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Alzheimer’s disease (AD) is a progressive neurological disorder characterized

by the gradual deterioration of cognitive functions, leading to dementia and

significantly impacting the quality of life for millions of people worldwide. Early

and accurate diagnosis is crucial for the e�ective management and treatment

of this debilitating condition. This study introduces a novel framework based

on Spectral Graph Convolutional Neural Networks (SGCNN) for diagnosing

AD and categorizing multiple diseases through the analysis of functional

changes in brain structures captured via magnetic resonance imaging (MRI). To

assess the e�ectiveness of our approach, we systematically analyze structural

modifications to the SGCNN model through comprehensive ablation studies.

The performance of various Convolutional Neural Networks (CNNs) is also

evaluated, including SGCNN variants, Base CNN, Lean CNN, and Deep CNN. We

begin with the original SGCNNmodel, which serves as our baseline and achieves

a commendable classification accuracy of 93%. In our investigation, we perform

two distinct ablation studies on the SGCNN model to examine how specific

structural changes impact its performance. The results reveal that AblationModel

1 significantly enhances accuracy, achieving an impressive 95%, while Ablation

Model 2 maintains the baseline accuracy of 93%. Additionally, the Base CNN

model demonstrates strong performance with a classification accuracy of 93%,

whereas both the Lean CNN and Deep CNN models achieve 94% accuracy,

indicating their competitive capabilities. To validate the models’ e�ectiveness,

we utilize multiple evaluation metrics, including accuracy, precision, recall,

and F1-score, ensuring a thorough assessment of their performance. Our

findings underscore that Ablation Model 1 (SGCNN Model 1) delivers the

highest predictive accuracy among the tested models, highlighting its potential

as a robust approach for Alzheimer’s image classification. Ultimately, this

research aims to facilitate early diagnosis and treatment of AD, contributing

to improved patient outcomes and advancing the field of neurodegenerative

disease diagnosis.
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Alzheimer’s disease (AD), image classification, Convolutional Neural Networks (CNN),
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1 Introduction

Neurodegenerative disease, such as Alzheimer’s disease (AD),

is the most prevalent type of dementia that affects 60% to 80%

of patients in the world (Turer and Sanlier, 2024; Vejandla et al.,

2024). It is characterized by a decline in cognitive processes,

including language, reasoning, and memory, ultimately leading to

the inability to perform daily activities. The elderly population has

a higher prevalence of the disease and is the fourth leading cause

of death (Self and Holtzman, 2023). There is currently no cure for

AD, despite extensive research and presently available medications

for AD solely working on managing symptoms of the disease and

putting into effect a vast financial burden for the health care system,

patients and their families (Vejandla et al., 2024).

AD is progressively emerging as the most prevalent

neurological disorder, with its numbers likely to rise by 2050

globally from 50 to 100 million (Zhao et al., 2024). There is

an urgent need for reliable and efficient methods to detect AD

at its initial stages. Early diagnosis leads to timely therapeutic

interventions that potentially slow the disease progression and

relieve the great burden on healthcare systems (Garg et al., 2023).

Cognitive decline in AD starts many years before it is manifested

clinically; the first stage may be Mild Cognitive Impairment (MCI),

which may lead to AD. About 15%–20% of individuals over 60

years suffer from MCI, with 30%–35% progressing to AD within

four years (Karran and De Strooper, 2022). The accumulation of

coagulated tau proteins and amyloid-beta (Aβ) plaques causes

neuronal death and brain shrinkage, which is the cause of the

disease. This tissue loss occurs starting with the Gray Matter (GM),

then going into the White Matter (WM), Corpus Callosum (CC),

and extending to the Hippocampus (HC), greatly impairing neural

functions (Knopman et al., 2021). Early diagnosis of AD is critical

for maintaining good disease management and improving patient

quality of life (Begum and Selvaraj, 2024). Modern diagnostic

methods, such as PET and MRI scans, are crucial for the diagnosis

of AD because they identify both structural and functional changes

in the brain (Porsteinsson et al., 2021). The important information

regarding the disease development from normal cognitive (NC)

function through MCI to full-blown AD is provided by these

imaging modalities in addition to other clinical data (Shukla et al.,

2023).

New developments inmachine learning technologies, especially

techniques of deep learning like CNNs, have shown enormous

potential in the early diagnosis and classification of AD (Wen

et al., 2020). CNNs are superior in pattern recognition and image

classification, which makes them ideal for large dataset image

Abbreviations: AD, Alzheimer’s disease; ADRD, Alzheimer’s disease and

related dementias; AUC, area under the curve; CNN, convolutional neural

network; DTI, di�usion tensor imaging; DL, deep learning; ID3, iterative

dichotomiser 3; LGBM, light gradient boost machine; ML, machine learning;

MRI, magnetic resonance imaging; MCI, mild cognitive impairment; NLP,

natural language processing; NC, normal control; PD, Parkinson’s disease;

PET, positron emission tomography; QVC, quantum variational circuit; RF,

random forest; ROC, receiver operating characteristic; SGCNN, spectral

graph convolutional neural network; SVM, support vector machine; VGNN,

variational graph neural networks.

analysis, in this case, medical imaging data. Taking advantage of

MRI, PET scans, and Diffusion Tensor Imaging (DTI) information,

CNNs can help in the efficient and effective identification of AD and

predict its progression fromMCI to AD (Logan et al., 2021).

1.1 Research contribution

This study offers three key contributions to the field of AD

diagnosis and multi-disease classification:

• We propose a novel framework based on Spectral Graph

Convolutional Neural Networks (SGCNN) for diagnosing AD

and categorizing multiple diseases by analyzing functional

brain changes observed inMagnetic Resonance Images (MRI).

Structural modifications to the SGCNN model are rigorously

analyzed through ablation studies, and the performance

of various Convolutional Neural Network (CNN) models,

including SGCNN variants, Base CNN, Lean CNN, and Deep

CNN, is systematically evaluated.

• Our study improves the reliability of AD classification

tasks by implementing essential preprocessing steps such as

image visualization, pixel value normalization, and precise

dataset splitting. These processes ensure higher quality and

consistency within the dataset, which directly enhances the

performance and accuracy of the CNNmodels.

• Through extensive experimentation, the Ablation of SGCNN

Model 1 achieves a classification accuracy of 95%, highlighting

its superior potential for early detection and diagnosis

of AD. This result demonstrates the effectiveness of the

proposed model modifications in advancing the field of

neurodegenerative disease diagnosis.

