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Introduction: The prevalence of age-related brain issues has risen in developed

countries because of changes in lifestyle. Alzheimer’s disease leads to a rapid and

irreversible decline in cognitive abilities by damaging memory cells.

Methods: A ResNet-18-based system is proposed, integrating Depth

Convolution with a Squeeze and Excitation (SE) block to minimize tuning

parameters. This design is based on analyses of existing deep learning

architectures and feature extraction techniques. Additionally, pre-trained

ResNet-18 models were created with and without the SE block to compare

ROC and accuracy values across di�erent hyperparameters.

Results: The proposed model achieved ROC values of 95% for Alzheimer’s

Disease (AD), 95% for Cognitively Normal (CN), and 93% for Mild Cognitive

Impairment (MCI), with a maximum test accuracy of 88.51%. However, the pre-

trained model with SE had 93.26% accuracy and ROC values of 98%, 99%, and

98%, while the model without SE had 94%, 97%, and 94% ROC values and 92.41%

accuracy.

Discussion: Collecting medical data can be expensive and raises ethical

concerns. Small data sets are also prone to local minima issues in the

cost function. A scratch model that experiences extensive hyperparameter

tuning may end up being either overfitted or underfitted. Class imbalance

also reduces performance. Transfer learning is most e�ective with small,

imbalanced datasets, and pre-trained models with SE blocks perform better

than others. The proposed model introduced a method to reduce training

parameters and prevent overfitting from imbalanced medical data. Overall

performance findings show that the suggested approach performs better than

the state-of-the-art techniques.

KEYWORDS

Alzheimer’s disease, cognitive deterioration, ResNet-18, depth convolution, squeeze

and excitation, transfer learning

1 Introduction

Alzheimer’s disease (AD) is a severe neurological condition. A person with AD is

unable to converse, retain details, make decisions, pick up new skills, and so on (Korolev,

2014; Hazarika et al., 2023). The majority of people with Alzheimer’s disease are elderly

or in their early 60s. The most catastrophic of all the physical alterations is damage to

brain cells. The brain areas that sustain the most significant damage are the amygdala,

hippocampus, and a few additional areas that control most AD symptoms. The patient is

unable to perform even the most basic tasks because learning cells are first impacted, then

additional gray matter cells are destroyed. Consequently, those suffering from Alzheimer’s

disease experience extreme behavioral and cognitive challenges in addition to memory
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loss. The majority of individuals with AD have advanced from

Mild Cognitive Impairment (MCI), an early stage of dementia.

The symptoms of MCI are nearly the same as those of AD,

albeit less severe. MCI is sometimes called AD in its early stages.

Research indicates that eight out of ten individuals with MCI

acquire AD within 7 years (Hazarika et al., 2023). Typically, neuro-

specialists work alongside psychologists to administer various

mental and physical examinations, including a Mini-Mental State

Examination (MMSE), a neurophysiological assessment, a physical

assessment and screening tests, a depression analysis, and more.

Various instruments are needed to complete these tasks, making the

procedure inefficient and time-consuming. To provide tissue-by-

tissue information on the neurological system,Magnetic Resonance

Imaging (MRI) is a widely used method. Compared to the

conventional diagnosis method, brain imaging may require less

time and equipment for AD classification. Furthermore, proper

brain imaging processing may identify significant biomarkers long

before the beginning of Alzheimer’s disease (Hazarika et al., 2023).

Conversely, intricate pixel formationsmake diagnosing ADdifficult

by looking at tissue changes for traditional image processing

methods (Fung et al., 2019). Sample brain MRI scans for patients

with AD, MCI, and Cognitively Normal (CN) are shown in

Figure 1.

The intricacy of Alzheimer’s disease and the necessity of timely

identification make it a formidable medical issue. Conventional

techniques might not always be enough to predict the course of

the illness with enough accuracy. Alzheimer’s is a complicated

medical condition that requires prompt diagnosis due to its

complexity. Deep Learning (DL) techniques are increasingly being

used by medical experts to visualize and predict diseases and create

individualized, preemptive treatment regimens (Saleh et al., 2023).

Traditional Machine Learning (ML) and DL algorithms aimed to

solve discrete, highly data-intensive jobs. Transfer learning has

emerged as a solution to the isolated learning paradigm to improve

classification performance using MRI scans. Its goal is to use the

characteristics learned from pre-trained models. Creating effective

models to help radiologists and medical professionals recognize the

various phases of Alzheimer’s disease, such as AD, MCI, and CN.

Francis et al. (2024) employed a deep learningmodel to evaluate

the ADNI dataset and identify the stages of Alzheimer’s disease

using Squeeze and Excitation Networks (SENet) and local binary

patterns. The accuracy of classifying MCIc (MCI converter) against

MCInc (MCI non-converter) was 86% with SE networks and 82%

without SE networks. Lu et al. (2022) developed a two-stage model

that used contrastive learning and transfer learning (ResNet) to

predict the progression of MCI into AD, with an accuracy of

82% and an AUC of 84%. The improvised model ADNet was

created by integrating SENet to VGG-16 and improving feature

extraction after evaluating the ADNI 2D MRI images. Without

SENet, the accuracy in AD vs. CN classification was 82.94%, but

with SENet, it was 84.08%. By developing an optimal weighted

ensemble model consisting of five pre-trained 3D CNN ResNet-

50 variants (ResNet, ResNeXt, SEResNet, SEResNeXt, and SE-Net),

Dharwada et al. (2024) concentrated on early AD diagnosis using

sMRI images from the ADNI dataset and achieved an accuracy of

97.27%. Illakiya et al. (2023) developed a hybrid attention model

to extract both global and local features by utilizing 3D MRI from

ADNI. It achieved an accuracy of 89.17% with DenseNet-169 along

with SENet. With DenseNet-169 alone, able to reach 77% accuracy.

Khan et al. (2022) suggested PMCAD-Net, an applicable multiclass

classification network for the early detection of Alzheimer’s disease.

Using the ADNI dataset, it distinguishes between EMCI, LMCI,

CN, and AD, achieving a 98.9% accuracy rate and a 96.3% F1

score. Khan et al. (2023) proposed a transfer learning-basedmethod

(VGG-16 and VGG-19) that differentiated between CN, EMCI,

LMCI, and AD by using tissue segmentation to extract gray matter

from the ADNI dataset’s MRI images and achieved an accuracy

of 97.89%.

Odusami et al. (2021) was able to analyze fMRI images from

ADNI and predict the early stages of AD with an accuracy of

80.80% for AD vs. CN categorization by unfreezing all layers of

ResNet-18 and modifying all parameters to fit the new dataset.

The accuracy of the ensemble model developed from the analysis

of fMRI images from ADNI was 97.9%, 87.5% with ResNet-18,

and 96.2% with VGG-16 in Tajammal et al. (2023). Utilizing an

attentionmechanism, ResNet-18, Zhou et al. (2023) developed a 2D

parameterized model. While average pooling produces an accuracy

of 88.12%, ResNet-18 alone produces an accuracy of 82.45%. A

ROC of 98.49% is provided by the complete model. Suja and Raajan

(2024) evaluated a number of deep learning models for the timely

diagnosis of AD using the ADNI dataset. The accuracy of the

ResNet-18 model with RMSprop and ADAM was 83.5%. Topsakal

and Lenkala (2024) proposed an ensemble model that used a pre-

trained, improved model with gradient boosting to attain a 95%

accuracy rate. However, ResNet-50 alone had an accuracy of 88%.

