudez and 
Garcia-Laencina, 2015; Pritchard and Duke, 1995; Kargarnovin 
et  al., 2023). Sample entropy (SampEn) and fractal dimension 
analysis are both commonly used to analyze the complexity or 
irregularity of a signal, particularly in nonlinear contexts, and 
we opted to use both sample entropy and Higuchi’s fractal dimension 
(HFD) in our study (Kargarnovin et  al., 2023; Hernandez 
et al., 2023).

Among the algorithms used for entropy estimation, particularly 
concerning EEG data, SampEn has been successfully employed (Bruce 
et al., 2009; Cuesta-Frau et al., 2017; Zhang et al., 2021). Created to 
reduce the bias of approximate entropy (ApEn), SampEn quantifies 
time series data regardless of the signal length, providing insights into 
complexity, irregularity, and rate at which new information is 
produced, making it especially valuable in analyzing noisy signals 
(Duran et  al., 2013; Richman and Moorman, 2000). Studies have 
analyzed EEG signatures using SampEn, and a couple to note are 
studies conducted by Mohseni and Moghaddasi (2022) and Shalbaf 
et al. (2012). In Mohseni and Moghaddasi (2022), SampEn was used 
to develop a diagnostic tool for MS, and their tool attained significantly 
higher diagnostic activity compared to other MS diagnostic methods 
(Mohseni and Moghaddasi, 2022). Shalbaf et al. (2012) used SampEn 
to measure the effects of sevoflurane on electroencephalogram, and 
they concluded it outperformed response entropy (RE) (Shalbaf 
et al., 2012).

Fractal dimension (FD) is a common measure of time series 
regularity, widely used to quantify long-range correlation and power 
law dependencies by determining the scaling exponent. FD has 
demonstrated its ability to differentiate between healthy and 
pathological brains, indicating its strength in examining the 
maturation and degeneration of brain function (Marino et al., 2019; 
Smits et  al., 2016; Zappasodi et  al., 2014; Zappasodi et  al., 2015). 
Marino et al. (2019) noted that changes in FD can reflect an alteration 
in the complexity of the dynamical nature of the brain, and it could 
be potentially tied to cognitive or perceptual impairment, as seen in 
studies investigating dementia and Alzheimer’s symptoms (Zappasodi 
et al., 2015; Marino et al., 2019; Ahmadlou et al., 2011; Smits et al., 
2016). Higuchi’s fractal dimension (HFD) is the most accurate in 
estimating FD compared to other FD methods (Esteller et al., 2001; 
Raghavendra et  al., 2009; Kesić and Spasić, 2016). It has been a 
prominent method in analyzing neuronal data, such as EEG and 
electrocorticography (ECoG), because it holds advantages over linear 
and spectral analysis methods due to its speed, accuracy, and 
computational cost (Paramanathan and Uthayakumar, 2008; Spasic 
et al., 2011; Chouvarda et al., 2011; Arle and Simon, 1990). In some 
cases, HFD produces better results when combined with other linear 
and nonlinear methods (Kesić and Spasić, 2016).

TABLE 1 Summary of interferon-β vs. dimethyl fumarate.

Interferon-β (IFN-β) Dimethyl fumarate (DMF)

Injection Oral

Helps reduce inflammation and regulates 

the immune response

Regulates the immune system and 

prevents stress and inflammation

Side effects: flu-like symptoms, injection 

site reactions, myalgia, depression, and 

an increase in liver enzymes

Side effects: gastrointestinal issues, 

flushing, and lymphopenia

Higher occurrence of relapses Lower occurrence of relapses

Higher number of MRI lesions Lower number of MRI lesions
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Thus, a research gap lies in investigating the nonlinear dynamics 
in EEG signals from multiple sclerosis patients under different drug 
treatments, such as IFN-β and DMF. This study aims to compare the 
nonlinear dynamics of EEG signals between MS patients treated with 
IFN-β and DMF. The following research questions were developed 
prior to the study:

 • RQ1: Does the EEG of patients with MS exhibit increased 
complexity compared to the control group?

 • RQ2: How do the complexity characteristics of EEG signals differ 
between MS patients undergoing treatment with IFN-β and those 
treated with DMF?

 • RQ3: Which complexity measure is most sensitive to the effects 
of IFN-β or DMF treatment on EEG dynamics in MS patients?

 • RQ4: Can the observed changes in complexity characteristics of 
EEG signals be used as potential biomarkers for monitoring the 
effectiveness of IFN-β or DMF treatment in MS patients?

In response to each research question, we  hypothesize 
the following:

 1 EEG data collected from patients with MS demonstrates an 
increase in complexity when compared to healthy participants, 
as reflected via sample entropy and Higuchi’s fractal dimension.

 2 Sample entropy and Higuchi’s fractal dimension, will illustrate 
distinguishable alterations between patients treated with 
IFN-β, patients treated with DMF, and the control group 
(healthy participants). Patients treated with DMF will exhibit 
significant differences in nonlinear characteristics compared to 
patients treated with IFN-β and the control group.

 3 Sample entropy will demonstrate the highest sensitivity and the 
greatest predicted value in evaluating the effects of IFN-β or 
DMF treatment on MS compared to the control group.

 4 Nonlinear analysis of EEG signals via sample entropy and 
Higuchi’s fractal dimension will reveal significant and 
consistent changes over time in MS patients undergoing IFN-β 
and DMF treatments relative to the control group of healthy 
patients. This will serve as definitive biomarkers for assessing 
treatment effectiveness and disease progression.