1.2 Research organization

This document is formatted as follows: In Section 2, the

background information and relevant works are provided. Section

3 presents the proposed deep-learning approach for categorizing

images associated with AD. We assess the performance of our

technique and compare it with the baseline methods in Section 4.

The article is concluded in Section 5, which offers suggestions for

further reading.

2 Literature review

In the literature review, we address machine learning (ML)

and deep learning (DL) methodologies for AD prediction. This

section explores how these advanced methodologies contribute to

improving diagnostic accuracy and understanding AD progression.

Table 1 provided the overview of studies on AD prediction.

Biswas and Gini (2024) suggested an output-based multi-class

categorization system ranging from Normal to Severe facilitates

the early identification of AD. It starts by extracting hippocampal,

gray and white matter from 3D MRI images and computing the

volumes of each from the images using Analyze Direct and ITK

Snap. Such volumes, besides other characteristics like age, gender
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TABLE 1 Overview of studies on AD classification.

References Approach Dataset Classes and
descriptions

No. of images Key findings

Rao et al. (2024) 3D convolutional neural

networks with transfer

learning

MRI brain images AD, Mild Cognitive

Impairment (MCI),

Normal Control (NC)

1,686 images ResNet50V2 achieved 92.15%

training accuracy and 91.25%

testing accuracy

Tripathi and Kumar

(2024)

Speech-based cognitive

impairment assessment using

ML

DementiaBank’s

Pitt Corpus

Six classes based on

cognitive impairment

levels

292 recordings Achieved 75.59% accuracy in

six-class classification;

XGBoost showed significant

accuracy differences

Krishna et al. (2024) DL with SMOTE data

augmentation for MRI data

MRI datasets AD, MCI, NC 2,453 images Improved model accuracy and

validity, effective for

imbalanced data

Srividhya et al.

(2024)

CNN-based multi-class

classification

ADNI2 (sMRI) AD, MCI, NC 1120 images ResNet-50v2 achieved 91.84%

mean accuracy, F1-score of

0.97 for AD class

Goenka and Tiwari

(2023)

Multimodal DL for

Alzheimer’s classification

ADNI

(T1-weighted MRI,

AV-45 PET)

AD, MCI, NC 2,391 images 3D-Subject method achieved

93.01% accuracy, surpassing

Patch-based (89.55%) and

Slice-based (89.37%)

Francis and Pandian

(2023)

Ensemble of pre-trained

models for multi-class

classification

ADNI

(T1-weighted

sMRI)

AD, MCI, NC 2,156 images Achieved 85% accuracy in

multi-class classification;

outperformed other

state-of-the-art methods

Venkatasubramanian

et al. (2023)

MTDL for segmentation and

classification

ADNI (structural

MRI)

AD, MCI, NC 2128 images Achieved 97.1% accuracy,

93.5% Dice coefficient, 96%

accuracy for binary, 93% for

multi-class classification

and MMSE scores, are used to feed machine learning algorithms

such as random forest, gradient boost, decision tree and KNN for

the detection of Alzheimer’s and the classification of the severity

level of Alzheimer’s. Additionally, the collected traits are arbitrarily

mixed in every feasible way, including feature-level fusion, and

further analyzed. Themethodology is tested on two datasets, OASIS

and ADNI, which were introduced in earlier sections. In the OASIS

dataset, a 99% accuracy is achieved by random forest when using

only white matter volume and 98% when all three volumes are

integrated. For the ADNI data set, for white matter volume, the

accuracy was found to be 92% for gradient boost, and for the

combination of all three volumes when fused, the accuracy was 91%

for both databases.

Rao et al. (2024) deal with AD by creating a new deep-learning

approach that generalizes convolution networks in the third

dimension tomodel spatial characteristics of the 3DMRI scans. The

proposed classification system also uses attributes that are taken

from the 3D convolutional network’s several layers; however, it

gives distinction importance to each layer. Using brain MRI scans

from three classes (Mild Cognitive Impairment, Normal Control,

AD and probability controls), the system combines transfer

learning with fine-tuning. In regards to AD classification, the

researchers also tried using pre-trained deep learning models such

as ResNet50V2 and InceptionResNetV2, of which ResNet50V2

performed better. According to their results, ResNet50V2 achieved

a testing accuracy of 91.25% and a training accuracy of 92.15%. The

authors observed that the effective detection of AD utilizing 3D

MRI brain images can be achieved using deep learning, particularly

transfer learning with ResNet50V2.

Tripathi and Kumar (2024) suggest a method for the speech-

based assessment of six kinds of cognitive impairment. After pre-

processing the speech data from DementiaBank’s Pitt Corpus to

extract pertinent acoustic features, they train five machine learning

algorithms (KNN, DT, SVM, XGBoost, and RF). Consequently, the

work’s output demonstrates a 75.59% accuracy rate in the six-class

classification task. Besides, the significance of differences in the

accuracy of XGBoost as compared to the other algorithms except

the random forest is proved by the statistical tests. This approach

has the potential to be used as cost- and time-effective compared

to a provision of a medical diagnosis that is easily accessible in

the early phases of the disease. Krishna et al. (2024) present a

method that combines DLmethodologies, includingDeep Learning

(DL), with methods of data augmentation of the SMOTE type for

any MRI dataset to enhance the detection of Alzheimer’s disorder.

They are being used here because this approach can enhance the

accuracy as well as the validity of the classification model due to the

great management of the problems associated with the imbalanced

data. Based on the present interdisciplinary analysis, the integration

of DL with SMOTE improves the model’s ability to identify AD,

and this improvement was also observed when expanding its

application to other forms of neurodegenerative diseases.

Srividhya et al. (2024) put forward a framework for the

clustering of the stages of AD based on the AD Neuroimaging

Initiative (ADNI2—Structural Magnetic Resonance Imaging—

sMRI) image database. The approach entails the use of deep

learning techniques, especially CNN, for a multi-class classification

of AD MRI images. The emphasis is placed on choosing the

most suitable pre-trained model that will be able to provide
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the best prediction for the AD stage of a particular patient.

ResNet-50v2 was the overall best model, with a mean 91.84%

accuracy and an F1-score value of 0.97 for the AD class. They

used Grad-CAM and Saliency Map to visualize the highest

accuracy model to know which part of the image the algorithm

concentrated on for classification. Kaya and Çetin-Kaya (2024) put

forward a framework that involves the use of PSO to adjust the

hyperparameters of CNN for the detection of AD from MRI data.