However, graph convolutional networks can analyze the

pathological brain regions associated with cognitive disorders and

achieve good classification performance. They cannot uncover the

fundamental relationships between multiple brain ROIs associated

with illness. These networks first retrieve characteristics for each

ROI or subject before building a classifier for AD diagnosis using

either unimodal or bimodal imaging data. Utilizing hypergraph-

based techniques, which consider high-order relations between

numerous ROIs from unimodal or multimodal imaging, improved

classification performance and created discriminative connections.

Zuo et al. (2024) designed a Graph-based model and

forecast aberrant brain connections at various AD stages. The

prior distribution from graph data is estimated using a Kernel

Density Estimation (KDE) technique, and an adversarial learning

network is integrated for multimodal representation learning.

The Pairwise Collaborative Discriminator (PCD) preserves sample

and distribution consistency, and a hypergraph-based network is

developed to fuse the learned representations to produce united

connectivity-based features. For the binary classification (AD vs.

CN, LMCI vs. CN, and EMCI vs. CN), 300 individuals were

gathered from the ADNI-3 database for the investigation. The

accuracy rates were 96.47%, 92.20%, and 87.50%, respectively. Pan

et al. (2024) developed a comprehensive system integrating fMRI

and DTI to identify aberrant brain networks for AD research.

This study used 236 ADNI subjects and obtained an accuracy of

80.72% for CN, 63.8% for EMCI, 86.91% for LMCI, and 82.71%

for AD. Zong et al. (2024) constructed brain networks using

Diffusion-based Graph Contrastive Learning (DGCL) to identify

the geographical positions of brain regions precisely. Contrastive
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FIGURE 1

Sagittal middle slice of (A) Alzheimer’s disease (AD), (B) Mild cognitive impairment (MCI), (C) Cognitively normal (CN).

learning is adopted to optimize brain connections by removing

individual differences in redundant connections unrelated to

disorders. Data (DTI format) from 349 subjects-including those in

the Control Normal group (CN), Early Mild Cognitive Impairment

(EMCI), Late Mild Cognitive Impairment (LMCI), and AD were

gathered from the ADNI, and an accuracy of 86.61% was produced.

Zuo et al. (2023) presented a brain structure-function fusing

learning model by fusing representation from rs-fMRI and DTI

to investigate MCI. The knowledge-aware transformer module

automatically captures features of local and global connections

across the brain. Achieved an accuracy of 87.80% for EMCI vs.

Subjective Memory Complaints (SMC), 95.57% for LMCI vs. SMC,

and 91.14% for LMCI vs. EMCI.

Every deep learning network that is constructed from the

ground up will run into a lot of issues. A Deep CNN network

requires a large number of parameters to be trained during

the training phase. By lowering this parameters, the network’s

computational complexity and time and space constraints would

decrease. For the same reason, we can use Squeeze and Excitation

blocks to minimize the total training parameters, identify the

channel interdependencies, and recalibrate the output feature with

input to exploit the local and global spatial features to improve

the performance. We can also use Depth Convolution instead of

standard Convolution. The fully connected layer, including the

dropout layer, can be replaced with Global Average Pooling to

lower the overall training parameters and accelerate convergence.

This regularization technique significantly reduces overfitting and

generalization errors in the model. However, an extensive dataset

for model training and meticulous hyperparameter optimization

for increased efficiency are no longer necessary when employing the

Transfer Learning technique. The main contributions of our work

are as follows.

• Squeeze and Excitation (SE) blocks were added to the

ResNet-18 residual block in order to build a Deep CNN

ResNet-18-based model from the ground up using the

attention mechanism. Additionally, to lower training

parameters and lighten the model overall, we employed

Depth-wise Convolution and Global Average pooling. ROC

and accuracy were compared to various combinations of

optimizers, dropout rates, sample sizes, and epochs using

the ADNI dataset, which was utilized to train the model.

Cross-validation is used to validate the model and lower the

regularization errors.

• The accuracy and ROC were assessed through training and

testing using the pre-training model ResNet-18 with SE block

and ADNI dataset.

• Through training and testing with the pre-training model

ResNet-18 without SE block, the accuracy and ROC were

evaluated using the ADNI dataset.

• ROC values, testing and training accuracy, confusion matrix,

and other evaluation parameters were used to compare the

performance of the three models mentioned above.

• The models were assessed using real-time patient MRI scans

along with their demographic data as well as with the

OASIS-1 dataset.

Medical professionals are using deep learning for disease

prediction and visualization to create personalized treatment

plans (Saleh et al., 2023). In comparison to the three deployed

models and the state-of-the-art techniques outlined, ResNet-

18, a pre-trained model with SE block, demonstrated the most

convincing performance.

Five distinct sections that make up the overall paper. An outline

of Alzheimer’s disease, the motivation behind this effort, and a

survey summary of associated works are covered in Section 1.

Section 2 describes the dataset, data pre-processing, and proposed

model’s architectures in detail. The results are demonstrated and

compared using several criteria in Section 3. Lastly, the conclusion,

limitations, and future work are discussed in Sections 4 and 5.

2 Materials and methods

The initial section outlines the datasets utilized for training

and evaluating all the models, along with a detailed description

of the preprocessing steps that make these datasets suitable for

both training and testing. The following section explains the

functionality of the Deep CNN architecture based on ResNet-18,

which was developed from scratch. This architecture incorporates

depthwise convolution and the Squeeze and Excitation algorithms.

Additionally, it reviews the framework of two other models that

employ a transfer learning approach. Figure 2 shows the complete

procedure of our suggested methodology.
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FIGURE 2

Overall procedure.

2.1 Dataset

This section covers the datasets used for training and testing,

along with details about the preprocessing methods applied to 8-bit

images available in each dataset.

2.1.1 ADNI
The ADNI (Alzheimer’s Disease Neuroimaging Initiative)

database (http://adni.loni.usc.edu/ accessed on August 2022)

provided the study’s data. These comprised the core of our analysis:

volumetric T1-weighted, B1 corrected, N3 scaled, Magnetization-

Prepared Rapid Gradient Echo (MP-RAGE) MRIs with Gradwarp.

Alzheimer’s Dementia (AD), Cognitively Normal (CN), and Mild

Cognitive Impairment (MCI) were the three categories of the

dataset that comprised the 2291 (476-AD, 703-CN, 1112-MCI)

patients in this study. It is 46.83 GB compressed and 70.8 GB

uncompressed and contains MRI images in NIFTI format. A single

NIFTI image contains a packed volume of∼184 slices.

2.1.2 Real-time hospital patient data
MRI imaging data from eight patients at the Government

Medical College in Kottayam, Kerala, were collected for model

evaluation. Each patient had around 250–400 DICOM images

converted to JPG format. From these, six to nine sagittal-mode

JPG images were randomly selected for pre-processing. They also

provided themanually conducted tests for theMMSE and the CDR,

along with their corresponding scores.