2 Methodology

2.1 Location of data collection and 
participants

The data were collected at Jagiellonian University in Krakow, 
Poland. The study included two groups of subjects: patients with early 
onset relapsing–remitting multiple sclerosis (RRMS) and healthy 
subjects. In the group of MS patients, there were two subgroups: those 
treated with IFN-β and those treated with DMF. The total number of 
participants for this analysis is 175. To further break it down, 39 
patients were on IFN-β, 53 were on DMF, and there were 83 healthy 
controls. The IFN-β group consisted of participants between 22 and 
63 years old (M = 39.15, SD = 7.909), and there were 24 females 
(61.5%) and 15 males (38.5%). The DMF group contained participants 
between 18 and 54 years old (M = 32.11, SD = 7.250). This group had 

33 females (62.3%) and 20 males (37.7%). The participants in the 
control group were between 21 and 61 years old (M = 36.22, 
SD = 8.498). There were 53 females (63.9%) and 30 males (36.1%). 
There were two rounds of data collection (first measurement and 
second measurement). The data for the second measurement were 
obtained 1 year after the data for the first measurement were collected. 
MS patients’ Expanded Disability Status Scale (EDSS) scores (Kurtzke, 
1983) ranged from 1 to 4 in the first measurement and from 1 to 4.5 in 
the second measurement. The number of relapses in the year prior to 
each measurement ranged from 0 to 2. A Wilcoxon signed-rank test 
indicated that there was no significant difference between EDSS 
scores in the first and second measurements, z = −0.958, p = 0.338. 
The median EDSS score was 1  in both the first and second 
measurements. Similarly, there was no significant difference in the 
number of relapses in the year prior to each measurement between 
the first and second measurements, z = −0.915, p = 0.360. The median 
number of relapses in the year prior was 0 in both the first and second 
measurements. The control group did not undergo a second round of 
data collection because there should not be significant changes in 
resting state EEG in healthy subjects within 1 year (Kondacs and 
Szabó, 1999).

2.2 Experimental protocol

For this study, data were collected during a resting state task. The 
resting state task included a six-minute procedure without any stimuli. 
In the first 3 minutes, subjects were asked to have their eyes open 
while focusing on a fixation point, and they had to keep their eyes 
closed in the last 3 minutes. Commands were pre-recorded and played 
by speakers. A 256-channel dense array EEG system (HydroCel 
Geodesic Sensor Net, EGI System 300; Electrical Geodesic Inc., OR, 
USA) was used to collect the data. The researchers decided to remove 
channels located on the cheeks (E225, E226, E227, E228, E229, E230, 
E231, E232, E233, E234, E235, E236, E237, E238, E239, E240, E241, 
E242, E243, E244, E245, E246, E247, E248, E249, E250, E251, E252, 
E253, E254, E255, and E256) due to many artifacts of low interest in 
the signal.

2.3 Pre-processing

The EEG data underwent pre-processing using MATLAB’s 
EEGLAB software to ensure data quality and integrity (Delorme and 
Makeig, 2004). The initial pre-processing stage involved discarding 
5 seconds of data that followed sound commands—eliminating these 
potential artifacts or confounding effects because the experimental 
instruction allowed for a more precise analysis of the EEG signals. A 
high pass filter was employed to exclude any signals below the 
frequency of 0.5 Hz. Adding on, a notch filter to remove power line 
interference and its harmonics was integrated to reject 50 Hz and its 
multiplicities from the signal. Independent component analysis (ICA) 
was conducted. Fifty principal components were used for the analysis 
to identify and reject artifact components, such as components related 
to eye movements, muscle activity, or other sources of artifact. Every 
removed channel was interpolated to estimate the missing values 
based on surrounding electrodes and provide comprehensive coverage 
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of all channels. Each subject had a sampling rate of 250 Hz for 
this study.

2.4 Autocorrelation

A commonly used linear analysis with applications in 
neurophysiological data, lag-1 autocorrelation (AC1), was carried out 
to validate the use of nonlinear analysis (Meisel et al., 2017; Scheffer 
et  al., 2009). AC1 is a reliable measure of the rate at which the 
autocorrelation function decays (Huang et  al., 2018). The 
autocorrelation function (ACF) is defined in Equation 1, where ( )x t  
represents the envelope signals, N is the length, µ  is the mean, and v is 
the variance:

 
( ) ( )( ) ( )( )

1
, 1, ,

2

N s

t

x t x t s NACF s s
v

µ µ−

=

− + −
= = …∑

 
(1)

To obtain lag-1 autocorrelation, we set s = 1 (Meisel et al., 2017). 
Higher AC1 values indicate greater predictability in the signal, whereas 
lower AC1 values suggest less predictability (Huang et al., 2018).

2.5 Sample entropy

Sample entropy (SampEn), initially developed by Richman and 
Moorman (2000) to measure regularity, was used to analyze the EEG 
signals across all groups (Duran et al., 2013; Richman and Moorman, 
2000). Greater entropy values indicate that the system is complex, 
irregular, and unpredictable, often associated with a healthy system. 
Conversely, low entropy values indicate a more deterministic and 
predictable system, meaning the EEG signals show more regular 
patterns and less complexity (Duran et  al., 2013; Pincus, 2006; 
Delgado-Bonal and Marshak, 2019). Two notable parameters are 
used in calculating SampEn: m and r. The parameter m represents the 
length of the subseries, and r represents the similarity criterion 
(Ramdani et al., 2009). Following the guidance of Costa et al. (2005) 
and Duran et al. (2013) selected m = 2 and r = 0.15 as the parameters, 
and it was noted that the selection of the parameters does not 
negatively impact the overall pattern of the results (Costa et al., 2005; 
Duran et al., 2013). Thus, others typically default to the parameters 
Duran et  al. (2013) used, as they are considered standard and, 
therefore, were deemed appropriate for this study. Following the 
guidance outlined by Ramdani et al. (2009), the equation for sample 
entropy is as follows (Richman and Moorman, 2000; Ramdani 
et al., 2009):