The approach comes in handy to fine-tweak hyperparameters like

a number of convolution layers and filters and other issues like

lack of labeled data, high inter-class similarity, and overfitting. As

for the proposed lightweight model, it attains a test accuracy of

99.53%, and an F1-score of 99.63% of the tests were performed

on a public dataset, which was higher than those obtained in prior

studies and could be highly useful to help clinicians in the diagnosis

and decision-making process.

By utilizing MRI data from the ADNI dataset, the El-Assy et al.

(2024) provide a cutting-edge CNN design for the classification

of AD. The two CNN models used by the network have varying

filter widths and pooling layers. Nonetheless, these two models

are combined for classification purposes because the system

handles three, four, and five categories. With 99.43%, 99.57%,

and 99.13% accuracy, respectively, the suggested CNN architecture

produces comparatively high results. These results demonstrate

the suggested network’s ability to extract features from MRI scans

and differentiate between various AD subtypes and stages, assisting

medical professionals in accurately and promptly diagnosing AD

patients. Khan et al. (2024) introduce their newmultimodal fusion-

based approach called Dual-3DM3-AD to diagnose AD from the

MRI and PET image scans accurately and in the early stages. The

management starts with the pre-processing of both image types:

For the noise reduction of the raw data, a Quaternion Non-local

Means Denoising Algorithm (QNLM) is applied. Subsequently, the

Morphology function is used for skull stripping, resulting in an

improved image quality further refined with the help of a Block

Divider Model (BDM) to convert the 2D image into a 3D image.

The model incorporates semantic segmentation using a Mixed-

transformer with Furthered U-Net with Complexity Minimization.

It employs the Densely Connected Feature Aggregator Module

(DCFAM) for feature aggregation and implements a multi-scale

feature extraction to extract features from the segmented images it

obtains. There is then feature dimensionality reduction by applying

multi-head attention, wherein a softmax layer is used, covering

multi-class diagnosis of Alzheimer’s. The proposed Dual-3DM3-

AD achieves a high accuracy of 98% and a high sensitivity of 97.8%,

specificity of 97.5%, F-measure of 98.2%, and ROC curves that are

statistically significantly better than any other existing model for

multi-class Alzheimer diagnosis.

Hu et al. (2024) study leverage Graph Neural Networks (GNNs)

with claim data to predict AD and Related Dementia (ADRD) risk.

A variational GNN (VGNN) with a relation importance method

was used to estimate ADRD likelihood and provide explanations of

feature importance. Three prediction scenarios (1-, 2-, and 3-year

windows) were analyzed, and VGNN performance was compared

to the Random Forest (RF) and Light Gradient Boost Machine

(LGBM) models. Across all scenarios, the VGNN outperformed RF

and LGBM models, with AUROC improvements of over 9%–10%.

The VGNN showed strong predictive ability, with AUROC scores

ranging from 0.7001 to 0.7480, highlighting its efficacy in ADRD

risk prediction. In Amini et al. (2024), Natural Language Processing

(NLP) techniques combined with machine learning methods were

utilized to develop an automated approach for predicting the

progression from MCI to AD within a 6-year timeframe based on

speech data. The study analyzed neuropsychological test interviews

of 166 participants from the Framingham Heart Study, comprising

90 cases of progressive MCI and 76 cases of stable MCI. The best-

performing models incorporated speech-derived features along

with demographic factors such as age, sex, and education level,

achieving an accuracy of 78.5% and a sensitivity of 81.1% in

predicting MCI-to-AD progression.

Goenka and Tiwari (2023) use T1-weighted MRI and AV-

45 PET images from the ADNI database to provide a unique

multimodal deep-learning model for the categorization of AD.

They use three cutting-edge approaches: 3D-Subject, 3D-Patches,

and 3D-Slices. The 3D-Patches, a unique feature, include patches

of different sizes from 32 to 88 for feature extractions. In contrast,

the 3D-Slices, another novel approach, include uniform slicing

interpolation zoom and subset slicing to generate slices from 8 to

64. With the aid of the Ensembled Volumetric ConvNet, the model

achieves an impressive accuracy of 93.01% for AD vs. NC vs. MCI.

Notably, the 3D-subject-based method, a pioneering approach,

yields the highest accuracy, 93.01%, surpassing the Patch-based

(89.55%) and Slice-based (89.37%) methods. Using T1-weighted

structural MRI images of the brain from the AlzhAlzheimer’sease

Neuroimaging Initiative database, the authors in Francis and

Pandian (2023) present an algorithm that integrates the last layers

of pre-trained models Xception, Inception V3 and MobileNet for

the AD and related cognitive states classification. The algorithm is

tested with a multi-class classification problem, and the accuracy

obtained is about 85%. It provides specific accuracies of 85%

for distinguishing Mild Cognitive Impairment convertible (MCI)

from Mild Cognitive Impairment non-convertible (MCInc), 94%

for classifying AD from cognitively normal (CN), and 92% for

differentiating MCIc from CN. The results demonstrate that the

proposed algorithm surpasses other state-of-the-art methods in

multi-class classification and in differentiating MCIc fromMCInc.

Adaobi et al. (2023) employed a fine hybrid of Xception and

Fractalnet-based deep learning techniques for the classification

of the phases of AD into five stages. MRI images were drawn

from the ADNI dataset to enhance the performance of the model,

and an attempt was made to utilize appropriate pre-processing

techniques together with segmentation procedures based on

Unet++ algorithms. Recall, precision, and accuracy are established

as the evaluation metrics of the performance of the proposed

approach. These results of the investigation indicate that the

proposed technique can achieve a level of accuracy of 98.30% recall,

99.72% precision and 99.6% accuracy in multi-class classification.

To summarize, the findings point to the fact that the presented

methods, when integrated with MRI images, can be useful in

the classification and prediction of neurodegenerative diseases,

such as AD. Venkatasubramanian et al. (2023) trained a deep

learning model for the segmentation and automatic categorization

of AD using structural MRI data. They adopted MTDL for the

joint segmentation of the hippocampus in the given images, a
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FIGURE 1

Proposed framework for Alzheimer’s disease detection.

comprehensive approach. The deer hunting optimization (DHO) is

then used to fine-tune the CNN model (capsule network) for the

categorization of disease, guaranteeing a strong and trustworthy

classification procedure. The typical method has been applied to

ADNI-standardized MRI datasets, and it is effective, as suggested

above. It is discovered that the proposed MTDL achieves 97.1%

accuracy and 93.5% of the Dice coefficient. In comparison, the

suggested MTDL model achieved a 96% accuracy for binary

classification and a 93% accuracy for multi-class classification.