2.1.3 OASIS-1
OASIS-1 (Open Access Series of Imaging Studies) is a

publicly accessible dataset used to test our approach. It is 15.8

GB compressed and 50 GB uncompressed and available at

http://www.oasis-brains.org. Twelve archive files are available for

download, organized by imaging session. Each session directory

contains an XML file, a TXT file, and three subdirectories:

RAW, PROCESSED, and FSL_SEG. The XML and TXT files

provide acquisition and anatomical measurements, while the RAW
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directory holds the individual scan images. The PROCESSED

directory includes two subdirectories: SUBJ_111 and T88_111.

The SUBJ_111 folder contains averaged and co-registered sagittal

images in GIF format. The T88_111 folder has the atlas-registered,

gain field-corrected image and its brain-masked version for all

three projections, also in GIF format. The FSL_SEG directory

contains the segmentation image for gray matter, white matter,

and Cerebro Spinal Fluid (CSF) generated from the masked atlas

image. The “oasis_cross-sectional.csv” spreadsheet contains labels

for demographics, clinical information, and derived anatomic

volumes. Ten randomly selected sagittal GIF images were converted

to JPG format for applying our various pre-processing algorithms,

enabling model testing.

2.1.4 Data preprocessing
All three datasets were mainly preprocessed using MATLAB.

For the ADNI dataset, the middle slice was carefully selected

to observe the hippocampus region, which is the area most

significantly affected by Alzheimer’s disease (AD). Initially, the

MRI images in NIFTI format were displayed and captured as a

2D image focusing on the middle slice using the screen capture

function. The captured image was then cropped and saved in PNG

format. Subsequently, the 2D images were organized into three

distinct folders labeled AD, CN, and MCI, with assistance from the

provided CSV file.

Preprocessing starts by converting the RGB image to grayscale

to simplify the data and focus on intensity variations. Histogram

Equalization is then applied to enhance contrast by stretching the

pixel intensity histogram, improving detail visibility in different

lighting conditions. Contrast_Limited_Adaptive Histogram

Equalization (CLAHE) is used to boost contrast in low-contrast

areas (Khalid et al., 2023). A binary image is created with

a threshold of 0.3 to distinguish regions of interest from the

background, followed by a few morphological operations to

analyze the shapes and structures in the image. Erosion is an

operation that reduces the size of an object by removing pixels

from its boundaries. It utilizes a flat diamond-shaped structuring

element with a distance of 3 units from the origin to the points

of the diamond. After performing erosion, region properties are

calculated, and the region with the maximum area is selected.

Following this, morphological dilation is applied to restore the

eroded regions and enhance the prominent features. The dilation

uses a flat diamond-shaped structuring element with a distance of

8 units, as well as a disk-shaped element with a radius of 5 units.

After dilation, morphological hole filling is used to address any

gaps or holes within the segmented region. This process ensures

that the area is complete and contiguous. As a result, the techniques

applied yield a segmented image that clearly highlights the specific

location of the disease within the Alzheimer’s images, providing a

precise visualization for further analysis.

The segmented image is resized to 224 × 224 pixels to

ensure uniformity across the datasets, which facilitates efficient

training. Subsequently, gray conversion, histogram equalization,

and CLAHE are applied to simplify the data and further enhance

image contrast. An impulsive noise, known as Salt-and-Pepper,

is then introduced to the image to evaluate the robustness and

effectiveness of the filtering technique. Finally, a compatible non-

linear Median Blur filter technique is employed to remove the

impulsive noise while preserving essential image details effectively.

During the preprocessing of the ADNI dataset, the following

times were recorded for a single image:

• AD image: 0.9456 s for 2D conversion and 4.0455 s for

preprocessing, totaling 4.9911 s.

• CN image: 0.9901 s for 2D conversion and 3.3949 s for

preprocessing, totaling 4.385 s.

• MCI image: 1.2496 s for 2D conversion and 3.2866 s for

preprocessing, totaling 4.5362 s.

The total preprocessing time for a single real-time image was

14.1287 s, while the OASIS-1 image took 12.6313 s. The complete

path flow of image preprocessing is shown in Figure 3.

2.1.5 Data augmentation
Although convolutional neural networks offer a great deal of

generalization potential, this ability is severely constrained when

the data set is small. This is due to the overfitting of the model.

The problem of insufficient data could be efficiently addressed

by utilizing data augmentation technology, which has been used

to enhance the ADNI dataset using digital image processing

technology (Gao et al., 2021). Owing to the restricted amount of

data, the original dataset is supplemented by flipping horizontally,

flipping vertically, and rotating. When an image is rotated, it is

oriented around its center at a particular angle. A rotation of –15 to

+15 is used in this investigation. The goal is to generate perspective

adjustments from the same image so that models trained on more

data can adapt better to changes in the orientation of the image’s

objects (Hasanah et al., 2023).

Data augmentation resulted in an expansion of the dataset from

2,291 images (476-AD, 703-CN, and 1,112-MCI) to 14,760 images

(3,067:AD, 4,528:CN, 7,165:MCI) in the first stage and 25,357

images (5,267:AD, 7,779:CN, 12,311:MCI) in the second stage. This

could perhaps solve the overfitting problem to some extent. In

order to regularize the model and reduce the generalization error,

the cross-validation techniques are then applied in an 80:20 ratio.

2.2 Deep CNN ReNet-18 based scratch
model

This part will cover the Deep CNN ResNet-18-based model

with the SE block andDepth Convolution in detail and explain each

embedded block in the architecture.

2.2.1 ResNet-18 pre-training model
ResNet-18 is composed of three layers: 17 convolution layers, a

max pooling layer with a 3 × 3 filter size, and a fully connected

layer. The block diagram for the pre-training ResNet-18 model

is shown in Figure 4A. The ResNet-18 network is based on a
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FIGURE 3

Image pre-processing.

residual building component (Gao et al., 2021). Figure 4B shows

the structure of the residual building component.

After adding the input and output vectors directly through

the convolutional layer, the result can be produced using the

rectified linear unit (ReLU) activation function. This method can

effectively address the issue of a deeper neural network’s vanishing

and exploding gradient. F stands for the residual function, while x

and y, respectively, denote the input and output, which are referred

to by Equation 1 (Odusami et al., 2021; Gao et al., 2021; Hasanah

et al., 2023).

y = F(x)+ x (1)

2.2.2 Transfer learning
Transfer learning is a useful technique for training deep

learning (DL) models that leverage information from one domain

to enhance performance on a different but related task or domain

(Saleh et al., 2023). Pre-trainedmodels are trained on large datasets,

such as ImageNet, which comprises millions of images with over

a thousand labels. As a feature extractor of general features, it is

sensible and useful to apply the domain knowledge from these

models to other domains, including medical classification tasks

(Saleh et al., 2023). Due to the medical nature of the target data, we

are unable to utilize the pre-trained model fully. We must address

domain-specific difficulties in order to adjust the output layer.

Reducing the number of training parameters needed to accomplish

a task, increasing accuracy, and saving time are all achieved by using

knowledge transfer models rather than randomly started models.

This enables effective discrimination between the different classes

in the dataset. In order to assist doctors in making precise and fast

diagnoses, it first reduces the need for vast volumes of labeled data

and offers a comprehensive and precise classification framework.