With time series x1, x2, … xN, subsequences of length m are first 
defined in Equation 2:

 ( ) ( )1 1, , , , 1,2, , 1i i i i my m x x x where i N m+ + −= … = … − +  (2)

After, the quantity is calculated by the following:

 
( ) ( ) ( )( )

1,

1 || ||
1

N m
m
i j i

j j i
B r r y m y m

N m

−

= ≠
= Θ − − ∞

− − ∑
 

(3)

The Heaviside function is defined by Θ , and || ||∞  represents 
the maximum norm, 
which is ( ) ( ) 0 1maxj i k m j k i ky m y m X X≤ ≤ − + +− ∞ = − .  
To explain, Equation 3 calculates the sum of the quantity of vectors, 

( )jy m , that are within the radius, r, from ( )iy m  that exist in the 
reconstructed phase space. Identical matches are excluded and are 
represented by j i≠ . Also, N  – m represents the total amount of 
vectors in the (m + 1) dimensional state space.

Equation 4 calculates the density:

 
( ) ( )1 N m

m m
i

N m
B r B r

N m

−

−
=

− ∑
 

(4)

Calculations in the (m + 1) space to extend the template matching 
process are as follows:

 
( ) ( ) ( )( )
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1 || 1 1 ||
1

N m
m
i j i

j j i
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− − ∑
 

(5)

 
( ) ( )1 N m

m m
i

N m
A r A r

N m

−

−
=
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(6)

In Equation 5, the number of sequences ( )1jy m +  within radius r 
of ( )1iy m +  is calculated, with the term ( ) ( )1 1j iy m y m+ − +  
representing the maximum difference between the two subsequences. 
After calculating the individual template matches ( )m

iA r , they are all 
averaged across all vectors to give ( )mA r , as shown in Equation 6. Then, 
the total amount of template matches in a m-dimensional and m + 1 
dimensional phase space with r is represented by Equations 7 and 8:

 
( ) ( )( ) ( )1 1

2
mB r N m N m B r= − − −

 
(7)

 
( ) ( )( ) ( )1 1

2
mA r N m N m A r= − − −

 
(8)

The sample entropy can then be  calculated as follows in 
Equation 9:

 
( ) ( )

( )
, , log

A r
SampEn m r N

B r
 

= −   
  

(9)

The sample entropy MATLAB script provided by Richman and 
Moorman (2000) was used in conjunction with an unpublished 
modified script from Amon (2021) to conduct the analysis (Richman 
and Moorman, 2000; Amon, 2021).

2.6 Higuchi’s fractal dimension

Higuchi’s fractal dimension (HFD) was also employed to 
analyze the EEG signals. It is another method frequently used in 
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nonlinear analysis, and it details the time series’ complexity and 
self-similarity (Accardo et al., 1997). Following the outline of the 
computation summarized in Hernandez et  al. (2023), the 
calculation of HFD involves analyzing a time series data 
sequence, denoted as X (1), X (2), …, X (N), where N represents 
the total number of samples (Hernandez et  al., 2023). The 
selection of a scale factor, m, begins the process. This scale factor, 
m, defines the length of the subseries under investigation. 
The selection of k is also necessary to commence the process, as 
this is the index of the subseries. The cumulative length, L(m, k), 
is calculated by comparing the absolute differences 
between adjacent data points within the subseries, as shown in 
Equation 10 (Porcaro et al., 2020):

 

( )
( )

( )( )
1,int

1 1.
1 int

m
N mi

k

X m ik NL k
N mX m i kk

k
− =  

 

 
 + − =

−− + −  
    

∑

 

(10)

N  is the length of the original time series X and 1

int

N
N m

k

−
− 

 
 

 

normalizes the function. The average cumulative length across all 
subseries is calculated to acquire ( )L k , the average length for the given 
scale factor, as represented in Equation 11:

 
( )

( )1
k

mm L k
L k

k
==

∑
 

(11)

The Higuchi’s fractal dimension is then computed by taking the 
logarithm of ( )L k , as defined in Equation 12:

 

( )( )
( ) max

ln
1,2, ,

ln 1 /
L k

FD fork k
k

= = …
 

(12)

The resulting fractal dimension value represents the fractal 
dimension of the time series, providing insight into its complexity 

(Porcaro et al., 2020). The method for calculating Higuchi’s fractal 
dimension was adopted from Jesús Monge-Álvarez1.

Typically, the fractal dimension ranges between 1 and 2, where 
higher HFD values indicate greater complexity and lower values suggest 
reduced complexity (Accardo et al., 1997; Scarpa et al., 2017).

Currently, no standard method is used to select the most 
appropriate value for the kmax parameter (Kesić and Spasić, 2016). 
The method selected in this paper is a common method used by 
Doyle et al. (2004) and Wajnsztejn et al. (2016). They considered 
the most appropriate kmax parameter to be where HFD approaches 
a local maximum or asymptote (saturation point) (Wanliss et al., 
2021; Doyle et al., 2004; Wajnsztejn et al., 2016). According to 
Figure 1, the data reaches a local maximum at kmax = 70. Therefore, 
kmax = 70 was the parameter chosen for this study.

2.7 Windowing

For the analysis, each participant’s EEG signal was divided into 
short 15-s time windows with 50% overlap. This was decided after 
following the advice of several articles that have opted to divide EEG 
signals into short time windows for computational efficiency (Mohseni 
and Moghaddasi, 2022; Ramanand et al., 2004; Er et al., 2021; Kesić and 
Spasić, 2016). The 50% overlap was chosen to prevent any discontinuity 
at the frame’s beginning or end (Er et al., 2021).