These thorough evaluation results instill confidence in the validity

and reliability of the proposed technique.

3 Proposed framework

The suggested methodology for utilizing deep learning models

to identify AD is described in this section. In the classification

of AD, Figure 1 presents a holistic view of deep learning

models. The process starts with an experimental dataset of 7,756

images belonging to three categories. Data pre-processing covers

visualization of data, normalization and data split. Next, the

framework discusses model selection; SGCNN is compared to base

CNN, Lean CNN, and deep CNN, as well as several ablation

variants of SGCNN. The best-identified model is the sequential

model of convolution, which is obtained by using a Conv2D layer

of 16 filters followed by a series of layers of 32 and 64 filters,

respectively, of a maximum pooling layer, then a flattening layer

and two dense layers. Lastly, there is one final dense layer of three

neurons with softmax activation to spit out the predictions for the

three classes. The ablation study aims to determine the sensitivity

of the model to hyperparameters, including loss function, learning

rate, batch size, optimizer and activation function. In the last

section, the results and analysis are presented with reference to

the Receiver Operating Characteristic (ROC) curve, accuracy, loss,

precision, recall, F1 score, confusion matrix, and accuracy. This

elaborate work is meant to ensure the best deep learning model and

hyperparameters that enable accurate classification of Alzheimer’s

disorders.

3.1 Experimental dataset

This paper focuses on categorizing participants into three

groups: Alzheimer’s disease (AD), Parkinson’s disease (PD), and

CONTROL. As a reference point for comparison, CONTROL

stands for healthy people free of neurological conditions. Subjects

with AD, a neurological illness depicted by a decline in cognition

and memory, are included in the class. The participants in the

PD class have been diagnosed with Parkinson’s disease, which is

typified by stiffness and tremors in the muscles. Data from clinical

examinations, medical imaging, and other modalities that represent

the neurological and physiological aspects of these illnesses are

probably included in the dataset.

Two directories—training images and testing images—are

included in the collection. In this study, we make a new directory

to hold the combined photographs.

3.2 Data pre-processing

Preprocessing data is crucial for deep learning and data

assessment systems. The data needs to be cleaned and altered

to prepare it for additional analysis or training of deep learning

models. For data preprocessing, this study used data visualization
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FIGURE 2

Label distribution.

FIGURE 3

Sample MRI images.

and normalization, both of which enhanced the effectiveness of the

suggested approaches.

Figure 2 shows the proportion of each label in the pie chart and

a bar chart to demonstrate the distribution of labels. The bar chart

on the left displays the frequency of each label, showing that label

1 has the highest count, with ∼3,500 samples, followed by label

0, with around 3,000 samples, and label 2, which has the smallest

count of roughly 1,000 samples. On the right, the pie chart provides

a proportional breakdown of the dataset. It shows that 41.3% of

the data belongs to label 0, 47.1% to label 1, and the remaining

11.7% to label 2. Overall, label 1 dominates the dataset, while label

2 represents the least frequent category. Images from the dataset

batch are shown in Figure 3, which gives a visual representation of

the dataset.

An essential first step in getting data ready for deep learning

models is normalization. A normalized function defined in the

script accepts a picture x as input and its label y. The maximum

pixel value in the image is determined by xmax. Function. By

dividing the image by xmax, it normalizes it and guarantees that the

values of pixels are scaled within the range of 0 and 1. Enhancing

convergence rates and averting problems like gradient vanishing

aids in the stabilization of the training process. After using the map

method to apply this normalized function to the original dataset,

the normalized dataset is created and saved in the variable data,

ready to be fed into the model. Original Before normalization, the

data range in the batch was from 0.0 to 254.42578. This represents

the original pixel intensity values in the image data, where the

maximum pixel value was close to 255, typical for 8-bit grayscale

images. After applying the normalization function, the data range

was scaled between 0.0 and 1.0. This was done by dividing each

value of the pixel by the highest value in the batch, effectively

normalizing the image data to a common scale suitable for neural

network input. Data is separated into testing, validation, and

training sets following data normalization to make sure the model

is trained, validated, and tested on various subsets of the data.

This segment is essential for assessing the model’s functionality
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TABLE 2 Comparison of original and normalized data batches: data size

and range.

Batch Data size Data range
(min–max)

Original batch Varies, e.g., (batch_size, height,

width)

0.0–254.42578

Normalized batch Same as original 0.0–1.0

and generalization capacity. The training set is extracted using the

take technique, which takes a predetermined piece of the dataset—

usually the largest portion—while the testing and validation sets are

extracted using the skip approach, which removes these training

samples. Typically, 80% of these sets are used for training, 10%

are used for validation, and 10% are used for testing. Now, the

training size is 194, and the Validation size and test size are 24.

Table 2 provides the comparison of original and normalized data

sizes and ranges.

Algorithm 1 depicts the workflow that is followed in order to

pre-process the data. The first step is the input of the dataset,

which itself consists of training and testing images. It then

makes a new directory for merged images and visualizes the

dataset in order to see the distribution of labels and example

images. By dividing each image by its greatest value, it first

scales the pixel values of the image in the range of 0–1. Next,

the dataset is divided into the following ratios: 80:10:10 for

the training, validation, and test sets. Finally, the pre-processed

dataset is presented in a form that is suitable for training

a model.

3.3 Deep learning model

Deep learning models are sophisticated neural networks

made to recognize and extract information from large, complex

datasets automatically. These models are very effective for

tasks like picture classification, audio recognition, and natural

language processing because they are composed of numerous

layers, each of which processes data to record increasingly

abstract representations. This study conducted an ablation study

on many deep learning models, including the Base CNN

Model, LEAN CNN Model, Deep CNN Model, and SGCNN

Original Model.

3.3.1 SGCNN original model
An effective deep learning model for graph-structured data

is the Spectral Graph Convolutional Neural Network (SGCNN),

which can identify intricate patterns and connections in non-

Euclidean structures such as molecular graphs and social

networks. Unlike conventional CNNs, SGCNNs use spectral-

domain convolutional processes, which makes them useful

for tasks like graph and node classification. Using the best

features of both architectures, the hybrid deep learning model

combines a segmentation and a classification model. Utilizing

a U-Net architecture, the segmentation model processes images

1: Input: “Alzheimer dataset"

2: Output: Preprocessed dataset ready for model

training

3: Step 1: Load Dataset

4: Load the dataset: training images Dtrain_dir and

testing images Dtest_dir.

5: D = {Dtrain_dir,Dtest_dir}

6: Step 2: Create New Directory

7: Create a new directory Dmerged for storing merged

images.