This method solely trains the weights of the recently added layers
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FIGURE 4

(A) ResNet-18 pre-training model. (B) Residual network.

for the particular task, freezing the weights of the previously trained

model before training. This tactic lessens the problems brought on

by a small and uneven dataset. The flow chart of our proposed

model, which makes use of the Transfer Learning concept (Saleh

et al., 2023; Gao et al., 2021), is shown in Figure 5.

2.2.3 Global average pooling
The fully connected layer is a common classifier used by CNN.

Training will be hindered and over-fitting is more likely due to

the fully connected layer’s excessive amount of parameters. Global

average pooling, or GAP, is the procedure that generates the output

by taking the global average of all the pixels in the feature map for

each channel. These output feature vectors will be sent straight to

the classifier, providing each channel with useful information (Gao

et al., 2021).

2.2.4 Depth-wise convolution
The model performs more slowly and uses more memory

than many other models when convolutional procedures are

utilized extensively. We propose to use depth-wise convolution

layers rather than standard convolution ones to solve this issue.

Depth-wise convolution is a common technique for reducing the

parameters and improving computational and representational

efficiency. In this procedure, a distinct filter is applied to each input

channel, and a point-wise 1 × 1 convolution is used to merge

the outputs.

Ĉk,l,a =
∑

i,j

K̂i,j,a.Zk+i−1,l+j−1,a (2)

The depth-wise convolution filter of size PK×PK×X is denoted

by K̂ in Equation 2, where X is the sum of the input channels and

PK is the spatial dimension. Here, the ath channel for the filtered

feature map Ĉ is created by using the ath kernel from L̂ in the

ath-channel of Z.

PK · PK · X · PZ · PZ (3)

PK · PK · X · PZ · PZ + X · Y · PZ · PZ (4)
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FIGURE 5

Transfer learning application.

PK · PK · X · PZ · PZ + X · Y · PZ · PZ

PK · PK · X · Y · PZ · PZ
(5)

1

Y
+

1

P2K
(6)

Equation 3 can be used to calculate the depth-wise

convolution’s computational cost, It is less expensive than

the computing cost of the regular convolution operation. Y

is the total output channels. A 1 × 1 point convolution is

used to merge the depth-wise convolutions. The total cost,

including the point convolution, can be written as Equation 4.

Equations 5, 6 can express the overall cost reduction (Hazarika

et al., 2022b,a).

2.2.5 Squeeze and excitation (SE) block
The global features at the channel level are initially extracted

by the SE module using the Squeeze function on the feature map.

It then presents the Convolution function. The global features

are then subjected to an application of the Excitation function in

order to ascertain the weights of each channel and comprehend

their interrelation. Multiplying the recently added mapping feature

yields the final features.

To build a Squeeze-and-Excitation block, begin with a

convolution operation Ftr translating an input X ∈ R
H
′
×W

′
×C

′

to

feature mappings U ∈ R
H×W×C. We use a collection of learned

kernels, V = [v1, v2, ....vC], where vC denotes the parameters of the

Cth filter. Show the outputs as U = [u1, u2, ....uC],

uc = vc ∗ X =

C′∑

s=1

vsc ∗ x
s (7)

where “∗" is the convolution operation and vsc is a 2D spatial

kernel that translates to a single channel of vc on the corresponding

channel of X. Channel dependencies are implicitly incorporated

in vC as the output is the total of all channels. The filters

capture the local spatial correlation (Hu et al., 2018; Yang et al.,

2022).

The model’s attention mechanism allows it to suppress the less

important channel properties and prioritize the more informative

ones. This attention mechanism memorizes the spatial correlations

between the information after receiving the spatial properties in a

channel as input. Under the convolution results of each channel,

the sum of the channels has been calculated concurrently, and

the spatial relations learned by the convolution kernel can be

merged with the relationships between channel characteristics.

To fully describe channel-wise dependencies, it has to learn a

nonlinear interaction between channels and a mutually exclusive

relationship. To meet these needs, we employed a straightforward

gating mechanism with Sigmoid activation.

zc = Fsq(uc) =
1

H ×W

H∑

i=1

W∑

j=1

uc(i, j), z ∈ R
C (8)

s = Fex(z,W) = σ (g(z,W)) = σ (W2δ(W1z)) (9)

W and H are the width and height of the mapping features,

respectively andW1 ∈ R
C
r ×C ,W2 ∈ R

C× C
r

To simplify the model and enhance its capacity for

generalization, two fully connected (FC) design layers have

been employed. The first FC layer contributes to dimension

reduction, and “r" is a parameter for the dimension reduction

factor. ReLU activation can then be performed. The last layer

of FC adds a new dimension. New features on U can eventually

be multiplied by the learning activation levels of each channel.

The final output of the block is derived by rescaling U using the

activations ‘s":

x̃c = Fscale(uc, sc) = scuc (10)
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FIGURE 6

Proposed model 1: deep CNN_ResNet-18 based scratch model with SE and depth convolution.

where X̃ = [x̃1, x̃2, ....x̃C] and Fscale(uc, sc) denote the channel-

wise multiplication between the scalar sc and the feature map uc ∈

R
H×W . Equation 7 through Equation 10 provide a mathematical

representation of the full function (Hu et al., 2018; Gao et al., 2021;

Alazwari et al., 2024).

2.2.6 Deep CNN_ResNet-18 based scratch model
with SE and depth wise convolution

The proposed Deep CNN model was built on the following

principles: Squeeze and Excitation (attention mechanism), Depth

convolution, and Residual structure. The proposed architecture
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FIGURE 7

(A) Convolution block (CB). (B) Identity block (IB). (C) squeeze and excitation block (SE).

is shown in Figure 6. We see the Convolution Block (CB-Block),

Identity Block (IB-Block), and Squeeze and Excitation Block (SE-

Block) in Figure 7. The following describes this architecture’s key

components. A Squeeze and Excitation (SE) block is integrated

with a Deep CNN model that is based on a ResNet-18 model and

was created from scratch using a unique architecture. Moreover,

Depth convolution was used instead of regular convolution. The

Convolution blocks, Identity blocks, and SE blocks are used in this

six-part architecture. This proposedmodel with SE block consists of

two convolution layers (C1 and C2), four convolution blocks (CB1,

CB2, CB3, and CB4), four identity blocks (IB1, IB2, IB3, and IB4),

SE Block, Global Average Pooling layer, and two Fully Connected

layers (FC1 and FC2).

Batches of sagittal slices fromMRI brain scans with dimensions

of 224 × 224 × 1 are accepted as input. A max-pooling layer

with a kernel size of 3 × 3, a batch normalization layer, a ReLU

activation function, and a convolutional layer with a kernel size

of 7 × 7 are employed in the first section, C1. The max-pooling

layer preserves important feature information while reducing the

model’s size and parameters and expanding the receptive fields.

Beginning with a depth-wise convolution, the Convolution Block

in the second section proceeds with a convolution layer and

ReLU activation. Afterward, an Identity Block, which comprises

the ResNet-18 model’s residual portion, is employed to address the

vanishing and exploding gradient issues that most deep-learning

networks encounter. The third part, which consists of convolution

C2 followed by ReLU activation, receives the combined output of

the second part as input. The fourth part, SE-Block, includes the

Squeeze-and-Excitation (SE) module.

