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Introduction: Over the past few decades, numerous researchers have explored 
the application of machine learning for assessing children’s neurological 
development. Developmental changes in the brain could be utilized to gauge 
the alignment of its maturation status with the child’s chronological age. AI is 
trained to analyze changes in different modalities and estimate the brain age 
of subjects. Disparities between the predicted and chronological age can 
be  viewed as a biomarker for a pathological condition. This literature review 
aims to illuminate research studies that have employed AI to predict children’s 
brain age.

Methods: The inclusion criteria for this study were predicting brain age via AI 
in healthy children up to 12  years. The search term was centered around the 
keywords “pediatric,” “artificial intelligence,” and “brain age” and was utilized 
in PubMed and IEEEXplore. The selected literature was then examined for 
information on data acquisition methods, the age range of the study population, 
pre-processing, methods and AI techniques utilized, the quality of the respective 
techniques, model explanation, and clinical applications.

Results: Fifty one publications from 2012 to 2024 were included in the analysis. 
The primary modality of data acquisition was MRI, followed by EEG. Structural 
and functional MRI-based studies commonly used publicly available datasets, 
while EEG-based studies typically relied on self-recruitment. Many studies 
utilized pre-processing pipelines provided by toolkit suites, particularly in MRI-
based research. The most frequently used model type was kernel-based learning 
algorithms, followed by convolutional neural networks. Overall, prediction 
accuracy may improve when multiple acquisition modalities are used, but 
comparing studies is challenging. In EEG, the prediction error decreases as the 
number of electrodes increases. Approximately one-third of the studies used 
explainable artificial intelligence methods to explain the model and chosen 
parameters. However, there is a significant clinical translation gap as no study 
has tested their model in a clinical routine setting.

Discussion: Further research should test on external datasets and include 
low-quality routine images for MRI. T2-weighted MRI was underrepresented. 
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Furthermore, different kernel types should be compared on the same dataset. 
Implementing modern model architectures, such as convolutional neural 
networks, should be the next step in EEG-based research studies.
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1 Introduction

Artificial intelligence has the potential to support clinical 
decision-making. This has been demonstrated in a study that revealed 
similar diagnostic performance between artificial intelligence and 
clinicians in detecting fractures (Kuo et al., 2022). However, compared 
to fracture detection, brain development estimation is more complex. 
In adults, aging was found to impact the cerebral composition as grey 
matter decreases and white matter increases (Allen et al., 2005). For 
children, the brain matures in an orchestrated and predetermined 
matter, continues after birth, and correlates with infants’ skills. 
Anatomical changes such as increased myelination, changes in 
volume, and cortex thickness can be tracked by multiple modalities. 
For this, ultrasound, computed tomography (CT), and magnetic 
resonance imaging (MRI) are viable options, with MRI being the most 
versatile as it reflects folding and the myelination status (Allen et al., 
2005; Stiles and Jernigan, 2010). Brain development is an intricate 
process caused by structural and functional changes in children (Stiles 
and Jernigan, 2010; Lenroot and Giedd, 2006).

Eight weeks post-conception, the human brain is mainly 
developed, with the central and the peripheral nervous system being 
defined. However, the brain needs further refinement. The rudimental 
pathways that developed become more robust, and the rapid growth 
of cortical and subcortical structures continues (Stiles and Jernigan, 
2010). In addition, the complexity of the brain changes by neuronal 
migration and synaptogenesis. The last trimester of pregnancy and the 
first two postnatal years are characterized by an exponential increase 
in surface area due to the development of gyri and sulci and a 
tremendous increase in grey and white matter (Barkovich, 2005). After 
birth, myelination increases significantly until the first two years, thus 
increasing neuronal transmission speed. The change in myelination of 
specific brain regions can be charted in milestones reached at a certain 
age. Generally, the infant’s brain maturation status adapts to the adult 
pattern (Barkovich, 2005; Staudt et al., 2000). The changes caused by a 
decreasing brain water content and an increase in myelination are 

indirectly reflected by MRI and can be  perceived using T1- and 
T2-weighted MRI (Abdelhalim and Alberico, 2009). In the context of 
infant MRI scans, T1-weighted images provide valuable insights into 
maturation status during the first 6 to 8 months by focusing on T1 
signal increase, whereas T2-weighted images are most effective for 
assessing infants between 6 and 18 months of age (Barkovich, 2005; 
Abdelhalim and Alberico, 2009). On T2-weighted images, signal 
reduction of the structures occurs with increasing myelination. There, 
adult appearance is reached at approximately 18 months of age 
(Barkovich, 2005; Staudt et al., 2000). Further, the total brain volume 
increases as white and grey matter growth continues until reaching the 
age of 6 years. After that, only white matter increases, while grey matter 
decreases (Dubois et al., 2021). In a clinical setting, children suspected 
of having neurodevelopmental or intellectual disabilities receive 
special attention and undergo further investigation. In addition to 
checking the developmental, birth, social, and family history, a physical 
examination will be pursued. Children with an abnormal examination 
status eventually receive neuroimaging (Etzion et al., 2017).

This highlights the complexity of predicting age in children and 
presents an opportunity for early medical interventions. Identifying 
cerebral changes related to maturation to estimate the age with high 
accuracy and precision could become automated, which is beneficial 
for clinical routine. This automatization could identify 
neurodevelopmental disorders, track progress, and start interventions 
early in a clinical setting. Currently, estimating brain age necessitates 
the expertise of specifically trained personnel. Automated brain age 
prediction has the potential to serve as a cost-effective diagnostic tool 
that offers support to clinical personnel. This could be approached by 
determining an individual’s brain development based on artificial 
intelligence (AI). It could analyze data from MRI scans or 
measurements from an electroencephalogram (EEG), as they 
indirectly reflect the cytological and neurostructural changes 
(Barkovich, 2005; Dubois et  al., 2021; Tierney and Nelson, 2009; 
Scher, 2017). The predicted age by the model for a certain individual 
is called brain age and is considered a relevant neurodevelopmental 
biomarker compared to the individual’s chronological age (Franke and 
Gaser, 2019). For several years, many researchers have tried to predict 
the brain age via artificial intelligence and used different approaches 
of either healthy or diseased individuals (Franke and Gaser, 2019). 
Studies on a healthy population pose a crucial step in determining the 
accuracy and precision of the predictive algorithm. Once the age can 
be predicted for healthy participants, the predicting algorithm can 
be used on diseased patients to estimate the so-called “brain age gap” 
or “brain age delta.” This is performed by subtracting the predicted 
brain age from the chronological age. The assumption states that a 
negative brain age means delayed brain development or 
neurodegeneration and vice versa (Franke and Gaser, 2019). Diseases 
that decelerate the brain’s physiological development could 
be identified and treated early, thus improving the outcome. However, 

Abbreviations: AI, Artificial intelligence; ANN, Artificial Neural Network; CNN, 

Convolutional Neural Network; CT, Computed Tomography; EEG, 

Electroencephalogram; EMG, Electromyography; GCN, Graph Convolutional 

neural Network; GPR, Gaussian Process Regression; GRAD-CAM, Gradient-

weighted Class Activation Mapping; HRtoF, Hierarchical Rough-to-Fine; MAE, 

Mean Absolute Error; MPE, Mean Predicted Error; MPRAGE, Magnetization Prepared 

– RApid Gradient Echo; MRAE, Mean Relative Absolute Error; MRI, Magnetic 

Resonance Imaging; MSE, Mean Squared Error; PMA, Post Menstrual Age; ReLU, 

Rectified Linear Unit; RFR, Random Forest Regression; RMSE, Root Mean Squared 

Error; rs-fMRI, resting state functional MRI; RVM, Relevance Vector Machine; SD, 

Standard Deviation; SHAP, Shapley Additive Explanations; SVR, Support Vector 

Regression.
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data collection in children is more challenging because sedation is 
usually needed to decrease movement artifacts. Especially newborns 
and young children tend to move and are often sedated for brain 
imaging to reduce movement artifacts that need to be removed via 
postprocessing (Barkovich, 2005; Abdelhalim and Alberico, 2009; 
Dubois et al., 2021).

Authors experiment with different modalities and model types 
to find the best combination for age prediction. To our knowledge, 
there is no review covering the topics discussed in this review. So, 
this literature review aims to present an overview of methods used 
for brain age determination by artificial intelligence in a healthy 
pediatric population. It highlights age groups’ different data 
acquisition approaches and compares the quality of the respective 
methods. We ought to find patterns and discuss the relevance of 
deviations to ease the way for other researchers into this highly 
important topic.

2 Methods

The Literature in PubMed and IEEEXplore was searched to 
present the spectrum of approaches taken for predicting brain age in 
children with the help of artificial intelligence following the PRISMA 
guidelines. Publications that describe AI models used to predict 
brain age in a healthy population of children from birth up to 
12 years were included. Literature with participants older than 
12 years was only included if the dataset partially included younger 
participants. Studies meeting the inclusion criteria and building an 
algorithm on a healthy population but testing on a diseased 
population were included. Review articles were excluded. The results 
of the model predicting the healthy cohort were reported in the 
included articles. In addition, unpublished articles, such as preprints, 
were excluded to ensure quality. The search was performed on April 
2nd, 2024, and the chosen language for literature was English. The 
two databases, PubMed and IEEEXplore, allow the addition of 
logical expressions into the search term and bundle synonyms in 
parenthesis. These databases were used to search for literature 
containing the words “paediatric,” “artificial intelligence,” and “brain 
age” and synonyms for each. All synonyms for the respective 
umbrella terms can be found in Table 1. The search terms differed 
for each database as the search algorithm needed specific 
adjustments. PubMed allows the inclusion of mesh words and 
restrictions to the search for titles and abstracts only. To do so, the 
following search term was created for PubMed:

((“child*”[Title/Abstract]) OR (“infant”[Title/Abstract]) OR 
(“pediatric*“[Title/Abstract]) OR (“paediatric*“[Title/Abstract])) 
AND ((“Artificial Intelligence”[Mesh]) OR (“neural net*”[Title/
Abstract]) OR (“artificial intelligence”[Title/Abstract]) OR 
(“machine learning”[Title/Abstract]) OR (“Deep Learning”[Title/
Abstract]) OR (“AI”[Title/Abstract])) AND ((“Brain growth”[Title/
Abstract]) OR (“Brain development”[Title/Abstract]) OR (“brain 
age”[Title/Abstract]) OR (“brain maturation”[Title/Abstract]) OR 
(“brain-age-gap”[Title/Abstract]) OR (“brain age gap”[Title/
Abstract]) OR (“brain maturity”[Title/Abstract]) OR (“predicted age 
difference”[Title/Abstract]) OR (“Brain/growth and 
development”[Mesh]))

In addition, filters for human species and age range up to 12 years 
were set. Thus, for age, the following options were selected: “Child: 
birth-18 years,” “New-born: birth-1 month,” “Infant: birth-23 months,” 
“Infant: 1–23 months,” “Preschool Child: 2–5 years,” “Child: 
6–12 years.”

IEEEXplore does not contain MESH categorization and needs 
other adjustments to restrict the search algorithm to title and abstract, 
resulting in the following search term:

(“Abstract”:child* OR “Abstract”:infant OR “Abstract”:pediatric* OR 
“Abstract”:paediatric* OR “Document Title”:child* OR “Document 
Title”:infant OR “Document Title”:pediatric* OR “Document 
Title”:paediatric*) AND (“Abstract”:"Artificial Intelligence” OR 
“Abstract”:"neural net*” OR “Abstract”:"machine learning” OR 
“Abstract”:"Deep Learning” OR “Abstract”:AI OR “Document 
Title”:“Artificial Intelligence” OR “Document Title”:"neural net*” OR 
“Document Title”:"machine learning” OR “Document Title”:"Deep 
Learning” OR “Document Title”:AI) AND (“Abstract”:"Brain 
growth” OR “Abstract”:"Brain development” OR “Abstract”:"brain 
age” OR “Abstract”:"brain maturation” OR “Abstract”:"brain-
age-gap” OR “Abstract”:"brain age gap” OR “Abstract”:"brain 
maturity” OR “Abstract”:"predicted age difference” OR “Document 
Title”:"Brain growth” OR “Document Title”:"Brain development” OR 
“Document Title”:"brain age” OR “Document Title”:"brain 
maturation” OR “Document Title”:"brain-age-gap” OR “Document 
Title”:"brain age gap” OR “Document Title”:"brain maturity” OR 
“Document Title”:"predicted age difference”)

There were no additional filters available in IEEEXplore.
All database results were downloaded, manually checked for 

eligibility, and included if inclusion criteria were met. Afterward, the 
literature was checked for references suitable for inclusion in this 
review. These were again checked for eligibility. The references 
mentioned in the cross-referencing literature were not investigated 
any further. The selection procedure is visualized in Figure 1.