2.8 Statistical analysis

Several statistical analysis techniques were used to understand 
the data and answer the research questions comprehensively. 
Descriptive statistics provided a summary of the data. Levene’s and 

1 https://www.mathworks.com/matlabcentral/

fileexchange/50290-higuchi-and-katz-fractal-dimension-measures

FIGURE 1

The mean Higuchi’s fractal dimension of the first and second measurements is plotted for each kmax to assess where it approaches a local maximum or 
asymptote.
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Mauchly’s tests were conducted to test for homogeneity and 
sphericity. Although homogeneity was violated in most cases, it was 
not violated in the second measurement of AC1. There was no 
indication of a violation of sphericity. Given the sample size (n > 30) 
and following guidance from Hair et al. (2010) and Byrne (2010), 
parametric tests were utilized, as skewness (between −2 and + 2) 
and kurtosis (between −7 and + 7) were within acceptable ranges 
(Hair et al., 2010; Byrne, 2010). A paired samples t-test was used to 
compare the means within subjects, and mixed analysis of variance 
(ANOVA) was used to investigate the main effects of time and 
group. Welch’s ANOVA was employed to analyze the means 
between subjects to address the violation of homogeneity, and 
standard ANOVA was used to evaluate the means between subjects 
in the second measurement of AC1, where homogeneity was not 
violated. Games-Howell post hoc test was completed to identify 
which groups demonstrated significant differences. An alpha level 
of 0.05 was used as the threshold for determining the 
effect’s significance.

3 Results

3.1 Assessment of linearity

Lag-1 autocorrelation (AC1) was carried out to assess the 
linearity of the dataset. The mean AC1 value of the IFN-β group was 
0.800 (SD = 0.044) in the first measurement and 0.815 (SD = 0.042) 
in the second measurement. For the DMF group, the mean AC1 
value was 0.812 (SD = 0.052) in the first measurement and 0.805 
(SD = 0.050) in the second measurement. The mean AC1 of the 
control group was 0.806 (SD = 0.034). Paired samples t-test revealed 
no significant differences in the means within the IFN-β group 
(t(38) = −1.676, p = 0.102) and DMF group (t(52) = 0.901, 
p = 0.372). According to the mixed factorial ANOVA, time did not 
have a significant effect, F(1, 172) = 0.727, p = 0.395. However, a 
significant interaction effect of time and group was reported F(2, 
172) = 3.396, p = 0.036, highlighting a significant change in the 
pattern over time across groups. Due to the violation of homogeneity 
in the first measurement, F(2, 172) = 3.344, p = 0.038, Welch’s 

ANOVA was conducted for between-subjects comparison. No 
significant differences were reported in the first measurement, F(2, 
82.498) = 0.651, p = 0.524. Since the data in the second 
measurement, F(2, 172) = 1.636, p = 0.198, did not violate 
homogeneity, standard ANOVA was carried out. Like in the first 
measurement, no significant differences were reported, F(2, 
172) = 0.728, p = 0.484.

3.2 Assessment of nonlinearity

To assess the complexity of the EEG data, box plots with 95% 
confidence intervals were created to understand the distribution and 
central tendency of the SampEn and HFD values across different 
groups and measurements (Figure 2). Referring to the point plots in 
Figure 3, both treatment groups at each measurement had recorded 
relatively high mean SampEn values and HFD values compared to the 
control group. Summary statistics are shown in Table 2. A paired 
samples t-test was employed to evaluate the significance of the 
difference within each treatment group.

3.2.1 Variations and trends in sample entropy 
across groups

The median, interquartile range (IQR), and potential outliers of 
SampEn are shown in Figure 2 for both time measurements across 
groups. For the IFN-β group, the median SampEn at the initial 
measurement was reported as 1.687 (IQR 1.561–1.754), and the 
median SampEn at the second measurement slightly decreased to 
1.640 (IQR 1.516–1.685). Similarly, for the DMF group, the median 
SampEn at the first measurement was 1.640 (IQR 1.515–1.721), and a 
slight decrease in median SampEn was observed in the second 
measurement at 1.635 (IQR 1.578–1.731). The median SampEn for the 
control group for the first measurement was 1.544 (IQR 1.201–1.699). 
The presence of outliers confirms the violation of homogeneity.

Referring to Figure 3, only a slight increase in mean SampEn was 
observed from the first measurement to the second measurement in 
the IFN-β and DMF groups. Results indicate that the increase in the 
mean SampEn of the IFN-β treatment group observed in the second 
measurement (M = 1.614, SD = 0.138) was not significant compared 

FIGURE 2

Box plots represent the distribution of SampEn and HFD values across groups.
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to the mean SampEn of its initial measurement (M = 1.607, 
SD = 0.219), t(38) = −0.186, p = 0.854. For DMF, the mean SampEn 
of its second measurement (M = 1.643, SD = 0.121) did not differ 
significantly from its initial measurement (M = 1.598, SD = 0.187), 
t(52) = −1.687, p = 0.098. The mean SampEn value for the control 
group was 1.475 (SD = 0.259).

3.2.2 Variations and trends in Higuchi’s fractal 
dimension across groups

Figure  2 shows the median, interquartile range (IQR), and 
potential outliers for both measurements across groups for HFD. The 
median HFD value in the first measurement of the IFN-β group was 
high at 1.979 (IQR 1.961–1.988), and it saw a minor decrease in the 
second measurement with a value of 1.965 (IQR 1.951–1.980). In the 
DMF group, the median HFD value was also high at 1.971 (IQR 1.952–
1.982), and an increase in HFD was reported in the second 
measurement with a value of 1.976 (IQR 1.965–1.986). For the control 
group, the median HFD value was 1.960 (IQR 1.794–1.979). Like in 
SampEn, the presence of outliers confirms the violation of homogeneity.