8: Dmerged ← New Directory

9: Step 3: Visualize Dataset

10: Create figures to understand the distribution of

labels and visualize sample images.

11: V(D)→ Visualized images and label distribution

12: Step 4: Normalize Data

13: Define a normalization function to scale the

values of image pixels within the range of 0 and 1.

14: For each image x in the Dmerged:

15: xnormalized =
x

max(x)

16: Apply the normalization function to the Dmerged:

17: Dnormalized = N(Dmerged)

18: Step 5: Dnormalized

19: Assign training, validation, and testing sets to

the normalized data.

20: Split the dataset as follows:

21: Dtrain = 0.80× Dnormalized

22: Dval = 0.10× Dnormalized

23: Dtest = 0.10× Dnormalized

24: Step 6: Output

25: Return the pre-processed dataset:

26: Dpreprocessed = {Dtrain,Dval,Dtest}

Algorithm 1. Experimental dataset and pre-processing steps.

through convolutional layers activated by ReLU after first

utilizing an input layer for 256 × 256 RGB images. Max

pooling is then utilized to minimize the spatial dimensions of

the processed images. The last convolutional layer creates the

segmentation mask, while an upsampling layer recovers the

image size.

A CNN is used in combination with this classification model

to classify images such as PD, AD, and CONTROL. Several

convolutional and max pooling layers are added after the input

layer in order to extract features. The final softmax layer for

classification is reached after the feature maps have been flattened

and dense layers with ReLU activation have captured complex

patterns. The hybrid model incorporates the classification model

with the segmentation output of the U-Net network. With the

use of precise spatial data, this method improves classification

accuracy while enabling the model to execute segmentation and

classification tasks. Overall performance in identifying the input

images is improved by the combined model’s excellent integration

of segmentation characteristics. Figure 4 visualizes the architecture

of the original SGCNNmodel.
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FIGURE 4

SGCNN model architecture.

3.3.2 Ablation of SGCNN model 1
An ablation study of the SGCNN model is the second

model, with the primary goal of focusing only on classification

problems and streamlining the architecture by eliminating the

segmentation component. This model simplifies the network

into a more conventional CNN by removing the segmentation

layers while keeping a topology resembling that of the original

SGCNN. It starts with several convolutional layers and moves

on to pooling layers and dense layers for classification. An

input layer for 256 × 256 RGB images is the first layer

in the design. Three convolutional layers with progressively

larger filter sizes (16, 32, and 64) come next. To lower the

spatial dimensions, a max-pooling layer is paired with each

convolutional layer.

The elimination of the segmentation network, which was a

feature of the SGCNN, is the most notable modification to this

model. Because of the network’s amplification brought forth by

this ablation, the performance of the classification component

can be examined more closely. The model is simpler now

that the segmentation layers have been eliminated, and it only

concentrates on classifying the input images into three groups

(e.g., CONTROL, AD, and PD). Like the original model, the

model is compiled using the Adam optimizer with category cross-

entropy loss. It is trained with a batch size of 32 across 15

epochs. Figure 5 visualizes the architecture of the ablation of the

SGCNNmodel 1.

3.3.3 Ablation of SGCNN model 2
The architecture of this third model, which is an additional

ablation study of the SGCNN model, is largely unchanged from

the earlier iterations. However, there are a few significant changes.

The model starts with a modified segmentation model that has

an upsampling layer to boost spatial dimensions and a 32 filters-

convolutional layer. In contrast to the original segmentationmodel,

this variant generates the segmentation output in the last layer

using a sigmoid activation function.

In contrast to the earlier models, the classification model

component adds a 64-filter convolutional layer and removes

the batch normalization and dropout layers from the dense

layer. With these modifications, the classification model becomes

more simplified and produces the classification output with

softmax activation by connecting the flattened feature maps

straight to the final dense layer. The design is put together

utilizing the Adam optimizer and category cross-entropy loss,

the same as the earlier models. The metrics used to evaluate

the model’s performance are test accuracy, validation, and

training. Figure 6 visualizes the architecture of the ablation of the

SGCNNmodel 2.

3.3.4 Base CNN model
The purpose of this base convolutional neural network (CNN)

model is to categorize images. The design is simple, with layers
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FIGURE 5

Ablation of SGCNN model 1 architecture.

FIGURE 6

Ablation of SGCNN model 2 architecture.

processing and classifying input photos in a stack order. The

model begins with a convolutional layer that applies 16 3 × 3

filters to the 256 × 256 input images, each of which has three

RGB color channels. This layer introduces non-linearity using the

ReLU activation function. Then, by normalizing the convolutional

layer’s output, batch normalization stabilizes the training process.

Subsequently, the model comprises a max-pooling layer that

reduces the computational complexity and concentrates on the

most prominent characteristics by downsampling the feature maps’

spatial dimensions by a factor of two.

The model then incorporates a dropout layer, which randomly

removes 25% of the neurons during training in order to avoid

overfitting. In order to prepare it for the thick layers that come

next, the output is then flattened into a 1D feature vector. Using

the ReLU activation function once more, the dense layers begin

with a completely connected layer comprising 32 neurons. Batch

normalization and an additional dropout layer—which removes

50% of the neurons—come after this layer to further lessen the

possibility of overfitting. The classification output is produced by

an output layer in the model’s stages, which employs the softmax
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FIGURE 7

Base CNN model architecture.

FIGURE 8

Lean CNN model architecture.

activation function to generate a probability distribution over three

classes. The model is constructed using the standard techniques

for classification tasks: the Adam optimizer and categorical cross-

entropy loss. Throughout the training, the model’s accuracy is

monitored to make sure it picks up the picture classification skills

correctly. Figure 7 visualizes the Base CNN model’s architecture.

3.3.5 LEAN CNN model
The Lean CNN model is based on the Base CNN model, which

incorporates adjustments to minimize overfitting. It introduces

particular adjustments to dropout rates while maintaining a similar

design. This model is composed of a stack of successive layers,

starting with a convolutional layer that processes 256 × 256

× 3 (RGB) input pictures using 16 filters of size 3 × 3. The

convolutional layer also uses ReLU activation. Next, the training

is stabilized using batch normalization and the feature map

dimensions are minimized using max pooling. Lower dropout rates

are the primary changemade to the Lean CNNmodel. In particular,

compared to 0.25 and 0.5 in the Base CNN model, the dropout

rate is reduced to 0.1 in the first dropout layer and 0.25 in the

second dropout layer. By lowering the chance of overfitting, this

modification is intended to lessen the degree of regularization,

which could enhance the model’s performance. Figure 8 visualizes

the architecture of the Lean CNNmodel.