In analyzing literature, a particular focus was set on the following 
aspects. The methods section was scanned by one author for data 
acquisition, age range, sex, preprocessing, and AI model type. Studies 
that referred to online resources were followed via the given reference 
or searched via Google. If authors referred to Supplementary materials, 
those were included. All results were transferred manually to Excel. 
Data acquisition was examined, as it is essential to know what 
technology was used to obtain data and thus build the model’s 
foundation. In the next step, age ranges were manually extracted from 
the literature. We then analyzed whether specific age ranges were not 

TABLE 1 Synonyms used for search terms.

paediatric artificial intelligence brain age

child* neural net* brain growth

infant machine learning brain development

pediatric deep learning brain maturation

AI brain-age-gap

brain age gap

predicted age difference

The first row in bold shows the umbrella terms used for finding synonyms. The asterisk 
represents any group of characters, including no character, and appends the root of a word 
(e.g., child* includes children and child).
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covered. Then, the age ranges were processed using Python (kernel 
3.12.4) and the libraries Matplotlib (version 3.9.2), NumPy (version 
1.26.4), and Pandas (version 2.2.2) for visualization. To identify 
similarities and to establish a typical workflow, the data pre-processing 
steps were manually transferred to Excel and clustered for each 
modality, CT, MRI, rs fMRI, and EEG, to inspect patterns. The 
frequency of different artificial intelligence types and their respective 
quality for age prediction were also clustered and processed for visual 
inspection in Excel. In articles that used more than one model type, the 
best performing was chosen to present the quality in this article. 
Whenever it was compared to a specific type or the aim of the study had 
a comparison in mind, all models were shortly discussed. All models 

were included in the graphical representation and the frequency. For 
the quality assessment, we included varying measurements, such as 
mean absolute error and correlation coefficient. Afterward, it was 
determined whether the final model results were interpreted and 
explained by explainable AI. Lastly, we checked whether the proposed 
model is suitable for clinical use or has already been implemented.

3 Results

In PubMed, 217 articles were found using the search query 
mentioned above. Among them, 50 articles met the inclusion criteria 

FIGURE 1

Visual representation of the publication selection procedure. Literature was searched via the databases PubMed and IEEEXplore with the search query. 
Eligible and thus included items were further searched for fitting cross-references.
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based on the title and abstract. In IEEEXplore, 35 articles were found 
using the search terms, with 11 being considered relevant. Three of 
these articles were found in PubMed and IEEEXplore. Next, all 44 full 
texts were checked for eligibility, from which 14 were excluded. Then, 
the full text of 30 articles from both databases was screened and 
checked for cross-referencing literature relevant to this review. Of 
these 83 articles, 21 were found to be potentially relevant.

In total, 51 articles were included in this review. A visual 
representation of the selection process can be seen in Figure 1, and an 
overview of the studies is included in Table 2. The upcoming chapters 
will delve into the various aspects this review aims to elucidate. First, 
“data acquisition” describes how data was obtained, focusing on the 
frequency of the techniques and the various technical differences. 
Second, “age range” clusters all studies to present an overview of the 
age ranges that might or might not be covered. Next, the chapter 
“Pre-processing” describes the steps taken after data acquisition and 
feeding it into the respective model. This chapter follows a structured 
overview of the diverse “artificial intelligence models” found. Then, 
measures to highlight the “quality of the models” will be discussed with 
the respective findings. Afterward, it will be reported if studies tried 
to “explain the model’s variables.” Finally, it is explained if authors have 
opted for “clinical application.”

3.1 Data acquisition

Several authors used publicly available datasets, including the 
Pediatric Imaging, Neurocognition, and Genetics (PING) Data 
Repository (Di Martino et al., 2014), ABIDE I & II (Di Martino et al., 
2014; Di Martino et al., 2017), ADHD2000 (Milham et al., 2012), 
National Institutes of Health Pediatric Repository (NIH-PR) (Evans, 
2006), Autism Brain Imaging Data Exchange cohort from the 
Pre-Processed Connectome Project (Bellec, 2017), Healthy Brain 
Network (Alexander et al., 2017), The NKI Rockland Sample (2024), 
consortium for reliability and reproducibility study (CoRR) (Zuo 
et al., 2014), The Developing Human Connectome Project (2024), 
Adolescent Brain Cognitive Development-Study (ABCD) (Scientists, 
2024), Brazilian High Risk Cohort Study (BHRC) (Simioni et  al., 
2017), eLABE (Stout et al., 2022), CUDDEL (Rogers and Agrawal, 
2024) and Philadelphia Neurodevelopmental Cohort (Satterthwaite 
et al., 2016).

As for the acquisition modality, most of the literature in this 
review used magnetic resonance imaging (MRI) for data acquisition 
(44/51) (Ball et al., 2017, 2019, 2021; Bellantuono et al., 2021; Brown 
et al., 2012, 2017; Cao et al., 2015; Chen et al., 2022; Chung et al., 2018; 
Dean et al., 2015; Erus et al., 2015; Franke et al., 2012; Galdi et al., 
2020; Griffiths-King et al., 2023; He et al., 2020; Hong et al., 2020; 
Hosseinzadeh Kassani et al., 2020; Hu et al., 2020, 2021, 2023; Tang 
et al., 2023; Kardan et al., 2022; Kawahara et al., 2017; Kelly et al., 2022; 
Khundrakpam et al., 2015; Lewis et al., 2018; Li et al., 2018, 2020; 
Liang et al., 2019; Liao et al., 2020; Liu et al., 2023, 2024; Lund et al., 
2022; Mendes et  al., 2023; Nielsen et  al., 2019, 2023; Pardoe and 
Kuzniecky, 2018; Qu et al., 2020; Saha et al., 2018; Shabanian et al., 
2019; Smyser et al., 2016; Sturmfels et al., 2018; Zhao T. et al., 2019; 
Zhao Y. et  al., 2019). The 44 studies using MRI can be  further 
subdivided by the strength of the magnetic field, the weighting of 
structural MRI, functional MRI, and diffusion MRI. Twenty-three 
studies used solely T1-weighted MRI for structural MRI (Ball et al., 

2017, 2021; Bellantuono et al., 2021; Cao et al., 2015; Chung et al., 
2018; Franke et al., 2012; Griffiths-King et al., 2023; He et al., 2020; 
Hong et al., 2020; Hu et al., 2021, 2023; Tang et al., 2023; Kelly et al., 
2022; Khundrakpam et al., 2015; Lewis et al., 2018; Liang et al., 2019; 
Liu et al., 2023, 2024; Mendes et al., 2023; Pardoe and Kuzniecky, 2018; 
Qu et al., 2020; Sturmfels et al., 2018; Zhao Y. et al., 2019). Three 
studies undertook a combined approach of T1- and T2-weighted MRI 
(Chen et al., 2022; Hu et al., 2020; Zhao T. et al., 2019). Shabanian et al. 
(2019) added a proton density MRI to the T1- and T2-weighted 
MRI. Two studies solely relied on resting-state functional MRI 
(rs-fMRI) (Hosseinzadeh Kassani et al., 2020; Li et al., 2018). Further, 
only one group used diffusion MRI (Saha et al., 2018) or diffusion 
tensor imaging (Kawahara et  al., 2017). Four authors combined 
structural MRI with diffusion MRI (Ball et al., 2019; Brown et al., 
2012, 2017; Galdi et al., 2020), six with rs-fMRI (Kardan et al., 2022; 
Li et al., 2020; Lund et al., 2022; Nielsen et al., 2019, 2023; Smyser 
et al., 2016), one with proton density (Khundrakpam et al., 2015), and 
another two with diffusion tensor imaging (Brown et al., 2012; Erus 
et al., 2015). Once, T2-weighted MRI was combined with resting-state 
fMRI (Nielsen et al., 2023).

The MRI field strength was 1.5 T and 3 T and was used by sixteen 
(Ball et al., 2017, 2019, 2021; Brown et al., 2012; Chung et al., 2018; 
Erus et al., 2015; Galdi et al., 2020; Hong et al., 2020; Hu et al., 2020; 
Kardan et al., 2022; Kelly et al., 2022; Li et al., 2020; Liu et al., 2023; 
Lund et al., 2022; Nielsen et al., 2019; Zhao T. et al., 2019) and thirteen 
(Brown et al., 2017; Cao et al., 2015; Franke et al., 2012; Griffiths-King 
et al., 2023; He et al., 2020; Hosseinzadeh Kassani et al., 2020; Hu et al., 
2023; Khundrakpam et al., 2015; Li et al., 2018; Liang et al., 2019; 
Nielsen et al., 2023; Shabanian et al., 2019; Sturmfels et al., 2018) 
studies, respectively. Ten studies used 3 and 1.5 T (Hu et al., 2021, 
2023; Lewis et al., 2018; Liu et al., 2024; Mendes et al., 2023; Pardoe 
and Kuzniecky, 2018; Qu et al., 2020; Zhao Y. et al., 2019). Six studies 
did not mention the field strength of the utilized MRI scanner (Chen 
et al., 2022; Dean et al., 2015; Tang et al., 2023; Kawahara et al., 2017; 
Saha et al., 2018; Smyser et al., 2016). 15 studies used 3D MRI data via 
Magnetization Prepared – RApid Gradient Echo (MPRAGE), 3D-RF-
spoiled gradient echo sequence, or other procedures (Ball et al., 2017, 
2019, 2021; Brown et al., 2012; Cao et al., 2015; Chung et al., 2018; 
Erus et al., 2015; Franke et al., 2012; Galdi et al., 2020; He et al., 2020; 
Hu et al., 2021; Khundrakpam et al., 2015; Lewis et al., 2018; Liu et al., 
2024; Lund et al., 2022; Nielsen et al., 2019; Qu et al., 2020; Sturmfels 
et al., 2018; Zhao T. et al., 2019). Chen et al. (2022) mixed their data, 
with 57.6% 3D and the remainder 2D. Khundrakpam et al. (2015) 
used 3D T1-weighted, but 2D T2-weighted MRI. Hong et al. (2020) 
relied solely on 2D images. The remaining studies mixed datasets, 
which led to heterogeneous inputs.

The second most common data acquisition type for model 
training was via EEG, which was used by seven studies (Gschwandtner 
et  al., 2020; O’Toole et  al., 2016; Stevenson et  al., 2017, 2020; 
Vandenbosch et al., 2019; Lavanga et al., 2018; Zandvoort et al., 2024). 
The number of electrodes used in these studies varied. Vandenbosch 
et al. (2019) used the most electrodes, thirty, whereas Gschwandtner 
et al. (2020) used eight to two electrodes. From the remaining studies, 
Stevenson et al. (2017, 2020) and Lavanga et al. (2018) used nine 
electrodes, and O’Toole et al. (2016) used ten. Zandvoort et al. (2024) 
combined EEG with electromyography (EMG) and used a 64-channel 
headbox. Only two publications, Morita et al. (2022a,b), used CT scan 
images for model creation.
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TABLE 2 Overview of the studies included.

References Study Dataset Study 
population size 

[%male]

Age range, age 
mean [SD]

Ball et al. (2017)
Modelling neuroanatomical variation during childhood and 

adolescence with neighbourhood-preserving embedding.
PING-Study 768 [53%] 3–21 y, 12.3 y

Ball et al. (2021)
Individual variation underlying brain age estimates in typical 

development
PING-Study 768 [53%] 3–21 y, 12.28 [5.02] y

Ball et al. (2019)

Charting shared developmental trajectories of cortical 

thickness and structural connectivity in childhood and 

adolescence

PING-Study 456 [51.1%] 3.2–21.0 y, 12.6 [4.91] y

Brown et al. (2017)
Prediction of brain network age and factors of delayed 

maturation in very preterm infants
self-recruited 115 27 and 45 w PMA

Brown et al. (2012) Neuroanatomical assessment of biological maturity PING-Study 885 [52.2%] 3–20 y, 13.0 [4.9] y

Cao et al. (2015)
Development and validation of a brain maturation index 

using longitudinal neuroanatomical scans.