The SE module has two main components. Squeeze is the

first method, causing the input image to undergo Global Average

Pooling and compressing the feature map into a 1 × 1 × C vector.

Excitation is the second, consisting of two densely connected layers

and two activation functions (Sigmoid and ReLU). The first fully

connected layer receives 1× 1× C as input and outputs 1× 1× C

× 1/r, where “r" is a reduction parameter that lowers the number

of channels to reduce computation. The second fully connected

layer receives 1 × 1 × C × 1/r as input, and 1 × 1 × C is the

output. This study uses r = 16. After obtaining the output vector,

the initial feature map and the 1 × 1 × C vector will be scaled.

The initial feature map measures W × H × C. The final output

result is obtained by multiplying the weight value of each channel
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FIGURE 8

Proposed model 2: ResNet-18 pre-trained model with SE block.

output by the SE module by the two-dimensional matrix of the

corresponding channel of the initial feature map. The output size

of this layer was set to 1 × 1 in the fifth section, which used

Global Average Pooling, ReLU, and Dropout. The sixth section

uses a fully connected classification Layer with three neurons in

the output related to predicting three Alzheimer’s stages. Features

ranging from low to high could be extracted by the modification of

ResNet-18. The model’s sensitivity to channel features is increased

by recalibrating the starting features in the channel dimension. This

allows the model to identify the salient aspects of different channels

automatically. Lowering the training parameters, accelerating the

model’s rate of convergence, and improving classification accuracy

are all accomplished via the Global Average Pooling layer. By using

depth convolution and the SE block, we could reduce the training

Frontiers inNeuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2024.1507217
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Francis and Prakash Verma 10.3389/fninf.2024.1507217

FIGURE 9

Model 3: ResNet-18 pre-trained model without SE block.

parameters from 11.189 to 9.125 million. This resulted in training

the model taking 1,915.59 s, testing taking 1 s, and real-time

evaluation taking 17 ms.

2.3 ResNet-18 pre-trained model with SE

In this model, we employ transfer learning to optimize the

training of gathered data and avoid overfitting issues. Figure 8

displays the above-prescribed model.

The ResNet-18 pretraining model initializes the weights

(ImageNet) of 17 convolutional layers, with the exception of SE-

Block (Gao et al., 2021), during the training phase. Once the

learned weights were loaded, the entire model was retrained using

the current ADNI dataset. This can increase training speed and

accuracy and enhance the model’s ability to detect illness stages

from the existing MRI image collection. For feature learning to be

steady and successful, this is essential. The Squeeze and Excitation

components make up the ResNet-18 pre-trained model with

SE. Every SE block adaptively re-calibrates channel-wise feature

responses by simulating channel interdependencies and embedding

the knowledge globally. ResNet-18, the pre-training model, was

used as the first layer, and the last fully connected layer of the

ResNet-18 model was replaced by four SE blocks integrated as the

next four layers. After that, the features were flattened and averaged.

Ultimately, a fully connected layer made up of three neurons with

a softmax activation function is linked in order to categorize the

three stages of Alzheimer’s disease.

2.4 ResNet-18 pre-trained model without
SE

The ResNet-18 pre-training model (freezing all layers except

the last) is the first layer of the ResNet-18 pre-training model

without SE. To identify three distinct stages of Alzheimer’s disease,

a classification layer consisting of three neurons with softmax

activation functions follows. Using the existing ADNI dataset, the

model was retrained to take advantage of the transfer learning

principle and improve performance after loading the learned

weights from ImageNet. Figure 9 displays the architecture for

the same.
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FIGURE 10

Accuracy and loss curve. (A) Model 1. (B) Model 2. (C) Model 3.
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FIGURE 11

Confusion matrix and ROC. (A) Confusion matrix of Model 1 and 2. (B) Confusion matrix of Model 3. (C) ROC curve of Model 1 and 2.
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FIGURE 12

ROC curve of Model 3 and Accuracy for 2,291 data 1. (A) ROC curve of Model 3. (B) 2,291 and Adam and Dropout. (C) 2,291 and RMSProp and

Dropout.

Frontiers inNeuroinformatics 15 frontiersin.org

https://doi.org/10.3389/fninf.2024.1507217
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Francis and Prakash Verma 10.3389/fninf.2024.1507217

FIGURE 13

Training and test accuracy for 14k and 25k data and Optimizer and Dropout. (A) 14k data and Adam and Dropout. (B) 14k data and RMSProp and

Dropout. (C) 25k data and Adam and Dropout.
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FIGURE 14

Training and tEST aCCURacy for 25k data and ROC for 2,291 and Optimizer and Dropout. (A) 25k data and RMSProp and Dropout. (B) 2,219 data and

Adam and Dropout. (C) 2,219 data and RMSProp and Dropout.
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FIGURE 15

ROC values(AD, CN, MCI) for 14k and 25k data and Optimizer and Dropout. (A) 14k data and ADAM and Dropout. (B) 14k data and RMSProp and

Dropout. (C) ROC values (AD, CN, MCI) for 25k data and ADAM and Dropout.
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FIGURE 16

ROC values of 25k data and Metrics values comparison. (A) 25k data and RMSProp and Dropout. (B) Testing and training accuracy comparison of 3

Models. (C) Metrics values comparison of 3 Models.
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TABLE 1 Test and training accuracy, ROC values: 2,291 (original) dataset vs. Epoch vs. Optimizer vs. Dropout.

Dataset Epoch Optimizer Dropout-0.5 ROC Dropout-0.2 ROC

Adam Training Testing AD CN MCI Training Testing AD CN MCI

2,291 10 56.67 42.7 54 50 48 53.24 38.34 51 58 53

30 99.2 59.04 77 77 69 98.9 53.59 71 76 70

50 95.63 61 72 74 61 97.74 58.38 75 75 69

RMSprop Training Testing AD CN MCI Training Testing AD CN MCI

10 54.32 29.41 67 65 54 57.29 47.49 54 57 57

30 95.58 39.65 75 69 70 96.59 58.17 73 63 60

50 98.04 55.33 75 78 73 98.59 59.26 71 72 66

TABLE 2 Test and training accuracy, ROC values: 14K Dataset vs. Epoch vs. Optimizer vs. Dropout.

Dataset Epoch Optimizer Dropout (0.5) ROC Dropout (0.2) ROC

Adam Training Testing AD CN MCI Training Testing AD CN MCI

14k 10 52.73 50.16 70 70 56 60.84 50.37 74 74 65

20 87.3 61.72 75 73 70 92.14 63.04 84 85 81

30 97.5 69.24 85 84 81 98.13 70.66 85 85 82

50 98.64 61.65 83 84 81 98.75 62.7 79 80 76

70 98.89 67.17 79 85 80 99.41 69.83 84 86 85

100 99.6 64.23 84 85 82 99.47 68.39 84 84 84

200 99.96 52.95 71 75 71 99.64 50.37 64 58 59

RMSprop Training Testing AD CN MCI Training Testing AD CN MCI

10 68.69 56.4 72 77 60 67.44 55.42 79 78 70

20 92.86 66.02 84 84 81 93.44 67.17 85 85 80

30 97.5 70.22 87 88 85 97.52 67.95 85 83 82

50 98.64 66.77 88 87 83 98.91 71.65 88 87 85

70 99.28 73.98 85 86 83 99.16 73.34 87 87 85

100 99.41 70.7 88 87 85 99.41 74.22 88 87 85

150 99.53 73.78 87 90 87 99.69 67.01 85 86 83

200 99.82 73.51 86 86 84 99.7 75.03 88 88 87

2.5 Experimental setup

For all the experimental investigations, we used a Dell

PowerEdge R760XA Server GPU node, an Intel XeonGold 6438Y+,

32-core, 2 GHz processor, 512 GB of RAM, DDR5 4800MT/s,

1.92 TB of SSD, and an X Nvidia Hopper H100 (80 GB)

with Windows 11.