The feature maps are processed via dense layers after being

flattened into a 1D vector. After the 32 units of dense layer

with ReLU activation, there is a 0.25 dropout rate and batch

normalization. The model’s final layer uses softmax activation to

create a dense output layer with three neurons that produce the

classification probabilities. Overall, the lower dropout rates indicate

a deliberate change meant to improve model performance by

reducing overfitting, even if the Lean CNN retains the Base CNN’s

fundamental architecture.
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Algorithm 2 explains the design of some SGCNN and CNN

models for image classification, which are as follows. The algorithm

initializes a sequential model and defines five different models,

Including SGCNN Model 1, SGCNN Model 2, SGCNN Model

3, Base CNN Model, Lean CNN Model, and Deep CNN Model.

Each model has six layers of convolution, batch normalization, max

pooling, dropout, density layers, and one output layer that uses

softmax in the form of probabilistic distribution. One model has

fewer filters and smaller kernel sizes and uses a dropout rate of

0.2. In comparison, the second model has more filters, larger kernel

sizes and a dropout rate of 0.3. The algorithm also defines the base

layers applicable to all models such as a flattening layer, dense layers

as well as the output layers. The model is then trained using the

training data and verified using the validation set. Finally, it is stated

that the prior model was assembled using the Adam optimizer and

categorical crossentropy loss function.

3.3.6 Deep CNN model
The Base and Lean CNN models are built upon the Deep

CNNmodel, which increases the architecture’s complexity by using

more layers and units. More convolutional layers in this model

improve its capacity to extract fine-grained characteristics from the

input images, which makes it more appropriate for challenging

classification tasks. Two extra convolutional layers, each with 32

filters, are added to the original 16-filter convolutional layer in

the Deep CNN model. These additional layers let the model

recognize more complex patterns and enable it to extract deeper

characteristics from the incoming data. Each convolutional layer is

followed, like in the earliermodels, by batch normalization andmax

pooling, which downsamples the feature maps.

Additionally, the Base and Lean CNN models’ units in the

dense layer are increased to 64 units in the Deep CNN model.

With more neurons, the model can process the bigger feature set

generated by the further convolutional layers. With a 25% dropout

after the convolutional layers and a 50% dropout after the dense

layer to avoid overfitting, the dropout rates are still in line with

the earlier models. Overall, the extra convolutional layers and the

larger dense layer distinguish the Deep CNN model from the Base

and Lean CNN models. By extracting more precise features from

the data, these improvements should increase the model’s accuracy

in classifying photos. Figure 9 visualizes the Deep CNN model’s

architecture.

3.4 Ablation study

In this study, ablation analysis was conducted to analyze

the effect of structural modifications on the performance of the

SGCNN architecture for Alzheimer’s image classification. The

SGCNN Original Model served as the baseline, achieving a

classification accuracy of 93%. Two variants of the SGCNN model

were developed to assess the effects of different structural changes:

Ablation of SGCNNModel 1 and Ablation of SGCNNModel 2. The

first variant, Ablation of SGCNN Model 1, incorporated specific

architectural adjustments that led to a notable improvement in

classification accuracy, reaching 95%. This significant enhancement

1: Initialize Smodel ← Sequential Model

2: SGCNN Model 1:

3: Smodel ← Sequential Model {Initialize a Sequential

model}

4: A1 ← Conv2D(F = 8,K = (3× 3),activation =

ReLU,input_shape = (256, 256, 3)) {First convolutional

layer with 8 filters}

5: A2 ← BatchNormalization {Apply batch normalization}

6: A3 ← MaxPooling2D(P = (2× 2)) {Max pooling layer to

reduce spatial dimensions}

7: A4 ← Dropout(D = 0.2) {Dropout layer to prevent

overfitting}

8: SGCNN Model 2 (Second Ablation Study):

9: A5 ← Conv2D(F = 8,K = (3× 3),activation = ReLU)

{Convolutional layer with 8 filters}

10: A6 ← Conv2D(F = 8,K = (3× 3),activation = ReLU)

{Additional convolutional layer}

11: A7 ← BatchNormalization {Batch normalization for

stability}

12: A8 ← MaxPooling2D(P = (2× 2)) {Pooling layer for

down-sampling}

13: Dadjust ← D (adjustable rate) {Adjustable dropout

rate}

14: SGCNN Model 3 (Third Ablation Study):

15: A9 ← Conv2D(F = 8,K = (3× 3),activation = ReLU)

{Convolutional layer for feature extraction}

16: A10 ← BatchNormalization {Batch normalization for

improved convergence}

17: A11 ← MaxPooling2D(P = (2× 2)) {Max pooling to reduce

dimensionality}

18: Simplified architecture focused on classification

to reduce overfitting {Further architecture

simplification}

19: Base CNN Model:

20: A12 ← Conv2D(F = 16,K = (3× 3),activation =

ReLU,input_shape = (256, 256, 3)) {Base model with 16

filters}

21: A13 ← BatchNormalization {Normalize the output of

the previous layer}

22: A14 ← MaxPooling2D(P = (2× 2)) {Pooling layer for

down-sampling}

23: A15 ← Dropout(D = 0.25) {Dropout to reduce

overfitting}

24: Lean CNN Model (Variant of Base CNN):

25: D1 ← Dropout(D = 0.1) {First Dropout layer with

reduced rate}

26: D2 ← Dropout(D = 0.25) {Second Dropout layer with

adjustable rate}

27: Deep CNN Model (Extension of Base CNN):

28: A16 ← Conv2D(F = 32,K = (3× 3),activation = ReLU)

{Extended model with more filters}

29: A17 ← BatchNormalization {Normalize to stabilize

training}

30: A18 ← MaxPooling2D(P = (2× 2)) {Pooling for feature

reduction}

31: U1 ← 64 {Dense layer units increased to 64}
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32: Common Layers for All Models:

33: Aflatten ← Flatten

34: Ucommon ← Dense(U = 32 or 64)

35: A19 ← BatchNormalization

36: Dcommon ← Dropout (model-specific rates)

37: Aoutput ← Dense(U = 3,activation = Softmax)

Algorithm 2. SGCNN and CNNmodel variants.

demonstrates the effectiveness of thesemodifications in refining the

model’s capacity to distinguish between AD stages.