National Institute of 

Health (NIH) pediatric 

repository

303 4.88–18.35 y

Chen et al. (2022)
Deep learning to predict neonatal and infant brain age from 

myelination on brain MRI scans.
self-recruited

469 0–25 m GCA, 65.0 [32] w

Chen et al. (2022) 438 0–25 m GCA, 64.4 [30] w

Chen et al. (2022) 389 0–25 m GCA, 61.9 [29]

Chung et al. (2018)

Use of machine learning to determine deviance in 

neuroanatomical maturity associated with future psychosis in 

youths at clinically high risk.

PING-Study 953 [51.7%] 3–21 y

Erus et al. (2015)
Imaging patterns of brain development and their relationship 

to cognition

Philadelphia 

Neurodevelopmental 

Cohort

621 [43.5%] 8–22 y, 15.08 y [3.27]

Franke et al. (2012)
Brain maturation: predicting individual BrainAGE in children 

and adolescents using structural MRI

National Institute of 

Health (NIH) pediatric 

repository

394 [52.5%] 5–18 y

Galdi et al. (2020)

Neonatal morphometric similarity mapping for predicting 

brain age and characterizing neuroanatomic variation 

associated with preterm birth

Self-recruited 105 [52.3%] 38–45 w

Gschwandtner et al. 

(2020)

Deep learning for estimation of functional brain maturation 

from EEG of premature neonates.
Self-recruited 43 24–42 w

He et al. (2020) Brain age estimation using LSTM on children’s brain MRI

National Institute of 

Health (NIH) pediatric 

repository

Massachusetts General 

and Boston Children’s 

Hospitals

1,212 0–22 y

428 0–6 y

Hosseinzadeh Kassani 

et al. (2020)

Causality-based feature fusion for brain neuro-developmental 

analysis.

Philadelphia 

Neurodevelopmental 

Cohort

1,445 8–21 y

Hu et al. (2020)
Hierarchical rough-to-fine model for infant age prediction 

based on cortical features.
Self-recruited 50 1, 3, 6, 9, 12, 18 and 24 m

Hu et al. (2021)
Accurate brain age prediction model for healthy children and 

adolescents using 3D-CNN and dimensional attention

ABIDE I

ABIDE II

ADHD200

880 6–18 y, 11.8y [2.8]

Kardan et al. (2022)
Resting-state functional connectivity identifies individuals 

and predicts age in 8- to 26-month-olds.

Baby Connectome 

Project
112 [53.6%] 8–26 m, 15.7 [5.2]

Kawahara et al. (2017)
BrainNetCNN: Convolutional neural networks for brain 

networks; towards predicting neurodevelopment
Self-recruited 115 24 and 32 m PMA
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TABLE 2 (Continued)

References Study Dataset Study 
population size 

[%male]

Age range, age 
mean [SD]

Kelly et al. (2022)
Investigating brain structural maturation in children and 

adolescents born very preterm using the brain age framework.

VIBeS

PING
768 [52.6%] 3–21 y, 12.28 y,

Khundrakpam et al. 

(2015)

Prediction of brain maturity based on cortical thickness at 

different spatial resolutions

National Institute of 

Health (NIH) pediatric 

repository

308 [44.2%]
Range not given, 12.9 y 

[3.8]

Li et al. (2018)
Brain age prediction based on resting-state functional 

connectivity patterns using convolutional neural networks

Philadelphia 

Neurodevelopmental 

Cohort

983 8–22 y

Lund et al. (2022)
Brain age prediction using fMRI network coupling in youths 

and associations with psychiatric symptoms.

Philadelphia 

Neurodevelopmental 

Cohort

Healthy Brain 

Network

1,126 8–22 y

Morita et al. (2022b)
Pediatric brain CT image segmentation methods for effective 

age prediction models
Self-recruited 204 0–47 m

Morita et al. (2022a)
Quantification of pediatric brain development with X-ray CT 

images using 3D-CNN
Self-recruited 204 0–47 m

Nielsen et al. (2019)
Evaluating the prediction of brain maturity from functional 

connectivity after motion artifact denoising.
Self-recruited 122 [54.1%] 7–31 y

O’Toole et al. (2016)

Estimating functional brain maturity in very and extremely 

preterm neonates using automated analysis of the 

electroencephalogram

Self-recruited 49 23–32 w GCA

Qu et al. (2020)
BAENET: A brain age estimation network with 3D skipping 

and Outlier constraint loss

ABIDE II

ADHD200

HBN

1915 5–18 y

Saha et al. (2018)
Investigating brain age deviation in preterm infants: a deep 

learning approach
Self-recruited 86 29–47 w PMA

Shabanian et al. (2019)
Classification of neurodevelopmental age in normal infants 

using 3D-CNN based on brain MRI
NIMH Data Archive 112 8 d – 3 y

Smyser et al. (2016)
Prediction of brain maturity in infants using machine-

learning algorithms.
Self-recruited

50
Preterm:

36–41 w PMA, 38 w [1 w]

50
Term:

37–41 w PMA, 39 w [1 w]

Stevenson et al. (2017)
Functional maturation in preterm infants measured by serial 

recording of cortical activity
Self-recruited 43 [41.9%] 25–38 w PMA, 25.6 w

Stevenson et al. (2020)
Reliability and accuracy of EEG interpretation for estimating 

age in preterm infants.
Self-recruited 62 25–38 weeks PMA

Vandenbosch et al. 

(2019)

EEG-based age-prediction models as stable and heritable 

indicators of brain maturational level in children and 

adolescents.

Self-recruited
Dataset 1: 836

5 and 7 y

16 and 18 y

Dataset 2: 621 12, 14 and 16 y

Zhao T. et al. (2019)
Unbiased age-specific structural brain atlases for Chinese 

pediatric population.

Peking University 

Dataset

Beijing HuiLongGuan

ADHD200

Dataset 1: 328 6–12 y, 9.03 [1.36]

Dataset 2: 114 6–12 y, 9.06 [1.38]

Dataset 3: 71 8–12 y, 10.26 [1.78]

Sturmfels et al. (2018)
A domain guided CNN architecture for predicting age from 

structural brain images

Philadelphia 

Neurodevelopmental 

Cohort

724 8–21 y

Hong et al. (2020)
Brain age prediction of children using routine brain MR 

images via deep learning
Self-recruited 220 0 to 5 y
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TABLE 2 (Continued)

References Study Dataset Study 
population size 

[%male]

Age range, age 
mean [SD]

Zhao Y. et al. (2019)
Brain age prediction: Cortical and subcortical shape 

covariation in the developing human brain

Healthy Brain 

Network

Nathan Kline 

Institute - Rockland 

Sample

869 (60.9%) 5.02–17.95 y

210 (58.1%) 6.68–17.94 y

Liang et al. (2019)
Investigating systematic bias in brain age estimation with 

application to post-traumatic stress disorders

ABIDE

CoRR

DLBS

566

6 to 89 y778

315

Lewis et al. (2018)
T1 white/gray contrast as a predictor of chronological age, 

and an index of cognitive performance

NIH Pediatric data

PING

401 4.5–18.5 y

760 3–20 y

Dean et al. (2015)
Estimating the age of healthy infants from quantitative myelin 

water fraction maps
Self-recruited 209 (58.9%) 76–1,526 d

Pardoe and Kuzniecky 

(2018)

NAPR: a cloud-based framework for neuroanatomical age 

prediction

ABIDE, ABIDE II, 

CoRR, DLBS, and NKI 

Rockland dataset

2,367
Not specified besides 

figure

Lavanga et al. (2018)
A brain-age model for preterm infants based on functional 

connectivity.
Self-recruited 30 27–42 w

Liu et al. (2024)
Brain age predicted using graph convolutional neural network 

explains neurodevelopmental trajectory in preterm neonates

University of 

California at San 

Francisco) Benioff 

Children’s Hospital 

(UCSF)

developing Human 

Connectome Project

129 32.1–43.4 w

407 (54.1%) 29–45 w

Tang et al. (2023)
A deep learning-based brain age prediction model for 

preterm infants via neonatal MRI
Self-recruited 281 27–37 w, 33.4 w

Liu et al. (2023)
Brain age prediction in children aged 0–5 years based on T1 

magnetic resonance images
Self-recruited 290 0–5 y

Mendes et al. (2023)
Generalizability of 3D CNN models for age estimation in 

diverse youth populations using structural MRI.

ABIDE-II

ADHD-200

ABCD

BHRCS

580 6.1–20.0

922 7.1–19.9

11,031 5.8–14.3

737 8.9–11.1

Zandvoort et al. (2024) Sensory event-related potential morphology predicts age in 

premature infants.

research database John 

Radcliffe Hospital

82 28–40 w PMA

Nielsen et al. (2023) Maturation of large-scale brain systems over the first month 

of life.

eLABE

CUDDEL

O2P2

262 At birth

45 0–18 m

5 0-72 h

Hu et al. (2023) MRI-based brain age prediction model for children under 

3 years old using deep residual network.

Self-recruited 658 (62.9%), 230 

diseased

0–1,092 d

Griffiths-King et al. 

(2023)

Predicting ‘Brainage’ in late childhood to adolescence (6–

17 yrs) using structural MRI, morphometric similarity, and 

machine learning.

Autism Brain Imaging 

Data Exchange cohort 

from the Pre-

Procecessed 

Connectome Project

327 (79.2%) 6.5–16.9,12.4 [± 2.5]

Bellantuono et al. (2021) Predicting brain age with complex networks: From 

adolescence to adulthood

ABIDE 1,112 7 to 64 y

Study population size is presented in total and the percentage of males, if given. Age range is further broken down to mean and standard deviation (SD), if presented by authors. Years (y), 
months (m), weeks (w), post menstrual age (PMA), gestation corrected age (GCA).
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3.2 Age range

It must be  noted that the reporting age structure is not 
standardized throughout the literature. Some authors stated the age 
range, whereas others reported the mean age, including standard 
deviation. These studies specified that these datasets were 
predominantly chosen due to the high number of images they 
provided. However, the authors checked the images of the datasets 
manually for their respective inclusion criteria, which explains the 
usage of the same dataset in various studies but varying age ranges. In 
total, 28 studies relied on publicly available datasets (Ball et al., 2017, 
2019, 2021; Bellantuono et al., 2021; Brown et al., 2012; Cao et al., 
2015; Chung et al., 2018; Erus et al., 2015; Franke et al., 2012; Griffiths-
King et al., 2023; He et al., 2020; Hosseinzadeh Kassani et al., 2020; Hu 
et al., 2021; Kardan et al., 2022; Kelly et al., 2022; Khundrakpam et al., 
2015; Lewis et al., 2018; Li et al., 2018; Liang et al., 2019; Liu et al., 
2024; Lund et al., 2022; Mendes et al., 2023; Nielsen et al., 2023; Pardoe 
and Kuzniecky, 2018; Qu et al., 2020; Shabanian et al., 2019; Sturmfels 
et al., 2018; Zhao T. et al., 2019). The total covered age ranges from 0 
to 89 years.

Twenty three studies used newborns in their early weeks or up to 
three years (Brown et al., 2017; Chen et al., 2022; Dean et al., 2015; 
Galdi et al., 2020; Hu et al., 2020, 2023; Tang et al., 2023; Kardan et al., 
2022; Kawahara et al., 2017; Li et al., 2020; Liu et al., 2024; Nielsen 
et al., 2023; Saha et al., 2018; Shabanian et al., 2019; Smyser et al., 2016; 
Gschwandtner et al., 2020; O’Toole et al., 2016; Stevenson et al., 2017, 
2020; Lavanga et  al., 2018; Zandvoort et  al., 2024; Morita et  al., 
2022a,b). From these, 12 authors included preterm infants (Brown 
et al., 2017; Galdi et al., 2020; Tang et al., 2023; Liu et al., 2024; Saha 
et al., 2018; Smyser et al., 2016; Gschwandtner et al., 2020; O’Toole 
et  al., 2016; Stevenson et  al., 2017, 2020; Lavanga et  al., 2018; 
Zandvoort et al., 2024). Two studies created a Model that included the 
age range of 0–5 years (Hong et al., 2020; Liu et al., 2023).

Another cluster of 25 studies took images starting in the age range 
of older than 3 to 89 years (Ball et al., 2017, 2019, 2021; Bellantuono 
et al., 2021; Brown et al., 2012; Cao et al., 2015; Chung et al., 2018; 
Erus et  al., 2015; Franke et  al., 2012; Griffiths-King et  al., 2023; 
Hosseinzadeh Kassani et al., 2020; Hu et al., 2021; Kelly et al., 2022; 
Khundrakpam et al., 2015; Lewis et al., 2018; Li et al., 2018; Liang 
et al., 2019; Lund et al., 2022; Mendes et al., 2023; Nielsen et al., 2019; 
Qu et al., 2020; Sturmfels et al., 2018; Zhao T. et al., 2019; Zhao Y. et al., 
2019; Vandenbosch et al., 2019).