3 Experiments results and discussion

This section analyzes the performance of three models with

regard to various hyperparameters in terms of the confusion

matrix, ROC values, and training and test accuracy. Analyses of

prediction accuracy and convergence on a few criteria were also

carried out. Using a new dataset called OASIS-1 and real-time

patient MRI scans, along with their demographic data, also showed

how all models were evaluated.

3.1 Comparisons of three model
performance

Three models, (1) DeepCNN ResNet-18 based scratch model

with SE, (2) ResNet-18 pre-trained model with SE, and (3) ResNet-

18 pre-trained model without SE, have classification best test

accuracies of 88.51% (135th epoch), 93.26% (69th epoch), and

92.41% (106th epoch), respectively. The three models displayed

nearly identical best training accuracies with 99.81% (142nd epoch),

99.93% (149th epoch), and 99.73% (68th epoch). Figure 10 depicts

all three models’ accuracy and loss curves.
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TABLE 3 Test and training accuracy, ROC values: 25K Dataset vs. Epoch vs. Optimizer vs. Dropout.

Dataset Epoch Optimizer Dropout (0.5) ROC Dropout (0.2) ROC

Adam Training Testing AD CN MCI Training Testing AD CN MCI

25k 10 73.16 30.26 77 76 54 82.96 62.52 86 84 76

20 97.18 81.62 93 93 91 97.37 81.98 94 94 92

30 98.4 63.29 91 92 78 98.24 79.42 93 93 91

50 99.09 75.2 93 93 88 99.19 80.4 93 93 92

70 99.57 71.41 88 89 85 99.27 78.08 94 95 91

100 99.68 67.29 88 87 82 99.64 32.57 72 59 64

150 99.89 58.77 69 78 72 99.6 79.04 90 92 90

200 99.73 30.776 50 50 50 99.77 53.53 81 84 78

RMSprop Training Testing AD CN MCI Training Testing AD CN MCI

10 80.86 49.15 81 87 67 84.7 75.37 92 92 86

20 96.38 76.91 93 93 90 96.96 75.24 93 92 89

30 97.95 79.46 93 92 91 98.26 69.72 91 89 85

50 99.01 80.68 93 93 91 99.14 84.29 94 95 94

70 99.33 78.9 93 94 93 99.42 83.97 95 95 94

100 99.46 85.23 96 96 94 99.64 76.2 91 93 91

150 99.81 88.51 95 95 93 99.81 83.04 95 94 93

200 99.76 84.46 95 95 93 99.85 83.66 96 95 94

The ROC values were the major criterion for evaluating these

models because the ADNI dataset is highly imbalanced, even after

augmentation techniques. The ROC values for the three models

were AD:95, CN:95, MCI:93 for Model 1; AD:98, CN:99, MCI:98

for Model 2; and AD:94, CN:97, MCI:94 for Model 3. These

values demonstrate the efficacy of identifying the various phases of

Alzheimer’s disease.

The confusion matrix and ROC values for each of the three

models are shown in Figure 11. Several regularization strategies,

including adding a dropout layer, increasing epochs, altering the

optimizer, and providing data augmentation to the original dataset

prior to training, have been used to lower generalization errors

or avoid overfitting. It was discovered that all of the strategies

significantly improved the accuracy and ROC values. A better

representation of ROC values and improvisation of testing and

training accuracies is displayed from Figures 12–15. In order

to generalize the model and lessen overfitting, cross-validation

procedures were also employed in an 80:20 ratio on the original

dataset. The comparison of test and training accuracies, ROC

values, and other evaluation metrics for each of the three models

are interpreted in Figures 16B, C.

The pre-trained ResNet-18 model with SE Blocks produced

the best results for every comparison because of the efficiency

of using pre-trained models and the decrease in the number of

training parameters. The network that is trained from scratch

using deep learning techniques, unfortunately, has the following

drawbacks: (a) It requires a large amount of labeled training

data, which could be problematic for the medical field where

doctors annotate the data (b) It can be expensive; and (c) It

requires a significant amount of computational resources. (c) These

TABLE 4 Metrics values.

Model 1 Model 2 Model 3

Precision 85.83 92.64 89.17

Recall 84.90 92.57 88.66

Specificity 82.68 53.51 86.59

F-Measure 84.68 92.54 88.59

models also require a lot of hyper-parameters to be carefully and

laboriously adjusted, which can result in either over-fitting or

under-fitting and, ultimately, poorer performance. (d) Using a tiny

set of medical training data can trap the cost function in a local

minima problem. Test accuracy, training accuracy, and ROC values

were examined with respect to several data augmentation levels,

epochs, optimizer, and dropout stages. Convergence accelerated

with increasing data quantity and epoch. Overall, the optimizer

RMSprop generated speedy convergence. On the 14K dataset,

Dropout 0.2 outperformed, whereas on the 25K dataset, Dropout

0.5 produced superior outcomes. Test accuracy and ROC values

were the primary metrics used to assess the model’s effectiveness.

The test and training accuracy during hyperparameter tuning are

provided in Tables 1–3. The Confusion Matrix evaluates how well

the classification model predicts a category label for each input

dataset. Accuracy is the ratio of accurately anticipated cases to all

other cases. The precision of each category is used to calculate

the proportion of all predicted positive instances. Recall shows

the proportion of all actual positive cases among anticipated

positive occurrences.
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TABLE 5 State_of_art_Methods.

References Dataset Classification Accuracy Model

Scratch model

Odusami et al. (2021) ADNI AD vs. CN 75.12 ResNet-18(scratch)

Lu et al. (2022) ADNI MCI vs. AD 70.7 3D ResNet-18 (scratch)

Dharwada et al. (2024) ADNI AD vs. CN 87.37 3D ResNet-50 +SE(scratch)