Small increases in mean HFD measurements were observed 
between measurements in both treatment groups (Figure  3). The 

mean HFD value in the second measurement of the IFN-β group 
(M = 1.966, SD = 0.017) slightly increased when compared to the first 
measurement (M = 1.951, SD = 0.065); however, it was not significant, 
t(38) = −1.372, p = 0.178. On the other hand, the second measurement 
of the DMF group (M = 1.973, SD = 0.016) significantly increased 
when compared to the first measurement (M = 1.949, SD = 0.064), 
t(52) = −2.760, p = 0.008. The significant results are shown in Table 3. 
The mean HFD value for the control group was 1.895 (SD = 0.095).

3.3 Longitudinal analysis and interaction 
effects

A mixed factorial ANOVA was conducted for SampEn and HFD 
to observe the main effects of time and group (control, IFN-β, or 
DMF). An interaction plot was created to visualize the effects.

3.3.1 Interaction effects of time and treatment on 
sample entropy

Time did not have a significant effect, F(1, 172) = 1.905, p = 0.169, 
and an insignificant interaction effect of time and group was reported 

FIGURE 3

Mean SampEn and HFD for each group with associated error bars.

TABLE 2 Descriptive statistics for SampEn and HFD across groups.

Measurement Group N Mean SD Median IQR Min Max

SampEn first measurement Control 83 1.475 0.259 1.544 0.499 1.005 1.869

IFN-β 39 1.607 0.219 1.687 0.193 1.090 1.912

DMF 53 1.598 0.187 1.640 0.206 1.045 1.852

SampEn second 

measurement

Control - - - - - - -

IFN-β 39 1.614 0.138 1.640 0.169 1.261 1.889

DMF 53 1.643 0.121 1.635 0.154 1.337 1.920

HFD first measurement Control 83 1.895 0.095 1.960 0.185 1.726 2.001

IFN-β 39 1.951 0.065 1.979 0.027 1.741 1.994

DMF 53 1.949 0.064 1.971 0.030 1.742 2.000

HFD second measurement Control - - - - - - -

IFN-β 39 1.966 0.017 1.965 0.028 1.931 1.996

DMF 53 1.973 0.016 1.976 0.021 1.925 1.995
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F(2, 172) = 1.336, p = 0.266. The results indicate that SampEn did not 
significantly change between the first- and second-time measurements 
across all groups, and the pattern of change over time was insignificant 
across all groups. Although the interaction plot (Figure 4) shows some 
level of interaction between IFN-β and DMF, the graph alone does not 
confirm any statistically significant interaction. Neither of the 
treatment groups intersected with the control group, indicating their 
trend is different from the control group. Accordingly, the results 
confirm no significance was reported when comparing the pattern of 
change in both treatment groups between measurements 1 and 2.

3.3.2 Interaction effects of time and treatment on 
Higuchi’s fractal dimension

The mixed factorial ANOVA highlighted the main effects of time 
and group (control, IFN-β, or DMF). It yielded a significant effect for 
time F(1, 172) = 12.008, p < 0.001 and the interaction effect of time 
and group F(2, 172) = 4.384, p = 0.014. The results indicate that HFD 
significantly changed between the first- and second-time 
measurements across the treatment groups, and the pattern of change 
over time was significantly different. The detailed results are displayed 
in Table 4. The interaction plot (Figure 5) illustrates these findings. 
Both treatment groups saw an increase in their mean HFD in the 
second measurement, while the control group remained stable. The 
lines representing the two treatment groups did intersect, 
demonstrating some level of interaction. No interaction between 
either of the treatment group and the control group was observed. 
Hence, this also confirms the significance of the pattern of change in 
both treatment groups between measurements 1 and 2.

3.4 Diagnostic potential of complexity 
metrics

Due to the violation of homogeneity, Welch’s ANOVA was 
performed for the between-subjects effect at the first and second 
measurements for both SampEn and HFD. A Games-Howell post hoc 
test was conducted to identify significant differences between groups.

3.4.1 Between-subjects effects of treatment on 
sample entropy

Welch’s ANOVA was conducted following the Levene’s test, which 
indicated a violation of homogeneity in the first measurement, F(2, 
172) = 12.206, p < 0.001, and in the second measurement, F(2, 
172) = 49.377, p < 0.001. The summary of the results is displayed in 
Table 5. Welch’s ANOVA revealed a significant effect of treatment in the 
first measurement, F(2, 97.945) = 6.446, p = 0.002, and the second 
measurement, F(2,104.188) = 13.059, p < 0.001. Games-Howell post hoc 
test (Table 6) revealed that IFN-β (M = 1.607, SD = 0.219) and DMF 
(M = 1.598, SD = 0.187) had significantly higher sample entropy values 
in the first measurement compared to the control group (M = 1.475, 
SD = 0.259). Specifically, the mean difference between IFN-β and the 
control group was −0.132, 95% CI [−0.240, −0.025], p = 0.012. DMF’s 
mean difference with the control group was −0.123, 95% CI [−0.214, 

TABLE 3 Paired samples T-test for HFD in the DMF treatment group.

Group t df1 Two-sided p

DMF −2.760 52 0.008

FIGURE 4

Interaction plot of mean SampEn over time across the treatment 
groups and the control group. *A second measurement for the 
control group was not collected. However, since no significant 
changes in resting-state EEG are expected in healthy subjects within 
1 year, the control group is represented as constant in the interaction 
plot (Kondacs and Szabó, 1999).

TABLE 4 Mixed ANOVA table results for HFD across groups and time 
measurements.