Only the publication from He et al. (2020) covered the age range 
from 0–22 years, thus being the only study that included new-born 
children until late adolescence and adulthood. The age ranges per 
study can be seen in Figure 2.

3.3 Pre-processing

In this review, different acquisition methods were found and 
included. Therefore, this section compares the processing steps and 
illustrates a typical pipeline per acquisition method. Pre-processing 
starts after acquiring the data, which excludes data correction applied 
by the device, e.g., motion correction by MRI systems, and ends with 
the data being fed into the AI model.

Handling of structural MRI data follows similar pipelines, but the 
sequence of individual steps differs throughout the literature. 

Generally, a separate visual inspection for artifacts was the first step, 
followed by transformation from DICOM to NIFTI and skull 
stripping, performed manually or by algorithms, e.g., FreeSurfer, 
Statistical Parametric Mapping (SPM12, SPM8, or DATEL), CAT12 
toolbox, CIVET (BIC, 2024), Brain Extraction Tool, or LABEL (Shi 
et al., 2012; Fischl, 2012; SPM, 2023; Penny et al., 2006; Gaser et al., 
2024; Smith, 2002). Next, the images were transformed into Talairach 
space, followed by intensity normalization. Further, the brain was 
segmented into the white and grey matter and cerebrospinal fluid via 
FreeSurfer (Zhao T. et  al., 2019; O’Toole et  al., 2016), LABEL 
(Sturmfels et  al., 2018), Statistical Parametric Mapping (SPM12, 
SPM8, or DATEL) (Penny et al., 2006), and FSL’s fast (Stevenson et al., 
2017). The white and grey matter boundaries of the brain were further 
tessellated. Lastly, data was often downsampled, normalized, and 
smoothed. A visual representation of the preprocessing steps is 
illustrated in Figure 3. Hong et al. was the only MRI-based study that 
did not perform skull stripping while using structural MRI scans for 
their data. Additionally, they used data augmentation to increase the 
dataset artificially. They split the MRI scans into slices, which were 
then transformed via scaling, rotation, translation, and gamma 
correction. The resulting slices were then stacked again (Hong et al., 
2020). Shabanian et al.’s Figure 3 shows segmented data but does not 
describe how segmentation was performed. We could not determine 
if the dataset was already preprocessed from the resources the authors 
mentioned (Shabanian et al., 2019). Regarding diffusion-weighted 
MRI/diffusion tensor imaging, eddy current, head movement, and EPI 
geometric distortions, bias field inhomogeneity correction and 
intensity scaling correction were applied. Voxel-wise maps were 
derived and co-registered to the template space from the fractional 
anisotropy and apparent diffusion coefficient. Registration to T1- or 
T2-Space, probabilistic whole-brain fiber tracking, and alignment 
were processed by FSL Diffusion Toolbox (FSL, 2024), MRtrix 3.0 
(MRtrix3, 2024) or manually. Resting-state functional MRI 
pre-processing steps included motion correction, distortion 
correction, registration to the native T1- or T2-weighted MRI, 
normalization, denoising, down-sampling of spatial information, 
bandpass filtering, and smoothing. This was sometimes followed by 
z-transformation of the estimated correlations to Fisher’s 
transformation to create a correlation matrix (Lund et  al., 2022; 
Nielsen et al., 2019; Smyser et al., 2016).

In CT images, skull stripping, orientation and position 
calibration, voxel size normalization, and normalization of CT 
values were performed. Morita et  al. (2022b) tried prediction 
without previous segmentation but failed with this approach. In 
contrast, Hu et  al. (2023) used ResNet-18 and found that their 
model could predict chronological age from raw and preprocessed 
MRI data. A preprocessing guideline for diffusion tensor imaging 
was not found.

EEG datasets were always filtered with a bandpass filter. Low and 
high cut-off frequencies varied from 0.5 Hz to 64 Hz, respectively. 
Some authors removed artifacts via individual inspection or 
algorithms, e.g., the FBA algorithm (Stevenson et  al., 2017) and 
PureEEG (Stevenson et al., 2020; Lund et al., 2022; Nielsen et al., 2023; 
Pardoe and Kuzniecky, 2018). Lavanga et al. analyzed sleep stages 
(quiet vs. non-quiet sleep) that were marked manually. In addition, 
specific patterns, such as spontaneous activity that indicates deep sleep 
patterns in newborns, were automatically annotated and segmented 
using SAT detection algorithms.
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3.4 Artificial intelligence models

The preferred AI model used by 22 teams is the kernel-based 
learning algorithm (Brown et al., 2017; Chung et al., 2018; Erus et al., 
2015; Hosseinzadeh Kassani et al., 2020; Kardan et al., 2022; Zhao 
T. et al., 2019; O’Toole et al., 2016; Stevenson et al., 2017, 2020; Nielsen 
et al., 2019, 2023; Smyser et al., 2016; Vandenbosch et al., 2019; Galdi 
et al., 2020; Franke et al., 2012; Zhao Y. et al., 2019; Zandvoort et al., 
2024; Liang et  al., 2019; Griffiths-King et  al., 2023; Pardoe and 
Kuzniecky, 2018; Liu et  al., 2023). These are five support vector 
machines (SVM) (Galdi et al., 2020; Hosseinzadeh Kassani et al., 2020; 
Smyser et al., 2016; Stevenson et al., 2020; Vandenbosch et al., 2019), 
12 support vector regressions (SVR) (Brown et al., 2017; Chung et al., 
2018; Erus et al., 2015; Kardan et al., 2022; Liang et al., 2019; Liu et al., 
2023; Nielsen et al., 2019, 2023; Zhao T. et al., 2019; O’Toole et al., 
2016; Stevenson et al., 2017; Zandvoort et al., 2024), and six Relevance 
Vector Machines (RVM) (Franke et al., 2012; Griffiths-King et al., 
2023; Pardoe and Kuzniecky, 2018; Zhao T. et al., 2019; Vandenbosch 
et al., 2019). Galdi et al. (2020) and Smyser et al. (2016) used a support 
vector machine to classify term-born and preterm-born. Zhao et al. 
used SVM to show that the atlas choice is critical to improving brain 
age prediction. There might be differences in brain development if 
children differ in ethnicity or grow up in different countries (Zhao 
T. et al., 2019). Pardoe et al. found that the relevance vector regression 
outperformed the tested Gaussian process regression. Ten of 22 
studies used a linear kernel for kernel selection, making it the 
predominantly used type (Erus et  al., 2015; Galdi et  al., 2020; 
Hosseinzadeh Kassani et al., 2020; Kardan et al., 2022; Liang et al., 

2019; Nielsen et al., 2023; Smyser et al., 2016; Zhao T. et al., 2019; 
O’Toole et al., 2016; Zandvoort et al., 2024). Liu et al. (2023) and 
Chung et al. (2018) used a radial basis function kernel. Griffiths-King 
et al. compared a Laplace radial basis function kernel to a Gaussian 
radial basis function. They found the first superior in their relevance 
vector and Gaussian Process Regression (Griffiths-King et al., 2023). 
A smoothing kernel was only used by Franke et al. (2012). Seven 
studies did not further specify which kernel was used (Brown et al., 
2017; Griffiths-King et  al., 2023; Nielsen et  al., 2019; Pardoe and 
Kuzniecky, 2018; Stevenson et  al., 2017, 2020; Vandenbosch 
et al., 2019).

The second most frequently used model type in this literature 
review is the convolutional neural network (CNN), which has been 
subject to 19 studies (Bellantuono et al., 2021; Chen et al., 2022; 
Hong et al., 2020; Hu et al., 2021, 2023; Tang et al., 2023; Kawahara 
et al., 2017; Li et al., 2018; Liang et al., 2019; Liu et al., 2024; Mendes 
et al., 2023; Qu et al., 2020; Saha et al., 2018; Shabanian et al., 2019; 
Sturmfels et  al., 2018; Gschwandtner et  al., 2020; Morita et  al., 
2022a,b). For structural MRI Input, eleven studies created a 
3D-CNN that differed in architectures (Chen et al., 2022; Hong 
et al., 2020; Hu et al., 2021, 2023; Tang et al., 2023; Mendes et al., 
2023; Qu et al., 2020; Shabanian et al., 2019; Sturmfels et al., 2018; 
Morita et al., 2022a,b), and four used a 2D-CNN (He et al., 2020; Li 
et  al., 2018; Saha et  al., 2018; Gschwandtner et  al., 2020). 
Bellantuono et al. (2021) used a feedforward deep neural network 
implemented with the “h2o” R package (H2O.ai, 2024). In one of 
their studies, Liu et al. (2024) present a novel approach called a 
“graph convolutional neural network.”

FIGURE 2

The graphical illustration depicts the age ranges observed in the analyzed literature. Pardoe et al. were excluded from this representation due to 
unclearly stated age ranges. The green dot denotes the average age, as provided by the respective authors.

https://doi.org/10.3389/fninf.2024.1496143
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Dragendorf et al. 10.3389/fninf.2024.1496143

Frontiers in Neuroinformatics 11 frontiersin.org

Various approaches were employed in studies on age prediction 
using 2D CNNs. Saha et al. (2018) utilized a 19-layer 2D CNN model 
and trained their model from patches taken from MRI scans instead 
of full scans. Li et al. (2018) employed a 21-layer deep CNN with 
residual blocks. Gschwandtner et al. (2020) developed three 14-layer 
CNN models for different EEG electrode configurations. He et al. 
compared their method to a 3D CNN by utilizing a ResNet-18 
combined with a bidirectional LSTM for age prediction. They found 
that the proposed 2D CNN-LSTM method outperformed the 3D 
CNN (He et al., 2020).

The 3D CNNs were structured very heterogeneously. The number 
of layers varied from 10 to 32. Tang et  al. used a network called 
BAPNET, based on the Inception-Resnet-v2 framework, and 
compared a 2D to 3D approach. They found that the 3D model had a 
higher MAE, and the R2 was better than the 2D model (Tang et al., 
2023). Shabanian et al. also implemented a 4-block architecture and 
compared 2D and 3D models. Upon comparing their 3D-CNN with 
a similar 2D-CNN, they discovered that their 3D-CNN achieved the 
same accuracy in just 14 epochs, in contrast to the 2D-CNN, which 
required over 200 epochs (Shabanian et al., 2019). Hong et al. also 
compared a 2D to a 3D CNN. Their data was composed of MRI slices 
with gaps between adjacent slices. While the 2D CNN was thought to 
perform equally well, the 3D CNN performance difference was 
significant. This suggests that 3D CNN might outperform 2D CNN in 
tasks for stacked 2-dimensional data (Hong et al., 2020). Kawahara 
et al. adapted their model to the acquired diffusion tensor imaging 

brain network data. They introduced three additional layers to their 
CNN that are thought to implement topological differences between 
images and brain network data. Namely, these are edge-to-edge, edge-
to-node, and node-to-graph layers. These layers incorporate extra 
convolutional filters and carry out specific operations on the brain 
network to extract features. The filters amalgamate all feature maps 
from the previous output layer and generate a new output for the 
subsequent layer (Kawahara et  al., 2017). Chen et  al. used a 3D 
regression CNN for deep learning with 27 layers and Adam 
optimization to predict the gestational corrected age in neonates and 
infants (Chen et  al., 2022; Kingma and Ba, 2017). Qu et  al. have 
introduced a brain age estimation network featuring 3D skipping and 
outlier constraint loss. The network, comprising 25 layers, is structured 
into feature extraction and combination. The feature extraction 
component consists of 4 blocks, each housing a 3D convolution layer 
with leaky ReLU, a subsequent 3D convolution layer with leaky 
rectified linear unit (ReLU) and group normalization, and a max 
pooling layer. Referring to ResNet (He et al., 2016), the authors have 
implemented a connection between the first and last layer, effectively 
skipping the second convolution layer (Qu et al., 2020; He et al., 2016). 
The feature combination consists of 3 convolutional layers. The 
novelty the authors describe is the combination of MSE loss and 
Huber loss as a loss function. Combining these two functions increases 
the robustness while maintaining the model-fitting ability and 
decreasing the gradient changes for outliers (Qu et al., 2020). Sturmfels 
et al. (2018) compared their model to the architecture of Cole et al. 