Conversely, the Ablation of SGCNN Model 2 did not exhibit

an improvement over the baseline, maintaining the same 93%

accuracy as the original model. This finding emphasizes how

crucial it is to choose suitable structural changes to achieve

performance gains. The ablation study underscores the potential

of targeted architectural adjustments in optimizing model accuracy

for medical image classification tasks. By isolating and analyzing

these modifications, the study provides valuable insights into

effective strategies for enhancing diagnostic tools for AD, offering

promising avenues for further investigations and advancements in

this critical field of medicine. Among the models, the Ablation

of SGCNN Model 1 performed the best, achieving the highest

accuracy of 95%.

4 Experimental result and discussion

This section provides the evaluation measurements used in this

study and the experimental results of all the models.

4.1 Evaluation measurements

The effectiveness of the suggested methodology is calculated

in this study utilizing a variety of evaluation measures, including

F1-score, recall, accuracy, and precision. These crucial assessment

metrics offer comprehensive details regarding how the suggested

technique should be interpreted. The first metric that is frequently

seen as the foundation of performance evaluation is accuracy.

By considering the total number of instances, the percentage of

correctly detected outcomes is calculated using the accuracy metric,

which is defined as the ratio of correctly predicted positive and

negative cases (true positives and true negatives) to the total

number of instances, including false positives and false negatives

as shown in Equation 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Precision is important in situations where the cost of false

positives is high, as it measures the model’s ability to avoid

incorrectly predicting negative instances as positive. However,

precision does not account for how many actual positive instances

the model missed. Equation 2 explains the precision. Recall is

especially important in scenarios where missing positive instances

(false negatives) has serious consequences, such as in medical

diagnoses. A high recall indicates that the model captures most of

the positive instances, but it may come at the expense of higher false

positives. Equation 3 defines the precision. To balance the trade-

offs between precision and recall, the F1-score is used. The F1-score

is the harmonic mean of precision and recall, ensuring that both are

taken into account.

Recall =
TP

TP + FN
(3)

F1− score = 2×
Precision+ Recall

Precision+ Recall
(4)

The F1-score is particularly useful when the dataset is

imbalanced and when both false positives and false negatives are

important to consider. It provides a single metric that captures a

balance between precision and recall, allowing for more informed

model performance evaluations. Equation 4 demonstrated its

computation. A classification model’s performance can be

categorized and assessed using a confusion matrix, which provides

a list of counts for true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). It offers details about

the model’s capacity for learning and differentiating between

classes. While genuine positives and true negatives demonstrate

appropriate classifications, false positives and false negatives

highlight instances in which the model misclassifies. Identifying

specific types of errors the model makes and guiding modifications

to enhance its performance are made possible in large part by this

matrix. A binary classification model’s performance at different

thresholds is represented graphically by a curve known as a

Receiver Operating Characteristic (ROC). True positive rate (TPR)

against false positive rate (FPR) plotting displays the proportion of

correctly labeled positive instances on the y-axis and the proportion

of falsely identified positive cases on the x-axis. Curves further

from the diagonal line indicate better model performance, which

is the representation of plotting random guesses. The left-hand

corner of the plot denotes improved performance and accuracy.

Increases in the model’s performance are indicated by higher values

of the area under the curve (AUC).

4.2 Result and findings

Table 3 shows the classification report of several pre-trained

CNNs, each one evaluated with a different configuration on a

dataset. In the table, values in terms of precision, recall, F1-score,

support for each class and the weighted average over all classes

(Wei. Avg) are provided. The SGCNNOriginalModel shows strong

performance, particularly in Class 1, with a precision value of 0.99

and a recall value of 0.99, resulting in an F1-score value of 0.99

with support of 355 instances. Class 2 exhibits a slightly lower

performance, with a precision value of 0.95, a recall value of 0.91,

and an F1-score value of 0.93, supported by 343 instances. The
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FIGURE 9

Deep CNN model architecture.

model struggles more with Class 3, achieving a precision value

of 0.68, a recall value of 0.83, and an F1-score value of 0.75,

with a support of 70 instances. The precision, recall, and F1-score

weighted averages are 0.95, 0.94, and 0.94, respectively.

The SGCNN Model 1 performs excellently in Class 1, with

a precision value of 0.99, a recall value of 1.00, and an F1-score

value of 0.99, supported by 346 instances. In Class 2, it achieves

a precision value of 0.96, a recall value of 0.93, and an F1-score

value of 0.94, supported by 342 instances. Class 3 is handled well,

with a precision value of 0.77, a recall value of 0.85, and an F1-

score value of 0.81, with support of 80 instances. This model has

a weighted average precision, recall, and F1-score of 0.95 for all

measures. The SGCNNModel 2 shows robust performance in Class

1, with a precision value of 0.95, a recall value of 0.99, and an F1-

score value of 0.97, supported by 343 instances. However, in Class 2,

there is a slight drop with a precision value of 0.95, a recall value of

0.88, and an F1-score value of 0.91, with a support of 347 instances.

Class 3 is reasonably well handled, with a precision value of 0.73,

a recall value of 0.85, and an F1-score value of 0.78, with support

of 78 instances. This model has a weighted average precision,

recall, and F1-score of 0.93 for all measures. The Base CNN Model

demonstrates excellent performance in Class 1, with a precision

value of 0.99, a recall value of 0.99, and an F1-score value of 0.99,

supported by 346 instances. Class 2 exhibits good performance with

a precision value of 0.94, a recall value of 0.89, and an F1-score

value of 0.91, supported by 341 instances. The model performs less

effectively in Class 3, with a precision value of 0.67, a recall value

of 0.81, and an F1-score value of 0.73, supported by 81 instances.

This model has a weighted average precision, recall, and F1-score

of 0.93 for all measures. The Lean CNN Model maintains strong

performance in Class 1, with a precision value of 0.98, a recall

value of 1.00, and an F1-score value of 0.99, supported by 361

instances. Class 2 shows a good performance, with a precision value

of 0.96, a recall value of 0.90, and an F1-score value of 0.93, with

support of 335 instances. The model achieves a precision value of

0.70, a recall value of 0.81, and an F1-score value of 0.75 in Class

3, supported by 72 instances. This model has a weighted average

precision, recall, and F1-score of 0.94 for all measures. The Deep

CNN Model also shows strong results, particularly in Class 1, with

a precision value of 0.99, a recall value of 0.99, and an F1-score

value of 0.99, supported by 336 instances. Class 2 maintains good

results, with a precision value of 0.94, a recall value of 0.93, and

an F1-score value of 0.93, supported by 351 instances. For Class

3, the model achieves a precision value of 0.72, a recall value of

0.78, and an F1-score value of 0.75, supported by 81 instances. The

weighted average value of precision, recall, and f1-score is 0.94.