Source Sum of 
squares

df Mean 
square

F p

Time 0.013 1 0.013 12.008 <0.001

Time*Group 0.010 2 0.005 4.384 0.014

Error(Time) 0.188 172 0.001 - -

FIGURE 5

Interaction plot of mean HFD over time across the treatment groups 
and the control group. *A second measurement for the control 
group was not collected. However, since no significant changes in 
resting-state EEG are expected in healthy subjects within 1 year, the 
control group is represented as constant in the interaction plot 
(Kondacs and Szabó, 1999).

TABLE 5 Welch’s ANOVA for the effect of treatment group on sample 
entropy.

Measurement Statistic df1 df2 p

First measurement 6.446 2 97.945 0.002

Second measurement 13.059 2 104.188 <0.001
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−0.033], p = 0.005. There was no significant difference when comparing 
IFN-β and DMF in the first measurement (p = 0.978).

For the second measurement, the Games-Howell post hoc test 
demonstrated that IFN-β (M = 1.614, SD = 0.138) and DMF 
(M = 1.643, SD = 0.121) had significantly higher sample entropy 
values in the second measurement compared to the control group 
(M = 1.475, SD = 0.259). In this measurement, the mean difference 
between IFN-β and the control group was −0.140, 95% CI [−0.225, 
−0.054], p = 0.001, and the mean difference between DMF and the 
control group was −0.168, 95% CI [−0.246, −0.090], p < 0.001. Like 
in the first measurement, there was no significant difference when 
comparing IFN-β and DMF in the first measurement (p = 0.563).

3.4.2 Between-subjects effects of treatment on 
Higuchi’s fractal dimension

Like in SampEn, the Levene’s test confirmed a violation of 
homogeneity in the first measurement, F(2, 172) = 34.473, p < 0.001, 
and in the second measurement, F(2, 172) = 387.564, p < 0.001. 
Therefore, Welch’s ANOVA was conducted to determine the between-
subjects effect in HFD values. A significant effect of treatment was 
observed in the first measurement, F(2, 103.306) = 9.799, p < 0.001, 
and in the second measurement, F(2,107.471) = 26.777, p < 0.001 was 
observed. A breakdown of the results is outlined in Table  7. The 
Games-Howell post hoc test (Table 8) was performed to identify where 
the significance lay. IFN-β (M = 1.951, SD = 0.065) and DMF 
(M = 1.949, SD = 0.064) had significantly larger HFD values in the 
first measurement compared to the control group (M = 1.895, SD =0 
0.095). The mean difference between IFN-β and the control group was 
−0.057, 95% CI [−0.092, −0.022], p = 0.001. DMF’s mean difference 
with the control group was −0.054, 95% CI [−0.087, −0.022], 
p < 0.001. There was no significant difference when comparing IFN-β 
and DMF in the first measurement (p = 0.981).

Like the first measurement, the Games-Howell post hoc test 
demonstrated that IFN-β (M = 1.966, SD = 0.017) and DMF 
(M = 1.973, SD = 0.016) had significantly larger HFD values in the 
second measurement compared to the control group (M = 1.895, 
SD = 0.095). In this measurement, the mean difference between IFN-β 

and the control group was −0.072, 95% CI [−0.097, −0.046], p < 0.001, 
and the mean difference between DMF and the control group was 
−0.0780, 95% CI [−0.103, −0.052], p < 0.001. No significant difference 
was reported when comparing IFN-β and DMF in the first 
measurement (p = 0.170).

4 Discussion

Multiple sclerosis is a complex and progressive disease that is 
mostly diagnosed in young women. It impacts the central nervous 
system and causes various symptoms, such as deficits in complex 
attention, long-term memory, and processing speed (Chiaravalloti and 
DeLuca, 2008; Dobson and Giovannoni, 2019). It also reduces the 
brain’s ability to compensate for damage and cognitive reserve. It has 
been historically treated with immunosuppressant or 
immunomodulatory treatments, which must be ongoing to reduce 
inflammation (Dobson and Giovannoni, 2019). In line with Pritchard 
and Duke (1995), the high AC1 values highlight the deterministic 
nature of the EEG signals (Pritchard and Duke, 1995). Although a 
significant interaction between time and group was observed in the 
AC1 values, no other significant results were reported. This 
demonstrates that linear measures, such as AC1, capture only limited 
information regarding the complexity of EEG signals, emphasizing the 
need for nonlinear analyses. Thus, nonlinear analyses have been 
proven to be  effective in the analysis of EEG data of MS patients 
(Hernandez et al., 2023). So, this study provides novel insights into 
pharmaceutical treatments’ effects on MS patients’ brain dynamics, as 
measured by sample entropy and Higuchi’s fractal dimension.

TABLE 6 Games-Howell post hoc comparisons for differences in sample entropy across treatment groups.

Dependent 
variable

(I) Group (J) Group Mean 
difference (I-J)

Std. Error Sig. 95% Confidence Interval

Lower 
bound

Upper 
bound

SampEn first 

measurement

Control IFN-β −0.132 0.045 0.012 −0.240 −0.025

DMF −0.123 0.038 0.005 −0.214 −0.033

IFN-β Control 0.132 0.045 0.012 0.025 0.240

DMF 0.009 0.043 0.978 −0.095 0.112

DMF Control 0.123 0.038 0.005 0.033 0.214

IFN-β −0.009 0.043 0.978 −0.112 0.095

SampEn second 

measurement

Control IFN-β −0.140 0.036 0.001 −0.225 −0.054

DMF −0.168 0.033 <0.001 −0.246 −0.090

IFN-β Control 0.140 0.036 0.001 0.054 0.225

DMF −0.028 0.028 0.563 −0.095 0.038

DMF Control 0.168 0.033 <0.001 0.090 0.246

IFN-β 0.028 0.028 0.563 −0.038 0.095

TABLE 7 Welch’s ANOVA for the effect of treatment group on Higuchi’s 
fractal dimension.