Francis et al. (2024) ADNI MCIn vs. MCInc 82 Local Binary Pattern +Conv

Proposed ADNI AD vs. CN vs. MCI 88.51
Deep CNN ResNet-18 based

+ SE

Pre-trained Model +SE

Illakiya et al. (2023) ADNI AD vs. CN 89.17 Dense-169+SE

Dharwada et al. (2024) ADNI AD vs. CN 89.25 3D ResNet-50 +SE

Zhang et al. (2024) ADNI AD vs. CN 84.08 VGG-16+SE

Proposed ADNI AD vs. CN vs. MCI 93.26
Pre-trained ResNet-18

+ SE

Pre-trained model without SE

Illakiya et al. (2023) ADNI AD vs. CN 77 Dense-169

Tajammal et al. (2023) ADNI AD vs. CN 87.5 ResNet-18

Suja and Raajan (2024) ADNI AD vs. CN 80.19 ResNet-18

Zhang et al. (2024) ADNI AD vs. CN 82.94 VGG-16

Suja and Raajan (2024) ADNI AD vs. CN 80.19 VGG-16

Topsakal and Lenkala (2024) ADNI AD vs. CN 74.9 ResNet-50

Proposed ADNI AD vs. CN vs. MCI 92.41
Pre-trained ResNet-18

without SE

The Confusion Matrix is used to compute the Precision,

Recall, Specificity, and F1 score in order to assess each model’s

performance. The metric values for each of the three models are

shown in Table 4. The second model, which uses the Transfer

Learning and Squeeze and Excitation principles, is the best at

detecting three AD biomarkers, as Table 4 shows. By adding

appropriate parameters, such as integrating the SE block and

employing Depth-wise convolution instead of the traditional one

to reduce tuning parameters, we have improved the efficiency of the

suggested Deep CNN ResNet-18 model. In the same field, state-of-

the-art techniques that are either developed from scratch using SE

blocks or that use pre-trainingmodels with or without SE blocks are

listed in Table 5. All of our approaches demonstrated a faster rate of

convergence than earlier scholars’ attempts, and Table 6 compares

the values of all significant evaluation metrics of their work to the

suggested one.

3.2 Convergence and prediction accuracy
analysis

Convergence and prediction accuracy analysis under several

criteria, including Transfer learning, Data Augmentation,

Optimization and Dropout, and Adding more SE blocks, are the

main topics of this section.

3.2.1 Transfer learning
Pre-trained models use large amounts of data and knowledge

transfer techniques to reduce the number of training samples

required to complete a task. Compared to training using randomly

initialized models, this approach improves accuracy, saves time,

and facilitates efficient discriminating across the dataset’s many

classes. The experiment’s findings show that, on the test dataset,

the model ResNet-18 with SE’s accuracy is 4.75% higher, and the

other model, ResNet-18, without SE’s accuracy, is 3.9% higher than

the model without transfer learning and designed from scratch.

Therefore, transfer learning is a better option for having better

convergence and prediction accuracy.

3.2.2 Data augmentation
The Deep CNN scratch model’s convergence and recognition

accuracy values, both with and without data augmentation,

are listed in Tables 1–3. The model was trained on different

augmentation phases using the same experimental setup,
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TABLE 6 Metrics values comparison of State_of_art_Methods.

References Precision Recall Specificity F1-score Accuracy

Scratch model

Odusami et al. (2021) 97.8 50.59 75.12

Lu et al. (2022) 67.9 73.3 69.1 70.7

Dharwada et al. (2024) 88.09 84.22 87.87 84.52 87.37

Francis et al. (2024) 82 82 82 82 82

Proposed 85.83 88.51 82.68 84.68 88.51

Pre-trained model + SE

Illakiya et al. (2023) 96 89 92 89.17

Dharwada et al. (2024) 88.09 84.22 87.87 84.52 89.25

Zhang et al. (2024) 80.63 86.32 84.08

Proposed 92.64 92.57 53.51 92.54 93.26

Pre-trained model without SE

Illakiya et al. (2023) 75.81 76.37 75.66 77

Tajammal et al. (2023) 85.4 88.6 84.3 86.5 87.5

Suja and Raajan (2024) 84.85 95.38 39.01 89.81 80.19

Zhang et al. (2024) 81.52 84.81 82.94

Suja and Raajan (2024) 83.95 92.53 29.25 88.04 80.19

Topsakal and Lenkala (2024) 74.9

Proposed 89.17 88.66 86.59 88.59 92.41

Bold values indicate the best monitored values for different metrics for different models.

and the final classification accuracy for the first and second

augmentation stages in the testing dataset was 73.78% and

88.51%, respectively. Before data augmentation, accuracy

was 59.26%; The above tables illustrate that accuracy

increased by about 29.25% after augmentation. Figures 12–

16, every enhancing effect brought about by augmentation has

been shown.

3.2.3 Comparison of optimization algorithms and
dropout

To anticipate the best outcome on the final classification, a

dropout of 0.5 or 0.2 is used to the custom layer over a fully

connected layer in order to prevent overfitting, generalize the

data, and minimize validation loss. The model’s performance is

greatly impacted by the optimization process. Our study uses

the Adam and RMSprop optimization technique to adjust hyper-

parameters while changing the epoch and dropout settings. The

results showed that, out of all the models, the RMSprop algorithm

model with a dropout of 0.5 had the highest accuracy. The

Adam algorithm worked better in terms of convergence with a

dropout of 0.2. Results showed that the RMSprop’s testing phase

accuracy was 88.51% based on 150 epochs and a 0.5 dropout.

Adam’s accuracy was 79.04% with a dropout of 0.2 under the same

conditions. Using the RMSprop optimization strategy yields the

best training effect for the ResNet-18 pre-training model with and

without SE.

TABLE 7 Evaluation metric values of revised Model 1.

Metrics Model 1 Improvised Model 1

Precision 85.83 85.99

Recall 88.51 87.05

Specificity 82.68 84.06

F-Measure 84.68 85.57

Test accuracy 88.51 87.05

Train accuracy 99.81 99.71

ROC values (AD, CNMCI) 95%, 95%,93% 97%, 95%, 95%

Training parameters 9.125 million 6.76 million

3.2.4 Adding more SE blocks to existing model 1
Moreover, the model was trained with two more additional

SE blocks using the same hyperparameter configurations, resulting

in a decrease in training parameters to 6.76 million. The relevant

architecture is displayed in Figure 17. The accuracy and loss curve,

ROC curve, and Confusion matrix are shown in Figure 18. The

Table 7 displays all attained evaluation metric values. Our best

test accuracy was 87.05% (139th epoch), and our best training

accuracy was 99.71% (120th epoch). The ROC values for AD, CN,

and MCI were 97%, 95%, and 95%, respectively. Compared to the

previous one, the training and test accuracies and recall scores were

marginally lower. The results were slightly better than the previous

one in terms of precision, specificity, F1-score, and ROC.
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FIGURE 17

Improvised Model 1 architecture.

3.2.5 Ablation studies
Squeeze and excitation framework, depth-wise convolution,

and global average pooling all help the suggested framework

reduce training parameters. To assess the effectiveness of the

recommended approach, we compared training accuracy, testing

accuracy, and ROC values to different patterns of hyperparameter

values, such as data augmentation, optimizer, epochs, and dropout.

Three architectures were proposed in this section, and predictions

are given: (1) discontinuing or putting into practice the transfer

learning approach, (2) abandoning or putting into practice data
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FIGURE 18

Accuracy and Loss curve of revised Model 1. (A) Accuracy and loss. (B) ROC curve and Confusion matrix.

TABLE 8 Criteria of bio-markers.

Bio markers range

MMSE Score CN: 24–30 MCI: 18–23 AD: 0–17

CDR 0: None 0.5: Questionable 1: Mild 2: Moderate 3: Severe

augmentation techniques, (3) including or excluding the Squeeze

and Excitation block. Every value is documented in Tables 1–4,

7 and from Figures 6–18 show the impact of the strategies, as

mentioned earlier, on prediction performance. The results of F1

measure, ROC values, Precision, Recall, and Specificity indicate

that each effort may have a substantial effect on the prediction

performance.