FIGURE 3

Visual representation of MRI the commonly applied pre-processing steps found in the analyzed literature. (A) Structural MRI; (B) diffusion-weighted 
MRI; (C) electroencephalography; (D) resting-state functional MRI; (E) computed tomography.

https://doi.org/10.3389/fninf.2024.1496143
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Dragendorf et al. 10.3389/fninf.2024.1496143

Frontiers in Neuroinformatics 12 frontiersin.org

(2017) and modified it by decreasing the number of filters after each 
convolutional block instead of increasing these and segmenting the 
brain into eight separate regions. These changes are considered easy 
to implement and improve time and age prediction (Sturmfels 
et al., 2018).

Hu et al. (2021) propose a dimensional-attention-based 3D CNN 
(DACNN), which can be structured in three parts. First, the down-
sampling of the MRI images reduces the image size. Second, feature 
extraction of deep nonlinear features by four blocks. Third, feature 
combination and age prediction. The dimensional attention block is a 
novelty, used in the down-sampling and feature extraction parts. It 
suppresses noise while highlighting more important parts without 
altering the semantics or shape of the input data (Hu et al., 2021). 
Another Block the team introduced is called the diluted residual block 
and is based on the 3D residual blocks from ResNet and introduced 
by Yu et al. (2017). The training took 100 epochs with the Adam 
optimizer and a mean square error loss function (Hu et al., 2021). In 
2023, Hu et al. built a model using the modified ResNet-18 from He et 
al. and tried different inputs. The model outperformed the compared 
SVR and could predict age accurately from segmented and raw data 
(Hu et al., 2023; He et al., 2015).

Morita et al. published two articles in 2022 using the same 3D 
CNN on computed tomography data. The model consists of 23 layers, 
and training took 600 epochs (Morita et al., 2022a,b). According to the 
authors, model training proved unsuccessful without cranial 
segmentation (Morita et  al., 2022b). Liu et  al. propose a Graph 
convolutional neural network (GCN). They created a cortical mesh 
and formed a sparse binary adjacency matrix. Further, sulcal depth, 
cortical thickness, and the grey/white matter ratio were given to the 
GCN as harmonized graphs. The graphs’ vertices were rearranged via 
1D pooling. In total, three pooling and three convolutional layers were 
used. The Model used 700 epochs for training. According to the 
author, the GCN outperformed the contested morphometry-based 
CNN (Liu et al., 2024).

The third most used model was the Gaussian Process Regression 
(GPR), used in eight articles (Ball et al., 2017, 2019, 2021; Griffiths-King 
et al., 2023; Kelly et al., 2022; Liang et al., 2019; Liu et al., 2023; Pardoe 
and Kuzniecky, 2018). In their 2021 study, Ball et al. developed a range 
of machine learning (ML) models. They determined that Gaussian 
Process Regression (GPR) performed comparably to regularized linear 
regression with elastic net and outperformed gradient-boosted regression 
trees (Ball et al., 2021). Griffiths-King et al. (2023) discovered that GPR 
outperformed the relevance vector regression model, while Pardoe and 
Kuzniecky (2018) concluded that the RVR was superior. Liu et al. (2023) 
tested RVR, GPR, SVR, Random Forest Regression (RFR), and 
K-neighborhood regression, concluding that RFR and GPR performed 
superior. Brown et al. (2017), Khundrakpam et al. (2015), Lavanga et al. 
(2018), and Lund et al. (2022) used a linear regression model.

The teams Brown et al. (2017), Liu et al. (2023), and Vandenbosch 
et al. (2019) used random forests. Brown et al. (2017) computed five 
different models and concluded that random forests worked best. The 
remaining models were a linear regression model, a multi-layer 
perceptron, SVR, and a bagging regression (Brown et  al., 2017). 
Vandenbosch et al. also showed that random forests worked best for 
age prediction and age classification (puberty/adolescent) compared 
to SVM and RVM. Although their random forest model yielded the 
lowest mean predicted error (MPE), the authors noted that it cannot 

not predict continuous numbers, thus scoring better compared to 
relevance vector machines (Vandenbosch et al., 2019).

Two authors used penalized ridge regression (Liang et al., 2019; 
Zhao Y. et al., 2019). Liang et al. compared multiple models and showed 
deep neural networks and Gaussian Process Regression outperform 
penalized ridge regression. However, every model overestimated the age 
in children and underestimated it in adults (Liang et al., 2019). Zhao 
Y. et  al. (2019) were the only authors that created only one ridge 
regression model and compared its performance on two separate datasets.

Three studies used a regularized linear regression with elastic net 
penalty (Ball et  al., 2021; Galdi et  al., 2020; Lewis et  al., 2018). 
Moreover, only one study used LASSO as a multivariate linear 
regression as their Model design (Cao et al., 2015). Brown et al. (2012) 
used a regularized multivariate nonlinear regression-like approach 
that used a set of pre-chosen variables found in the literature. The 
authors created four different statistical models. One model was fed 
with all imaging modalities, whereas the remaining three were only 
fed with T1-, T2-, or diffusion MRI-derived measures. The overall set 
of variables was then selected based on evidence from the literature. 
Next, these predictors were regularized using rotation, 
orthogonalization, and normalization, relying on the Mahalanobis 
distance technique, followed by a whitening transformation for 
decorrelation. Further, the shrinkage technique was applied to 
circumvent possible overfitting (Brown et al., 2012).

Hu et al. was the only group applying a Hierarchical Rough-to-
Fine (HRtoF) model to age prediction. First, a rough prediction stage, 
in which a Bayesian linear discriminant classifies a rough age group. 
Second, a fine prediction stage follows, in which each age group has 
its own linear regression model to further narrow down the exact age 
group. In addition, a conventional one-stage prediction model was 
applied when the scan could not properly be assigned to any subgroup 
(Hu et al., 2020).

Dean et  al. used myelin water fraction maps for a voxel-wise 
probabilistic model. These myelin-water-fraction maps reflect the 
amount of water trapped in the myelin, which can be  used to 
determine age as the amount of myelin increases with higher age 
(Dean et al., 2015). Figure 4 presents an overview of the AIs used and 
their respective frequency.

3.5 Quality

The quality of the models is described very heterogeneously 
because models are assessed differently depending on the aim of the 
study and the method used. However, most studies preferred to 
present their models via mean absolute error (MAE). Some authors 
also stated the root mean squared error (RMSE), standard deviation 
(SD), correlation coefficient (r), coefficient of determination (r2), 
F1-score, AUC, or precision. Given the diverse age range and various 
AI approaches, the best model for age prediction cannot 
be determined, but studies can be clustered and compared within the 
same group. All models depend on the information they receive, thus 
leaving the dataset as the most prominent feature that can be used for 
proper comparison. However, this does not mean that self-recruiting 
studies cannot be assessed. This review does not compare models 
based on the underlying machine learning models but rather on the 
datasets that have been used. An overview can be found in Table 3.
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All public datasets that were used contained MRI-based data. 
These are proton density, resting-state functional MRI (rs-fMRI), and 
structural MRI. We start with the studies that used the PING dataset 
for their model. Brown et al. (2012) achieved a mean prediction error 
of 1.03 years (age range: 3–20 years, SD: 4.9 years) using T1- and 
T2-weighted images in combination with diffusion MRI with a 
regularized multivariate nonlinear regression-like model. For 
resampling, they performed leave-one-out cross-validation. For 
comparison with the next study, the subset model containing only T1 
weighted MRI images had an average prediction error of 1.71 years 
(age range: 3–21 years) and a correlation of 0.91. Ball et al. (2017) T1 
weighted MRI in a Gaussian Process Regression model and a 10-fold 
cross-validation were used to determine internal model accuracy. In 
addition, they validated the model on the ABIDE I & II datasets. In 
training, they achieved 1.54 years of MAE, a correlation of 0.926 for 
predicted and chronological age. External model validation showed 
an MAE of 1.65 years and a correlation of 0.825 for ABIDE I and an 
MAE of 1.54 years and a correlation of 0.817 for ABIDE II. Both 
authors pointed out that the MAE is proportional to chronological 
age. Lewis et al., which relied on structural MRI, demonstrated that 
an elastic net penalized linear regression model yielded a MAE of 
558 days (~1.53 years) (age range: 3–20 years) and 504 days 
(~1.38 years) (age range: 4.5–18.5 years) on the PING and NIH 
datasets, respectively. The model displayed optimal performance when 
incorporating white/grey contrast and cortical thickness for model 
development. The researchers noted that white/grey contrast is more 
crucial than thickness, but including both variables resulted in the best 
model accuracy (Lewis et al., 2018).

From the teams that used the National Institute of Health (NIH) 
Pediatric Repository (Evans, 2006), He et  al. (2020) with their 
2D-ResNet18 + Long short-term memory model using T1 weighted 
MRI images achieved the lowest average MAE with 0.96 years (age 
range: 0–22 years). They also applied the model to an unseen dataset, 
namely the Massachusetts General and Boston Children’s Hospitals 
(MGHBCH) dataset, which resulted in an average MAE of 1.14 (age 
range: 0–6 years). Additionally, they extracted the data for children 
aged 0–6 years. They reapplied the model, which resulted in an average 
MAE of 0.78 years, which strengthens the conclusion of other authors 
that inter-individual variance increases with age (He et al., 2020). 
Franke et al. used a relevance vector regression and achieved a mean 
absolute error of 1.1 years (age range: 5–18 years) and a correlation of 
0.93 with low changes over age groups. In addition, the team applied 
the created model to a dataset with preterm children and was able to 
show negative scores, which can be  interpreted as slower brain 
development in that cohort (Franke et al., 2012).

The following dataset that was used is the Philadelphia 
Neurodevelopmental Cohort (Satterthwaite et al., 2016). Erus et al. 
yielded the lowest MAE with 1.22 years (age range:8–22 years, SD: 
3.27 years) using 3 T T1-weighted MRI images combined with diffusion 
tensor imaging. The model has been deployed to the PNC dataset and 
was validated by 10-fold cross-validation (Erus et al., 2015). Sturmfels 
et  al. (2018) used a 3DCNN and achieved an MAE of 1.43 (age 
range:8–21 years). Li et al. (2018), which used a convolutional neural 
network with resting state functional MRI data as input, achieved the 
second best with an MAE of 2.15 years (age range:8–22 years) and a 
correlation of 0.614, but with a 5-fold cross-validation.

Eight studies used the Autism Brain Imaging Data Exchange 
(ABIDE) I and II. A preprocessed version of these datasets is also 

available at http://preprocessed-connectomes-project.org/ and has 
been used by Hu et al. combined with the ADHD200 dataset. The 
authors achieved the lowest MAE of 1.01 years using a 3DCNN for an 
age range of 6 to 18 years (Hu et al., 2021). Ball et al. and Pardoe et al. 
also used the ABIDE I&II datasets but processed the data themselves. 
While Pardoe and Kuzniecky (2018) only used ABIDE I&II, achieving 
an MAE of 7.2 years with their RVR, Ball et al. (2017) used the ABIDE 
datasets for validation, resulting in an MAE of 1.54 years (age range: 
3-21y). Griffiths-King et al. (2023) achieved an MAE of 1.48 years (age 
range: 6.5–16.9) with the preprocessed ABIDE I  dataset and a 
Gaussian Process Regression. Bellantuono et al. preprocessed the data 
and scored an MAE of 2.19 years for the age range of 7–64 years and 
1.53 years for a subset with the age range of 7–20 years. The authors 
note that they perceived an improved MAE and RMSE, but Pearson’s 
correlation worsened. They contend that this is attributed to the 
heterogeneous nature of the data, stemming from acquisition at 
various sites within the ABIDE I dataset (Bellantuono et al., 2021). 
Mendes et al. (2023) used ABIDE II, ADHD-200, ABCD, and BHRCS 
and achieved an MAE of 1.51 for the age range of 6.1–20.0.

All studies that used EEG as input data used self-recruited 
patients. Vandenbosch et al. were the only authors to study children 
aged 5 to 18. They achieved an MAE of 1.22 years with a random forest 
model and 1.46 years with a relevance vector machine (Vandenbosch 
et al., 2019). Gschwandtner et al. showed that their model improved 
with higher numbers of electrodes and achieved 93.6% of estimation 
within ±2 weeks using 8 electrodes. The data set had an age range of 
24 to 42 weeks postmenstrual age (PMA) (Gschwandtner et al., 2020). 
The two CT-based studies from Morita et al. were based on the same 
self-recruited dataset. The best model achieved an MAE of 4.61 days 
(age range: 0–47 months) and a correlation of 0.89 when 3D 
segmentation was chosen (Morita et al., 2022a).