Measurement Statistic df1 df2 p

First measurement 9.799 2 103.306 <0.001

Second measurement 26.777 2 107.471 <0.001
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4.1 Evidence of complexity in MS EEG: 
sample entropy and Higuchi’s fractal 
dimension analysis

As mentioned, higher entropy values indicate that a system is 
complex, irregular, and unpredictable, often linked to a healthy system. 
On the other hand, lower entropy values indicate a more predictable and 
deterministic system (Duran et al., 2013; Pincus, 2006; Delgado-Bonal 
and Marshak, 2019). As for HFD, greater values indicate more complexity 
in the signal (Scarpa et al., 2017). Treatment was expected to have some 
level of impact on the complexity of the signal (Shalbaf et al., 2012; 
Thomasson et al., 2000).

In the study, the control, Interferon-β, and dimethyl fumarate groups 
displayed high SampEn and HFD values at each time measurement, 
supporting the hypothesis that an increase of complexity was observed. 
It is shown that both treatment groups displayed higher SampEn and 
HFD values when compared to the control group, suggesting that the MS 
patients were found to have a greater number of nonlinear segments. 
These findings were similar to those of Pezard et al. (2001), who reported 
higher entropy values compared to the control group when investigating 
Parkinson’s disease (Pezard et al., 2001). This further reveals MS patients 
treated with IFN-β and DMF have less predictable and more complex 
electrical activity compared to the controls (Pezard et al., 2001). The high 
nonlinearity can also be  tied to the dimensionality of the electrical 
activity. Lachaux et al. (1997) described how dimensionality decreases if 
nonlinearity increases (Lachaux et al., 1997). This indicates that the MS 
patients treated with both treatments may have brain dynamics of a 
lower dimension (Pezard et al., 2001; Stam et al., 1994). Additionally, it 
has been noted that the increase in the complexity of EEG signals for MS 
patients is linked to the brain’s compensatory mechanisms and is 
indicative of the brain’s structural complexity (Wątorek et al., 2024). 
We can hypothesize that the higher complexity reported in the treatment 
groups could also be due to the brain’s adaptive response to the effects of 
the treatments, as they are responsible for the regulation of the immune 
system and reduction in inflammation (Jakimovski et al., 2018; Linker 
and Haghikia, 2016; Mills et al., 2018).

4.2 Distinct EEG patterns in MS treatments 
and sensitivity of complexity measures

There were no significant differences reported in the complexity 
characteristics of EEG signals between MS patients undergoing 
treatment with IFN-β and DMF at the first and second measurements, 
which rejects the hypothesis that patients treated with DMF will exhibit 
significant differences in complexity characteristics compared to patients 
treated with IFN-β. However, the second hypothesis was partially 
supported because the complexity characteristics (SampEn and HFD) of 
each treatment group differed significantly compared to the control 
group at each time measurement, as confirmed by Welch’s ANOVA and 
the Games-Howell post hoc test. These findings are backed by other 
studies that have concluded that nonlinear EEG measures can 
be  sensitive to treatments (Pezard et  al., 1998; Pezard et  al., 2001; 
Wackermann et al., 1993).

In particular, as seen in Tables 6, 8, the mean differences in 
SampEn between each treatment group and the control group at 
the first and second measurements were higher than the mean 
differences observed in the same scenario for HFD. This indicates 
that SampEn demonstrated the highest sensitivity and the greatest 
predicted value in evaluating the effects of each treatment group 
compared to the control group, supporting our third hypothesis. 
These results suggest that treatments, such as IFN-β and DMF, 
impact the overall brain dynamics, as reflected by the higher 
sample entropy and Higuchi fractal dimension values.

4.3 Complexity EEG metrics as 
biomarkers for MS treatment 
effectiveness

Several studies (Hossain et al., 2022; Di Ieva et al., 2015) have 
investigated using nonlinear analysis in recognizing biomarkers 
in individuals with MS and healthy controls (Hernandez et al., 
2023). Both entropy and fractal dimension have been used to 

TABLE 8 Games-Howell post hoc comparisons for differences in Higuchi’s fractal dimension across treatment groups.

Dependent 
variable

(I) Group (J) Group Mean 
difference (I-J)

Std. Error Sig. 95% Confidence Interval

Lower 
bound

Upper 
bound

HFD first measurement Control IFN-β −0.057 0.015 0.001 −0.092 −0.022

DMF −0.054 0.014 <0.001 −0.087 −0.022

IFN-β Control 0.057 0.015 0.001 0.022 0.092

DMF 0.003 0.014 0.981 −0.030 0.035

DMF Control 0.054 0.014 <0.001 0.022 0.087

IFN-β −0.003 0.014 0.981 −0.035 0.030

HFD second 

measurement

Control IFN-β −0.072 0.011 <0.001 −0.097 −0.046

DMF −0.078 0.011 <0.001 −0.103 −0.052

IFN-β Control 0.072 0.011 <0.001 0.046 0.097

DMF −0.006 0.004 0.170 −0.015 0.002

DMF Control 0.078 0.011 <0.001 0.052 0.103

IFN-β 0.006 0.004 0.170 −0.002 0.015
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either distinguish between conditions or differentiate between 
healthy and pathological brains in previous research (Marino 
et al., 2019; Smits et al., 2016; Zappasodi et al., 2014; Zappasodi 
et al., 2015; Bauer et al., 2011; Pezard et al., 2001). In this study, 
we aimed to explore whether sample entropy and HFD are reliable 
indicators for the progression of MS. We initially hypothesized 
that MS patients treated with IFN-β and DMF treatments would 
reveal significant and consistent changes over time relative to the 
control group.