3.3 Evaluating the models

This section will demonstrate how well the three

models work using real-time data and examine how

well the suggested model performs using the new

OASIS-1 dataset.

3.3.1 Evaluation with real-time patient data
We collected MRI scans in DICOM format and manually

recorded demographic data, including Mini-Mental State

Examination (MMSE) and Clinical Dementia Rating (CDR), from

eight patients in real-time. Due to their low quality, two patients’

MRIs were not compatible with the model. First, we converted

the DICOM files to JPG format and randomly selected six to nine

slices. We followed the entire preprocessing procedure before

forecasting each patient’s disease using the model and calculated
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TABLE 9 Evaluation: real-time patient data analysis.

Actual Predicted value Recall (%)

Patients MMSE CDR Actual M1 M2 M3 M1 M2 M3

Roselin 21 0.5 to 1 MCI
CN:0,MCI:

6,AD:0

CN:1,MCI:

5,AD:0

CN:0,MCI:

6,AD:0

100 83.33 100

Chacko 24 0.5 to 1 MCI
CN:0,MCI:

9,AD:0

CN:0,MCI:

9,AD:0

CN:0,MCI:

9,AD:0

100 100 100

Joseph 26 0.5 to 1 CN/MCI
CN:0,MCI:

7,AD:0

CN:0,MCI:

6,AD:1

CN:0,MCI:

5,AD:2

100 85.71 62.5

Justin 12 1 to 2 AD/MCI
CN:0,MCI:

8,AD:0

CN:0,MCI:

7,AD:1

CN:0,MCI:

7,AD:1

100 100 100

Laila 8 2 to 3 AD/MCI
CN:0,MCI:

7,AD:2

CN:0,MCI:

9,AD:0

CN:0,MCI:

8,AD:1

100 100 100

Narayan 10 2 to 3 AD/MCI
CN:0,MCI:

7,AD:0

CN:0,MCI:

6,AD:1

CN:0,MCI:

7,AD:0

100 100 100

Vasan 22 0.5 to 1 MCI Unfit Unfit Unfit NA NA NA

Dhaya 6 3 AD Unfit Unfit Unfit NA NA NA

TABLE 10 Evaluate the model with OASIS dataset.

Patients Actual Predicted
value by
Model 1

Subject-ID MMSE CDR Actual Proposed
model

OAS1_0018_MR1 28 0 CN MCI

OAS1_0056_MR1 15 1 MCI/AD MCI

OAS1_0098_MR1 18 0.5 AD AD

OAS1_0179_MR1 21 0.5 MCI MCI

OAS1_0184_MR1 16 1 AD AD

OAS1_0185_MR1 17 1 MCI/AD MCI

OAS1_0308_MR1 15 2 AD AD

OAS1_0351_MR1 15 2 AD AD

OAS1_0382_MR1 15 1 AD AD

OAS1_0430_MR1 17 1 MCI/AD MCI

the recall for each model. The suggested Model 1 outperformed

the other two models with a score of 100%. Model 2 gave two

patients 83.33% and 85.71%. Model 3 yielded a result of 62.5%

for one patient. The biomarker threshold values and a thorough

examination of real-time data using all three models are displayed

in Tables 8, 9, respectively.

3.3.2 Evaluation with OASIS-1 dataset
We randomly selected data from ten patients using the OASIS-

1 dataset, including MRI sagittal GIF images and demographic

information from CSV files. The GIF images were converted to JPG

format and pre-processed. Ourmodel achieved a recall of 90%, with

results displayed in Table 10.

4 Conclusion

To sum up, we combined the SE block and reduced parameters

using Depth-wise convolution to build a Deep CNN_ResNet-18-

based model from the ground up. The network’s feature extraction

and classification sections are integrated after the SE module. The

global average pool is selected by the model in order to reduce the

overall number of model parameters and speed up convergence.

A total of 25,357 MRI brain scans were used in 150 training

epochs after data augmentation. The scratch model’s accuracy

during testing, employing depth-wise convolution and SE, reached

88.51%, with ROC values of AD:95, CN:95, and MCI:93, according

to experimental results.

The scratch model with SE has shown the best testing

accuracy with RMSprop as an optimizer and a dropout of

0.5. Using the transfer learning approach, one can get faster

convergence, higher accuracy, more efficient discrimination across

the dataset’s numerous classes, and reduced training time compared

to designing and training the model from scratch. Among all

three models, the pre-trained model ResNet-18 with SE’s accuracy

is 4.75% higher than the scratch model on the test dataset. In

contrast, the other pre-trained model, ResNet-18-without SE’s

accuracy, is 3.9% higher than the scratch model with SE and

depth convolution. Regarding ROC values, the pre-training model

with SE shows 3 to 4 points more than the scratch model

and 4 to 2 points more than the pre-training model without

SE. The suggested approach performed better than the others,

as shown by the overall comparison with the state-of-the-art

techniques. The results of this study show that methodologies

based on deep learning can greatly aid in the identification of
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neurodegenerative diseases. Using real-time patient data to evaluate

all the models suggests that the proposed one could aid in

differentiating between the various stages of AD diagnosis. The

suggested model fared better when tested using the OASIS dataset

as well.

5 Limitation and future scope

Inequality of class was one of our main issues. Each of the

three classes was in the 1:1.47:2.33 ratio. Additionally, we had

problems with the regularity, shape, and intensity variation of a

significant number of the MRI images from the ADNI dataset.

The center slices were the only ones deemed relevant. Real-

time data collection was highly challenging to ethical reasons.

Doctors’ assistance is still needed to confirm the forecast. Using

a series of psychological and mental tests and activities, clinicians

manually determine the patients’ MMSE and CDR ratings. Each

clinician has a different set of results. Therefore, it was necessary

to establish certain assumptions in order to test our model against

these results. When more SE blocks were added in the hopes of

improving precision, the opposite occurred. The performance was

deteriorating as increasing the epochs beyond 150. There were

more variance in prediction performance and metric values among

different optimizers for a particular combination of dropout and

epochs. Owing to the intricacy of medical data, the entire training

process required a significant amount of processing power to

produce consistent results.

Currently, the suggested scratch model solely employs MRI. In

the future, additional imaging modalities, such as sMRI, fMRI, rs-

fMRI images, PET, etc., can be acquired and tested in the model.

We can balance the dataset using a few sophisticated strategies

to increase accuracy. We can offer various training and testing

options, including using the ADNI for training and additional

domain datasets, such as AIBL, for testing. Other advanced

image processing techniques can be used to enhance accuracy,

and optimized strategies for the pertinent feature selection can

help improve the efficiency of feature extraction and raise test

accuracy overall.

A few researchers have developed a graph-based network and

added hypergraphs to the generative model to fuse multimodal

data (rs-fMRI and DTI) to more accurately and robustly predict

brain connection abnormalities at different stages of AD. In the

future, we might concentrate on a method that uses graphs to

solve the same problem. Additionally, we may think about applying

eXplainable Artificial Intelligence (XAI) techniques to make sense

of the interpretation of the local and global properties that our

model’s SE block learns. This would provide valuable information

on how the model influences AD classification and advance our

understanding of its decision-making process (Hazarika et al.,

2022a).
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