3.6 Model explanation

From 51 Studies, 26 chose to inspect what parts of the input data 
were relevant to the final model (Ball et  al., 2017, 2019, 2021; 
Bellantuono et al., 2021; Brown et al., 2012; Cao et al., 2015; Chen 
et al., 2022; Chung et al., 2018; Galdi et al., 2020; Hu et al., 2020, 2021; 
Tang et  al., 2023; Kawahara et  al., 2017; Kelly et  al., 2022; 
Khundrakpam et al., 2015; Lewis et al., 2018; Li et al., 2018; Lund et al., 
2022; Mendes et al., 2023; Nielsen et al., 2019; Qu et al., 2020; Smyser 
et al., 2016; Zhao T. et al., 2019; O’Toole et al., 2016; Vandenbosch 
et al., 2019; Lavanga et al., 2018; Morita et al., 2022a). However, the 
investigation of relevant parameters was performed differently, 
revealing a variety of approaches to this topic.

The following eight studies used the parameters themselves for 
importance estimation. Cao et  al. segmented and then tessellated 
cortical and subcortical regions. Those regions were then used as input 
for the LASSO method. The team used leave-one-out cross-validation 
and created one model for each iteration, thus 303 models, and saved 
these sets of coefficients. The LASSO regression used these sets of 
coefficients and pruned the variables to regions that were used most 
often within the other models. This method left the new LASSO 
model with 37 variables that explained most of the variance. The brain 
stem, left thalamus, and the right lateral ventricle showed the biggest 
gain in volume, while the right and left Precuneus and a variable called 
“restralmiddlefrontal” lost most volume. Two years later, a second 
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scan of the same cohort was scheduled, and the variables were checked 
for significance in a dependent t-test. It was reported that the volume 
in every region changed (Cao et al., 2015). Nielsen et al. used a data- 
and hypothesis-driven feature selection and compared these to a null 
model, meaning that the used variables were randomly chosen. They 
found that strong positive and negative-resting state functional 
connectivity within functional systems best predict age in their model 
(Nielsen et al., 2019). Chung et al. (2018) describe that their model 
primarily used negative weights for grey matter for increasing age. Hu 
et  al. took a similar approach for their hierarchical-rough-to-fine 
model, as the importance was analyzed by relative importance, relative 
performance, and relative irreplaceable contribution. The relative 
importance was estimated by the sequential change of the exponential 
coefficients in the decision boundaries for the age group selection 
within the rough estimation of the model. To investigate the relative 
contribution of each feature type, they were excluded from the model, 
and the change was examined by mean average error, MRAE, and the 
95% confidence interval (Hu et  al., 2020). Li et  al. (2018) used a 
sensitivity analysis on leave-one-out testing images for both their 
studies to identify important regions of interest. Khundrakpam et al. 
(2015) created a ranking of the best predictors of biological age based 
on the absolute values of the model coefficient bi. A similar approach 
was taken by Lund et  al. via Correlation-Adjusted (marginal) 
regression (CAR) scores from the model giving a measure of variable 
importance (Lund et al., 2022).

Five studies used Gradient-weighted Class Activation Mapping 
(Selvaraju et al., 2019) (Grad-CAM), which produces a localization 
map presenting the important regions in the image that were used to 
predict specific models of the CNN family (Bellantuono et al., 2021; 
Hu et al., 2021; Tang et al., 2023; Qu et al., 2020; Morita et al., 2022a). 
Qu et al. (2020) and Hu et al. (2021) combined this approach with 
BrainNet to visualize and highlight the regions that their model was 
interested in. BrainNet is a MATLAB-based graph-theoretical network 
visualization toolbox that can illustrate human connectomes as ball-
and-stick models (Xia et al., 2013).

Galdi et  al. (2020) selected the edges assigned a non-zero 
coefficient in at least 99% of cross-validation folds and reported the 
selected connections. Kawahara et al. used a method described by 
Simonyan et al. (2014), in which the partial derivatives of the output 
of the ANN for the inspect features were computed. This is used to 
visualize which edges were most predictive (Kawahara et al., 2017; 
Simonyan et al., 2014).

Ball et al. (2017) used neighborhood preserved embedding to 
produce a set of basis vectors that reconstructed the original dataset, 
captured nonlinear relationships and provided interpretable voxel- 
(vertex-)wise maps of feature importance.

Shapley Additive Explanations (SHAP) were used by Ball et al. and 
Kelly et al. to estimate the individual-level explanations within the 
model. Both specified that they have used a kernel SHAP approach. 
Further, Ball et al. (2021) plotted the SHAP values on a semi-inflated 
white matter surface using ggseg3d. Kelly et al. (2022) presented the 
averaged mean absolute feature importance across all subjects on 
cortical surface representations. Chen et  al. (2022) used the 
iNNvestigate tool (Alber, 2024; Alber et al., 2018), which uses layer-
wise relevance propagation to generate an attention map.

Brown et al. used a cross-validated multivariate fitting procedure 
and assessed the proportion of the total explained variance of each 
variable for each year. They created average attention maps for each 
age range by averaging the maps of images within those age ranges. 
The combined map was created by setting each pixel with values 
above 0.8 to the same color (Brown et al., 2012; Alber et al., 2018). 
O’Toole et al. (2016) judged the predictor variables’ performance 
using several metrics, including bias, MSE, correlation coefficient, the 
standard deviation of the error in days (SD), and the standard 
deviation of the percentage error (SE) between the known GA and 
the estimated EMA. Vandenbosch et  al. (2019) only performed 
feature importance in the random forest regression via the obtained 
feature importance score.

Zhao et al. attributed all voxels finding weight in the prediction 
models to be contributing voxels. From these, the average absolute 

FIGURE 4

This figure shows the cumulative number of AI methods found in the literature. Kernel-based methods are subdivided into support vector regressions, 
support vector machines and relevance vector regressions.
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TABLE 3 This table represents an overview of artificial intelligences, its respective performance, and data acquisition of each study.

References AI Resolution Data acquisition MAE [SD], r2

Ball et al. (2017) Gaussian Process Regression Not stated

3 T, T1- and T2-weighted 

MRI & diffusion weighted 

scans

1.54 y, r = 0.926

Ball et al. (2021)

Regularized linear regression with 

elastic net penalty
Not stated

3 T, T1-weighted MRI 

images

1.81 y [0.06], 0.79

Gaussian process regression 1.75 y [0.07], 0.81

Ensemble model 1.92 y [0.10], 0.78

Ball et al. (2019) Gaussian Process Regression

Image resolution was 1 × 1 × 1.2 mm 

(Siemens) or 0.9375 × 0.9375 × 1.2 mm (GE)

Diffusion data: resolution 2.5 × 2.5 mm 

(Siemens) or 1.875 × 1.875 (GE) and slice 

thickness = 2.5 mm

3 T T1-weighted MRI & 

diffusion MRI
2.18 y [0.18]

Brown et al. (2017)

Linear regression

0.625 mm × 0.625 mm × 3 mm (Brown et al., 

2015)

1.5 T T1-weighted MRI & 

diffusion MRI scan

6.284 w [4.230 SDAE]

Multi-layer perceptron 7.223 w [5.080 SDAE]

SVR 1.712 w [1.366 SDAE]

Bagging regression 1.559 w [1.255 SDAE]

Random forests 1.554 w [1.197 SDAE]

Brown et al. (2012)
Regularised multivariate nonlinear 

regression-like

T1: slice thickness = 1.2 mm

T2: slice thickness = 2.5 mm

3 T, T1- and T2-weighted 

MRI & diffusion weighted 

scans

1.03 y, 0.92

Cao et al. (2015)
LASSO/multivariate linear 

regression

GE scanners: slice thickness, 1.5 mm

Siemens scanners: slice thickness, 1 mm
1.5 T T1-weighted MRI 1.69 y, r = 0.82

Chen et al. (2022)

3DCNN using T1 & T2

Not stated T1-, T2-weighted MRI

7.7 w [1.7]

3DCNN using T1 9.8 w [2.3]

3DCNN using T2 9.1 w [1.9]

Chung et al. (2018)
Support vector regression with 

radial basis function kernel

1.2-mm slices (256 × 192-mm) in-plane 

resolution (PING study)
3 T T1-MRI weighted 1.69 y, 0.84

Erus et al. (2015) SVR with a linear kernel 0.9375 mm × 0.9375 mm × 1 mm

3 T T1-MRI weighted & 

Diffusion Tensor Imaging

MRI

1.22 y

Franke et al. (2012) RVR with a smoothing kernel
1 × 1 × 1 mm3 1.5 mm or 1 mm (Siemens) 

slice thickness
1.5 T, T1-MRI-weighted 1.1 y, r = 0.93

Galdi et al. (2020)
Linear regression model with 

elastic net regularisation
acquired voxel size = 1 mm isotropic T1 & T2

3 T T1 MRI-weighted & 

diffusion MRI
0.7 w [0.56], r = 0.78

Gschwandtner et al. 

(2020)
CNN n.a. EEG (8, 4 & 2 electrodes)

8 EEG electrodes: 93.6% of 

estimations lying within ±2 w

67.9% within ±1 w deviation 

from PMA

He et al. (2020) CNN NIH-PD and MGHBCH 1.5 T, T1-MRI 0.96 y

Hosseinzadeh Kassani 

et al. (2020)

SVM classification with linear 

kernel
voxel size = 3 mm3

Resting-state-functional 

MRI
0.929 y [0.041]

Hu et al. (2020) Hierarchical Rough-to-Fine model
T1: resolution with 1 × 1 × 1 mm3

T2: 1.25 × 1.25 × 1.95 mm3

3 T, T1-, T2-weighted 

MRI
32.1 [1.2 days]

Hu et al. (2021)
Dimensional-attention-based 3D 

convolutional neural network
ABIDE I & II, ADHD200 3 T, T1-MRI 1.01 y, MSE: 1.92y, 0.73

Kardan et al. (2022) SVR with a linear kernel T1 & T2 slice thickness 0.8 mm
3 T, T1- T2 MRI & rs-

fMRI
3.6 m, 0.51

Kawahara et al. (2017) CNN Not stated diffusion tensor imaging 2.17 w [1.59]

(Continued)
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TABLE 3 (Continued)

References AI Resolution Data acquisition MAE [SD], r2

Kelly et al. (2022) Gaussian process regression Victorian Infant Brain Study (VIBeS) 3 T T1 MRI 1.72 y [0.16], 0.80

Khundrakpam et al. 

(2015)
Linear regression

1 mm isotropic data

GE scanner – 1.5 mm

Fallback protocol 3 mm

1.5 T, T1-MRI, T2-MRI, 

Proton Density
1.68 y, r = 0.84

Li et al. (2018) CNN
Philadelphia Neurodevelopmental Cohort 

(PNC)
Rs-fMRI

2.15y [1.54]

R0.4 = 0.614

Lund et al. (2022) Linear regression

Healthy Brain Network (HBN) study sample 

& Philadelphia Neurodevelopmental Cohort 

(PNC)

3 T T1 MRI & T2 rs-fMRI 2.43 y [2.93], r = 0.6

Morita et al. (2022b) 3DCNN n.a. CT 4.61 m [3.65], r = 0.89

Morita et al. (2022a) 3DCNN n.a. CT

RMSE: 6.45 m

R = 0.89

Mean Prediction Error: 2.29 m 

[6.04]

Nielsen et al. (2019) SVR T1: 1 × 1 × 1 mm3 voxels 3 T T1 MRI & rs-fMRI R2 = 0.57

O’Toole et al. (2016) SVR with a linear kernel n.a. EEG (10 electrodes) [7.85] d, r = 0.889

Qu et al. (2020) 3DCNN
ABIDE, ADHD200, HBN resampled to 1.5 × 

1.5 × 1.5 mm3
T1 MRI 1.11, 0.78

Saha et al. (2018) 2DCNN

field of view 224 × 224 mm, matrix 128 × 128

in plane res: 1.75 × 1.75 mm, slice thickness 

not given

Diffusion MRI R = 0.6

Shabanian et al. (2019) 3DCNN NIMH Data Archive (NDA)
1.5 T, T1- T2-MRI & 

Proton density MRI

Class, Precision, F1-Score 

New-born, 1.00, 1.00;

1 Year, 0.95, 0.97;

3 Years, 1.00, 0.99

Smyser et al. (2016) SVM with a linear kernel voxel size 1 × 1 × 1 mm3 T2-MRI, rs-fMRI

Preterm vs. Term 

classification: 84% accuracy, 

90% sensitivity and 78% 

specificity

Stevenson et al. (2017) SVR n.a. EEG (9 electrodes) R = 0.936

Stevenson et al. (2020) SVM n.a. EEG (9 electrodes)
Random error = 1.1 w

Systematic error = −0.1 w

Vandenbosch et al. 