Referencing Figure  2, it was observed that the initial 
measurements of SampEn and HFD demonstrated more 
dispersion compared to the second set of measurements. This 
observation could indicate the progression of MS over time, 
leading to more consistency in the results. Nevertheless, 
we  determined that the hypothesis could only be  partially 
supported because time and the interaction between time and 
treatment group significantly impacted only HFD and not 
SampEn. However, a significant increase from the first 
measurement to the second measurement was only observed in 
HFD values of the DMF group. Hence, an increase in signal 
complexity and positive neurophysiological changes can 
be attributed to DMF, which is reflected only in HFD. This finding 
is supported by Viglietta et al. (2015) and Vermersch et al. (2022). 
Viglietta et  al. (2015) concluded that DMF reduces new and 
enlarging T2 lesions, gadolinium-enhancing lesions activity, and 
the number of new non-enhancing T2 lesions (Viglietta et  al., 
2015). Similarly, Vermersch et  al. (2022) reported that more 
pediatric patients treated with DMF did not develop new or newly 
enlarging T2 lesions compared to those treated with IFN-β 
(Vermersch et  al., 2022). These findings demonstrate the 
effectiveness of DMF in reducing disease activity and may explain 
the increase in EEG complexity over time compared to IFN-β. 
Although SampEn demonstrated the highest sensitivity and 
greatest predicted value, its responsiveness was limited when time 
was factored in. This finding signifies how HFD may be more 
responsive to temporal changes in EEG dynamics than SampEn.

4.4 Limitations and future research

There are a few limitations and opportunities for future research 
to note in this study. The first limitation is centered on the selection of 
the kmax parameter. Different methods of kmax parameter selection 
have been employed previously, but researchers have yet to agree on a 
universal method (Kesić and Spasić, 2016). Different parameter 
selection methods could alter the results. However, one of the most 
common methods was chosen in this study. This method was carried 
out by selecting the parameter where HFD reached a maximum or 
asymptote (Wanliss et al., 2021; Doyle et al., 2004; Wajnsztejn et al., 
2016). Another possible limitation is the sample size of each treatment 
group. Increasing the sample size could have enhanced the results 
reported in this experiment. More specifically, the IFN-β treatment 
group had the lowest number of participants, and an increase in the 
number of MS patients on IFN-β could have highlighted clinically 
significant differences between the treatment groups.

There are several opportunities for future research. First, 
future studies could expand and balance the sample sizes for each 
treatment and collect longitudinal EEG data from the control 

group to strengthen the analysis and validate these findings. The 
next step in the study could be to analyze the EEG time series 
using multifractal methodology. This method helps quantify the 
data’s correlation structure through the set of scaling exponents, 
providing a deeper understanding of the data’s complexity 
(Wątorek et al., 2024). Furthermore, there are several methods to 
characterize complexity. One method is detrended fluctuation 
analysis (DFA), which is used to evaluate the Hurst exponent and 
can then be  recalculated to determine the fractal dimension 
(Márton et al., 2014). Another method is the Lyapunov exponent, 
which is employed to identify chaotic behavior in the data and can 
be used to quantify data complexity (Yakovleva et al., 2020). The 
presented study investigates the effects of two immunomodulatory 
treatments; however, they aren’t the only treatments for multiple 
sclerosis. MS treatments include immunosuppressants (i.e., 
fingolimod), immunomodulatory therapies (i.e., IFN-β and 
DMF), and immune reconstitution therapies (i.e., alemtuzumab 
and cladribine) (Dobson and Giovannoni, 2019). Future studies 
could investigate the effects of immunosuppressants and immune 
reconstitution therapies on the brain’s dynamics via nonlinear 
analysis. These studies could use nonlinear analysis to investigate 
how these different treatment groups compare.

As reported by Hernandez et al. (2023), several articles have 
used machine learning algorithms in studying MS (Ahmadi and 
Pechenizkiy, 2016; Torabi et al., 2017; Kotan et al., 2019; Raeisi 
et al., 2020; Karaca et al., 2021; Karacan et al., 2022; Mohseni and 
Moghaddasi, 2022). Methods include feature extraction, feature 
selection, and feature classification, and these methods could 
allow researchers to swiftly search and analyze large datasets for 
potential biomarkers (Hernandez et  al., 2023; Hossain et  al., 
2022). In future studies, researchers could build on this study’s 
approach by developing machine-learning methods that integrate 
MRI and functional magnetic resonance imaging (fMRI) to 
compare the efficacy of different MS treatments. This could 
further enhance the analysis by identifying trends and possible 
biomarkers more efficiently.

5 Conclusion

After demonstrating the limitations associated with lag-1 
autocorrelation, we employed sample entropy and Higuchi’s fractal 
dimension to analyze the nonlinearity in electroencephalogram 
signatures of MS patients treated with Interferon-β and dimethyl 
fumarate. We have shown that patients undergoing each treatment 
exhibited more complex and less predictable brain activity when 
compared to the control group. SampEn demonstrated the highest 
sensitivity to treatment effects, whereas HFD revealed greater 
sensitivity when considering the effect of time.

Thus, these results have provided insights into how the effects of 
each treatment have a different impact on brain activity. They have 
furthered our understanding of the brain’s mechanics associated with 
MS. With the knowledge gathered here and on future investigations, 
current treatment strategies could be improved, and any benefits or 
limitations associated with these treatments could be disclosed. Thus, 
our study expands the scope of the analysis of EEG signatures of MS 
patients and paves the way for an alternative approach to analyzing 
treatment effectiveness.
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