(2019)

Random Forest

n.a. EEG (30 electrodes)

1.22 y

RVM 1.46 y

SVM Not presented

Zhao T. et al. (2019)

SVM with a linear kernel ADHD-200

T1: acquisition matrix: 256 × 256, FOV: 256 

× 256 mm2; slice thickness – slice thickness 

1.33 mm

1 × 1 × 1.33 mm

Beijing cohort

T1: in-plane resolution 1.0 × 1.0 mm, slice 

thickness 1.0 mm

T2: in-plane resolution—0.7 × 0.7 mm, slice 

thickness—0.7 mm,

3 T, T1- T2-MRI

r = 0.48

RVM with a linear kernel r = 0.48

Sturmfels et al. (2018) 3DCNN
Voxel size 0.94 × 0.94 × 1, FOV dimensions 

196 × 256 × 160
T1-MRI 1.43 [0.03]

Hong et al. (2020) 3D CNN

“newborns (≤1 month):

voxel dimensions = 1.0 × 0.7 × 4.5 mm

older children (>1 month):

voxel dimensions = 1.4 × 1.0 × 5.0 mm”

1.5 T T1-w MRI 67.6d, 0.971

(Continued)
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TABLE 3 (Continued)

References AI Resolution Data acquisition MAE [SD], r2

Zhao Y. et al. (2019) ridge regression Not stated 1.5 T or 3 T T1-weighted
1.41 years, 0.71

1.42 years, 0.70

Liang et al. (2019)

Penalized ridge regression

Not stated T1w MRI

6–30 years age range, 

2.53 years, 0.85

Support vector regression Not presented

Gaussian processes regression Not presented

Deep neural network Not presented

Lewis et al. (2018)
Elastic net penalized linear 

regression model
resolution of 1 mm isotropic

1.5 T T1-w MRI

3 T T1-w MRI
504 d best model

Dean et al. (2015) Voxel-wise probabilistic model Not stated Voxel-wise VFM maps
Males: 79.06 d

Females: 90.02 d

Pardoe and Kuzniecky 

(2018)

Relevance vector machine 

regression Not stated T1-w MRI
7.2 y

Gaussian processes regression 8.4 y

Lavanga et al. (2018)
Linear mixed effect regression 

model
n.a. EEG 1.51 w, 0.8

Liu et al. (2024)
Graph Convolutional Network 

(GCN)

UCSF:

enrolled until 2011: 1× 1 × 1 mm3 resolution

enrolled between 2011 and 2017: 

0.7 × 0.7 × 1 mm3 resolution

UCSF:

Enrolled until 2011:

1.5 T T1-w MRI

enrolled between 2011 

and 2017:

3 T T1-w MRI

0.963 weeks, 0.94

dHCP:

0.5 × 0.5 × 0.5 mm3 resolution

dHCP:

3 t T1-w MRI

Tang et al. (2023)
2D Convolutional Neural Network

Not stated T1-w MRI
1.15

3D Convolutional Neural Network 1.80

Liu et al. (2023) radiomics first-order grayscale 

feature extraction method gray 

matter

Not stated 1.5 T MRI 104.41

radiomics first-order grayscale 

feature extraction method white 

matter

92.72

FreeSurfer feature extraction 

method

81.83

Mendes et al. (2023) Convolutional Neural Network Not stated T1-weighted MRI 0.47 [0.01], 0.18 [0.04]

Zandvoort et al. (2024) Support Vector Regression with 

linear kernel function

n.a. EEG & EMG 1.75 weeks (95% at [1.51, 

2.03])

Nielsen et al. (2023) Support Vector Regression 0.8-mm isotropic resolution 3 T T2-weighted MRI & 

resting-state fMRI

R2: 0.51

0.59

Hu et al. (2023) Convolutional Neural Network on 

RAW data

0–6 months:

slice thickness = 4.0 mm, in-plane 

resolution = 0.7 × 0.7 mm2

6–36 months:

slice thickness = 5.0 mm, in-plane 

resolution = 0.7 × 0.7 mm 2

3 T T1-weighted MRI 67.66, 0.91

Convolutional Neural Network on 

white matter

72.17, 0.89

Griffiths-King et al. 

(2023)

Gaussian Processes Regression Not stated T1w MRI 1.48y, 0.37

(Continued)
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weight in each region in the Brodmann atlas represented its 
importance (Zhao T. et al., 2019).

Lewis et al. used an elastic net penalized regression model 
and defined a signed importance. Thus, only factors had to 
be selected at least 50 times in the 10×10 Cross-validation. In 
their model, white/grey contrast and thickness were found 
dispersed. White/grey contrast for regions involved in low-level 
processing was found to be a negative factor, whereas association 
regions were positive. It was found to be vice versa for thickness 
(Lewis et al., 2018). Lavanga et al. also shrank down the model to 
10 features that reached the lowest MAE when applied 
individually. The δ2, θ, α bands of the EEG worked best for a 
model used on quiet sleep state data (Lavanga et  al., 2018). 
Mendes et al. created a gradient-based sensitivity map using an 
algorithm called SmoothGrad. This sensitivity map represents 
the features that contributed the most voxel-wise. However, the 
noise level and patterns are averaged before a sensitivity map is 
created. The impact of the perturbances in the output image 
produced by the input images is measured (Mendes et al., 2023; 
Smilkov et al., 2017).

3.7 Clinical application

None of the studies in this review reported using their model in 
a clinical routine. However, some suggested their models could 
be used as a clinical tool if further developed or explained the desire 
to implement it in a clinical setting. Tang et al. propose general 
usage of their model for three areas. First, as easy-to-deploy brain 
analysis software for clinical brain maturation assessment. Second, 
as a low-cost treatment tool for primary care institutions for graded 
care. Third, as a large-scale diagnosis tool (Tang et al., 2023). Liu 
et  al. (2024) mention that their model used clinically relevant 
features, but translation is not mentioned. Franke et  al. (2012) 
mention that future work will extend the approach, trying to 
identify significant regional deviations for clinical application. 
Gschwandtner et al. (2020) and Cao et al. (2015) also mention that 
clinical implications are the subject of future research. Stevenson 
et al. (2020) and O’Toole et al. (2016) report that the algorithm 
proved less error-prone than human reviewers but also state a 
conflict of interest. However, the remaining authors were more 
cautious, reporting brain age estimation as a potential biomarker, 
leaving pursuit unaddressed or rejecting it (Chen et  al., 2022; 
Vandenbosch et al., 2019).

4 Discussion

Overall, it must be noted that many studies had a specific scope 
that went beyond predicting the brain age with a new model. This 
review provides an overview of current research on using machine 
learning to predict children’s brain ages. It assists researchers in 
gaining a comprehensive understanding of past and present 
approaches, as well as identifying research gaps and interesting niches 
that are yet to be filled. Overall, the peak interested seemed to be in 
year 2020 as can be seen by Figure 5. It must be noted that literature 
of 2024 was only included until early April.

4.1 Data acquisition

It was found that the overall preferred type of data acquisition 
was MRI data. This modality is expensive and difficult to acquire 
compared to EEG and CT. Its acquisition is time-consuming and 
difficult as children are sedated or need to sleep during the procedure 
to prevent movement artifacts (Barkovich, 2005; Abdelhalim and 
Alberico, 2009; Dubois et al., 2021). Besides these disadvantages, 
MRI transfers most information about the maturation status of the 
brain. It allows for the assessment of myelination, sulcation, and 
chemical maturation (Barkovich, 2005). These difficulties in 
acquisition might explain why many studies using MRI data opted 
for public datasets instead of self-recruiting. As noted in the result 
section, 19 of 36 studies relied on publicly available data. An 
advantage of these datasets is that studies are comparable because 
they use the same data parameters if the same scan sites were chosen. 
Especially for fundamental research, comparability is important to 
prove superiority, but it also means that studies are more prone to 
fail in a clinical application as it introduces selection bias. This has 
been shown by Mendes et  al. (2023), who compare the 
generalizability and performance of the same model architecture on 
distinct datasets. Comparing the demographic structure of studies 
using the same datasets shows that the authors chose different 
individuals from these datasets. Thus, even though some authors 
chose to use the same dataset, the data subsets, and therefore their 
age ranges used for training their models, still differed. Only some 
authors chose to validate the model on a distinct data set. As for the 
weighting of the MRI, most studies used T1-weighted MRI images 
or combined modalities, while only Smyser et  al. used solely 
T2-weighted MRI images. This underrepresentation shows a 
research gap in this area. On the one hand, a valid reason to choose 

TABLE 3 (Continued)

References AI Resolution Data acquisition MAE [SD], r2

Bellantuono et al. 

(2021)

Deep neural network on the full 

dataset

Not stated T1 weighted MRI 2.19 [0.03y], 2.91 [0.03y]

Deep neural network on the subset 

of subjects within the 7–20 age 

range

1.53 [0.02], 1.94 [0.02]

Deep neural network on an 

external dataset

2.7 [0.2], 3.7 [0.2]

y, year; m, month; w, week; MAE, Mean Absolute Error; rs-fMRI, resting-state functional MRI; RVM, Relevance vector machine; RVR, Relevance vector regression; RVM, Relevance vector 
machine; SVM, Support Vector Machine; SDAE, absolute error standard deviation; MSE, mean standard error.
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T1 over T2 might be that segmentation methods for the brain in T2 
weighted images are less well-developed (Bae et al., 2021). However, 
as segmentation methods improve, this gap could be closed with 
future research. Generally, T1-weighted images are predominantly 
useful up to 6 months, but after that, T2-weighted images become 
more important when evaluating the myelination status until the age 
of 2 years (Barkovich, 2005; Girard et al., 2007; Dubois et al., 2014). 
Sulcation and brain volume can still be evaluated in T1, but white 
and grey matter contrast decreases (Barkovich, 2005). Several 
authors have reported MAEs falling within approximately 1–2 years 
of MAE. This raises concerns about the reliability of relying solely on 
structural T1 MRI. However, since authors like Hong et  al. 
successfully used T1-weighted MRI to estimate brain age, with an 
MAE of 68 days, it can be assumed that the T1-weighted images can 
also be used over the six months. It is worth noting that their age 
range was significantly narrower (0–5 years) compared to other 
studies (Hong et al., 2020). It could be that the data hides patterns 
that are not known yet. Eleven authors combined the two MRI 
weightings with each other, which means that the whole spectrum 
of those modality-specific advantages is taken. The model has more 
information it can process. This approach, unfortunately, means that 
two sessions are needed for data collection, making data collection 
even more difficult and longer. For clinical application, it would 
be best if one weighting and one modality are sufficient for a reliable 
brain age prediction. According to the literature, this would leave 
T2-weighted images as the preferred choice for human evaluation as 
they might cover a wider age range (Barkovich, 2005). However, it 
could be that the general rules that clinicians focus on might not 
apply to AI-based brain age prediction. It would be interesting to see 
if the same models based on T1-weighted images perform the same 
on T2-weighted MRI for the described age ranges. It was already 
mentioned above that many authors opted for publicly available 
datasets. A drawback is that most datasets have high-resolution data, 
which does not reflect real-world applications. In addition, the 
authors did not always report the MRI’s field strength, which 
decreases the transparency and comprehensibility of the study. The 
higher the field strength of an MRI, the higher its resolution and the 
amount of detail it can convey. It is utterly important to report the 
field strength to the reader as it gives an idea of how good the input 
data quality was for the model. If trained in high-resolution data, 
models might not perform well on low-resolution MRI. Models that 
work better in these real-world applications might miss the chance, 
as they are discarded because of the better yield with high-resolution 
images. Initial testing on real-world data increases the chances that 
these models can be widely applied. All studies that used EEG data 
self-recruited their patients. All studies with EEG taken together had 
an age range of 23 to 42 weeks postmenstrual age. This might 
be because of the easier nature of this method. This type of data 
acquisition is cost-efficient and comparably easy to perform. Further, 
publicly available datasets could benefit model comparison in the 
early stages. It was found that there have been differences in the 
number of electrodes used for capturing brain waves, which ranged 
from 2 to 30 electrodes. With the higher number of electrodes, 
Vandenbosch et al. obtained better results but also increased the 
complexity of the setup. It is unclear if the increased number of 
electrodes, the positions of certain electrodes, or the specific setup 
improves the mean prediction error compared to other studies. 
However, all authors showed that prediction is possible, and this area 

might be  fruitful to further follow up upon for newborns. In 
addition, it could be interesting to extend this research to other age 
ranges. Literature indicates that there are changes in EEG for young 
adults and adults in a small cohort study from Zappasodi et  al. 
(2015). Ruiz de Miras et al. (2023) support this with a cohort study 
and were able to distinguish between schizophrenia and healthy 
patients. Javaid et al. (2022) also show the categorization between 
young and old. For implementation in a clinical setting, it is 
beneficial that these models can create reliable predictions with 
easily and cheaply obtained data to make them widely applicable. A 
technique used by Morita et al., computed tomography, is medically 
debatable. Computed tomography uses radiation to generate images. 
This should be used carefully, especially in children, as radiation is 
harmful to health (Abdelhalim and Alberico, 2009; National 
Research Council (US), 1990). Typically, a head CT is performed in 
case of trauma, and thus, traumatic brain injury ought to 
be diagnosed (Kambal et al., 2014). In a setting where the CT was 
already taken, AI might help find pathologies like intracranial 
bleeding or skull fracture. A CT contains less information for 
predicting brain maturation compared to MRI (Barkovich, 2005). 
Thus, exposing children to radiation for brain age estimation is 
rather unlikely from a future perspective because better and more 
harmless methods are available. However, the quick nature and high 
resolution are favorable characteristics of CT. A multimodal 
approach, meaning combining different data modalities, as Brown 
et al. (2012) suggested, increases the data the AI model can use. The 
abovementioned team argues that one modality cannot capture the 
developmental process (Brown et al., 2012). Combining different 
modalities conveys additional data, thus increasing the features the 
model can select from. This statement should be  evaluated. The 
integration of low-resolution MRI and EEG represents a novel 
combination of modalities that has yet to be explored.

4.2 Age range

As for the age range, only one author, He et al., created a model 
covering the age range from neonates to young adults (0–22 years) and 
scored an astonishing MAE of 0.96 years on the test set and 1.14 years 
on a different, unseen dataset. Their model was a 2DCNN + lstm and 
showed better performance than the contested 3DResNet18. 
Bellantuono et al. and Liang et al. used the most comprehensive age 
range for their model, starting at 7 and 6 years, respectively, and 
including the elderly up to 64 and 89 years. Bellantuono et al. describe 
that the MAE increased proportionally with the age range. As they 
tested the model on a subset with a lower age range, the MAE dropped 
from 2.2 to 1.54. Liang et al. further state that younger subjects are 
overestimated and older are underestimated and examine this effect. 
According to them, the bias is not due to a particular age or age range 
(Liang et al., 2019). However, Bellantuono et al. also describe that the 
data was highly skewed to the right, thus including more patients of 
younger ages. The effect of shrinking the age range for better MAE 
must be further investigated. Most authors tried either up to the age 
of 3 years or from 3 years upwards. Therefore, models were limited to 
specific age groups, newborn to 3 or above. For clinical application, 
the earliest years are of particular importance. Some authors did not 
disclose the composition of their study population, whereas others 
were very descriptive, e.g., ethnicity, sex, and socioeconomic 
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background. Zhao et  al. suggest that data pre-processing should 
consider ethnicity because the selected atlas can affect standardized 
predictions, underscoring the significance of the data’s source. A 
standardized way of reporting should also be implemented to show 
that these models include various humans with different backgrounds. 
In an ideal situation, the AI should be trained on a dataset that reflects 
real-world distributions to ensure broad applicability. Further, it is 
vital to strengthen transparency because, ideally, each age group 
should be represented by the same number of individuals.

4.3 Pre-processing

The processing steps in the analyzed literature were similar to 
those of the same acquisition method. For MRI, authors followed a 
similar pipeline. Comparable to other research areas, all ethnicities 
and sexes must be  represented equally. At least for gender, some 
studies tried to reach an equal ratio for the dataset, as can be seen in 
Table 2. This shows that the pipelines are already set for MRI. Morita 
et  al. tried to leave out skull stripping for CT but failed with this 
approach. In MRI studies, models without skull stripping could 
predict age, as proven by Sturmfels et al., Lund et al., and Hong et al. 
Diffusion-weighted MRI also followed the same procedures, while 
after processing authors use different steps to combine the data with 
other modalities. In EEG, most authors opted for artifact removal and 
high- and low-pass filtering. It presents the modality with the least 
amount of preprocessing steps involved.

4.4 Artificial intelligence models

In the literature that was reviewed, two model types dominated 
with frequency. The most prevalent type was the kernel-based learning 
algorithm with a linear kernel, especially in EEG data-driven models. 
While most studies used a linear kernel, one radial basis and one 
smoothing kernel were used. The approach with a radial basis function 
did not present a better result than linear kernel models. However, the 
model with a smoothing kernel achieved a high correlation of 0.93 and 

a mean absolute error of 1.1 years in a dataset ranging from 5–18 years. 
However, it cannot be  concluded that this majorly improved the 
model because this is not the only variable that differed. Future studies 
could focus on the effects of different kernels. One team, 
Gschwandtner et al., used the second most prominent model type, 
CNNs, for EEG data and scored comparably good results with a 
medium number of electrodes, showing that this direction might 
be fruitful as a future research area for EEG data-driven studies. In 
studies that used MRI data, 3D-CNNs were the preferred choice. This 
is not surprising, given the three-dimensional data from MRI or 
CT images.

4.5 Quality

The quality of the respective models is difficult to compare 
because few studies with the same model type used the same 
dataset and acquisition method. This review clustered the studies 
with the same dataset and compared them. Griffiths-King et al. 
tested their best-performing model on a different dataset and 
found it performing much worse. Thus, they suggest that this 
critical step should be  integrated into future studies, and 
we  strongly agree with this idea (Griffiths-King et  al., 2023). 
Mendes et  al. researched the generalizability of 3DCNNs on 
different datasets. They found that the MAE is more influenced by 
the center of distribution of the training set, and the correlation 
seems more influenced by the sample size, confounders, and the 
similarities between the images’ input features of the training and 
test set. Thus, comparable parameters are urgently needed when 
trained on only one dataset. However, Ball et al. (2017) used a GPR 
and applied an external model validation without reducing the 
MAE significantly. The bias due to the heterogeneity of data from 
multiple sites was also examined by Liang et al., which could not 
validate the assumption of bias. They state that the bias in their 
testing is more caused by regression to the mean (RTM) (Liang 
et al., 2019). Barnett et al. (2005) explain RTM as follows: “RTM is 
a statistical phenomenon that occurs when repeated measurements 
are made on the same subject or unit of observation. It happens 

FIGURE 5

This figure shows the years in which the number of articles was published. 2020 had the highest number of publications. In 2024, only records 
published until April were included.
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because values are observed with random error.” Further, it was 
found that the developing brain underlies inter-individual variation 
that increases with age (Ball et al., 2021; Brown et al., 2012; Hu 
et  al., 2020). Erus et  al. (2015) found that biological sex is an 
important feature to improve prediction. However, two publications 
found no difference between males and females (Khundrakpam 
et  al., 2015; Smyser et  al., 2016). Sex-specific models should 
be evaluated in future works. We also found the combined usage of 
modalities. Unfortunately, no study aimed to compare directly the 
effects of including more than one modality, and thus, conclusions 
of the effect cannot be  drawn as model architecture, data 
parameters, and age range varied throughout the literature. For 
EEG, Gschwandtner et al. found that the higher the number of 
electrodes, the better the prediction. As the prediction 
measurements of other studies varied, a general trend was not 
depictable. Zandvoort et al. combined electromyography and EEG 
readings but did not yield a better result than Lavanga et al., which 
tested two-hour EEG readings in preterm neonates. Overall, 
quality assessment poses a challenge due to substantial variability 
in data across the literature, diverse model types, and influential 
parameters such as field strength, resolution, and number of 
electrodes. Authors must persist in testing different model types 
and evaluating diverse datasets.

4.6 Model explanation

Further, ensuring the explainability of AI is of utmost 
importance, particularly within the medical field. We found that 
many AI systems operate as “black boxes,” which hinders 
understanding their decision-making processes. Among the 
included studies, only 26 out of 51 have integrated features that 
explain their models and choices, leaving nearly half without such 
provisions. Some studies have used the coefficients of variables 
within the models, while others have employed methods like SHAP-
values, BrainNet, GradCAM, or attention maps to offer 
explanations. These are good examples of how it can be incorporated 
into modern AI. However, we also understand that articles from 
before 2019 could not integrate GRAD-CAM as the technique was 
unavailable before 2019 (Selvaraju et al., 2019). However, there has 
been a clear trend since then to incorporate explainability into 
CNNs. In 2020, only 1 out of 4 studies incorporated XAI; all studies 
did it in 2021; in 2022, it was 2 of 3, and in 2023, it was also 2 of 3, 
but the one that did not include it stated it was part of future 
investigations. There is an urgent need for model explanations in 
this research area, detached from acquisition methods. Creating a 
model with high precision and accuracy does not inherently render 
it a good and usable model, primarily when the transition to a 
clinical setting is pursued. For clinical decisions, it is of utmost 
importance that we properly understand how these models work 
and what they consider essential. More research must be performed 
for a clinical application, and more research in the areas stated 
above needs to be done. We must admit that the analyzed studies 
merely aspire to a clinical transition and are focused on the proof 
of principle. The field has witnessed rapid advancements in research 
over the past decade, with artificial intelligence (AI) demonstrating 
increasingly potent capabilities. Early comprehension of these 
models will accelerate the achievement of clinical translation. A 

clinical application would be  cost-effective and lead to earlier 
detection of pathologies, which could further reduce the disease 
burden, as treatment could be offered earlier.

4.7 Verdict

All in all, further research must be  done in this field. The 
accurate age prediction in children is still in development and it is 
not certain which modalities are the most promising. We think that 
both, EEG and MRI, have their own strengths and thus are 
worthwhile researching. Electroencephalography is easier to apply 
and cost-efficient, whereas magnetic resonance imaging conveys 
structural and functional information. Specific modalities, such as 
T2-weighted MRI, are underrepresented, which we think could be a 
good addition, as it conveys different information as explained in the 
introduction. In addition, no studies have used publicly available 
datasets for EEG models. Although age prediction should not 
be bound to specific datasets, it would enable comparison between 
the models. However, we want to point out that the diversity in this 
research field is welcomed as this research topic is quickly 
developing. Regarding the reporting structure for the included 
individuals, we  recommend a standardized structure. Sex, age 
distribution, mean age, standard deviation, scanning sites and the 
corresponding scanner parameters, number of participants from 
these scanning sites and weightings or other settings important to 
the performed data generation should be structurally reported. On 
the one hand, the authors already clearly state the demographic 
structure of their data. This includes age distribution, biological sex, 
mean age, and standard deviation. On the other hand, some authors 
only state the number of participants, age range, and dataset name. 
This varying reporting style is inconclusive for the reader and 
inhibits comparability, reproducibility and transparency. The same 
principle applies when reporting the methods used to acquire the 
data. Datasets are not always clearly linked, and the scanner 
parameters are not always clearly stated. This is especially a hurdle 
when the acquisition sites differ with varying scanner parameters. 
Most documentation can be found online, but reporting clearly what 
data has been used is necessary when working with artificial 
intelligence and creates transparency. A clear overview of parameters 
for the included data would highly improve transparency. The 
preprocessing pipeline could be evaluated regarding the effects of 
skull stripping. Morita et  al. indicated that the model could not 
be trained without brain extraction. Sturmfels et al. were able to 
create a model but described a decreased age prediction performance 
when the skull was not stripped or was too finely stripped. They 
suggest a regional segmentation for decreased training time and 
improved prediction. Further research should include this 
processing step as it could save resources, as suggested by Sturmfels 
et al. (2018). Lastly, the explainability and interpretability of the 
predictions will become crucial for future clinical implementation, 
especially in European countries where laws are getting stricter 
about AI. The authors of the included studies in this review partially 
opted for this option. The trend shows that implementation is rising 
among studies, and more authors describe pursuing this feature in 
future studies. We  hope this could pave the way to a clinical 
application for modern medicine, thus accelerating modern and 
personalized medicine.
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