Overall, the various CNNmodels demonstrate strong performance

in the frequently observed classes, with some variations in the less

frequent Class 3, highlighting different aspects of model robustness

and generalization capabilities.

4.2.1 Result of SGCNN original model
Figure 10 represented the graphical representation of the

SGCNN Orginal Model. Figure 10A presents the model loss and

accuracy graph of an SGCNN Original Model. The training

accuracy starts from 0.50% value at 0th epoch, and it increases up

to 0.68% at 1st epoch. Then, it increases upward, and the training

accuracy stops at 1.0% at 14th epoch. The validation accuracy starts

from 0.67% value at 0th epoch. After some fluctuation of increases

and decreases, testing accuracy attained is 0.93% at 14th epoch. The

training loss starts from a 0.8 value at 0th epoch, and it decreases

downward up to a 0.0 value at 14th epoch. The validation loss starts

from a 0.6 value at 0th epoch and decreases up to 0.2 at 14th epoch

after going through some fluctuation of increases and decreases.

The confusion matrix in Figure 10B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while

the non-diagonal elements on the matrix consist of the samples

that are misclassified. For class 1, the model correctly classified

99.14% instances and 0.86% of class 1 instances misclassified as

class 2. For class 2, the model accurately classified 91.59% instances

and 1.16% instances of class 2 incorrectly categorized as class 1

and 7.25% instances of class 2 incorrectly categorized as class 3.

For class 3, the model correctly classified 78.08% instances and

21.92% of class 3 instances misclassified as class 2. The performance

of the model for each class is shown by the ROC graph in

Figure 10C. For different threshold settings, the graph plots the

real positive rate against the false positive rate. AUC values for

all three classes are very high, as can be seen from the ROC

curve, indicating that the model is doing exceptionally well. Class

0 has an AUC of 1.00, class 1 of 0.98, and class 2 of 0.98. For
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TABLE 3 Classification reports of experimented models.

Labels Precision Recall F1-score Support

SGCNN original Class 1 0.99 0.99 0.99 355

Class 2 0.95 0.91 0.93 343

Class 3 0.68 0.83 0.75 70

Wei. Avg 0.95 0.94 0.94 768

SGCNNmodel 1 Class 1 0.99 1.00 0.99 346

Class 2 0.96 0.93 0.94 342

Class 3 0.77 0.85 0.81 80

Wei. Avg 0.95 0.95 0.95 768

SGCNNmodel 2 Class 1 0.95 0.99 0.97 343

Class 2 0.95 0.88 0.91 347

Class 3 0.73 0.85 0.78 78

Wei. Avg 0.93 0.93 0.93 768

Base CNN model Class 1 0.99 0.99 0.99 346

Class 2 0.94 0.89 0.91 341

Class 3 0.67 0.81 0.73 81

Wei. Avg 0.93 0.93 0.93 768

Lean CNNmodel Class 1 0.98 1.00 0.99 361

Class 2 0.96 0.90 0.93 335

Class 3 0.70 0.81 0.75 72

Wei. Avg 0.94 0.94 0.94 768

Deep CNNmodel Class 1 0.99 0.99 0.99 336

Class 2 0.94 0.93 0.93 351

Class 3 0.72 0.78 0.75 81

Wei. Avg 0.94 0.94 0.94 768

all three classes, this demonstrates the model’s extremely high

accuracy level. Classes 0, 1, and 3 have cyan, orange, and blue

ROC curves, respectively. The model has a low false positive rate

and a high true positive rate, as indicated by the fact that all of

its ROC curves are located close to the upper left corner. This

attests to the model’s high classification accuracy among the three

classes.

4.2.2 Result of SGCNN model 1
Figure 11 represented the graphical representation of SGCNN

Model 1. Figure 11A presents the model loss and accuracy graph

of an SGCNN Model 1. The training accuracy starts from 0.65%

value at 0th epoch, and it increases up to 0.90% at 1st epoch. Then,

it increases upward, and the training accuracy stops at 1.00% at

14th epoch. The validation accuracy starts from 0.77% value at 0th

epoch. After some fluctuation of increases and decreases, testing

accuracy attained is 0.95% at 14th epoch. The training loss starts

from a 0.8 value at 0th epoch, and it decreases downward up to

a 0.0 value at 14th epoch. The validation loss starts from a 0.5

value at 0th epoch and decreases up to 0.3 value at 14th epoch

after going through some fluctuation of increases and decreases.

The confusion matrix in Figure 11B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while

the non-diagonal elements on the matrix consist of the samples

that are misclassified. For class 1, the model correctly classified

99.72% instances and 0.28% of class 1 instances misclassified as

class 2. For class 2, the model accurately classified 91.67% instances

and 1.16% instances of class 2 incorrectly categorized as class

1 and 7.25% instances of class 2 incorrectly categorized as class

3. For class 3, the model correctly classified 78.08% instances

and 21.92% of class 3 instances misclassified as class 2. The

performance of the model for each class is shown by the ROC

graph in Figure 11C. For different threshold settings, the graph

plots the real positive rate against the false positive rate. AUC

values for all three classes are very high, as can be seen from

the ROC curve, indicating that the model is doing exceptionally

well. Class 0 has an AUC of 1.00, class 1 of 0.98, and class 2 of

0.98. For all three classes, this demonstrates the model’s extremely

high accuracy level. Classes 0, 1, and 3 have cyan, orange, and

blue ROC curves, respectively. The model has a low false positive

rate and a high true positive rate, as indicated by the fact that

all of its ROC curves are located close to the upper left corner.

This attests to the model’s high classification accuracy among the

three classes.
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FIGURE 10

Graphical representation of SGCNN Orginal model’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

4.2.3 Result of SGCNN model 2
Figure 12 represented the graphical representation of the

SGCNN Orginal model. Figure 12A presents the model’s loss and

accuracy graph of an SGCNN Model 2. The training accuracy

starts from 0.5% value at 0th epoch. Then, it increases upward,

and the training accuracy stops at 1.00% at 14th epoch. The

validation accuracy starts from 0.67% value at 0th epoch. After

some fluctuation of increases and decreases, testing accuracy

attained is 0.95% at 14th epoch. The training loss starts from a

0.8 value at 0th epoch, and it decreases downward up to a 0.0

value at 14th epoch. The validation loss starts from a 0.68 value

at 0th epoch, and it decreases up to a 0.29 value at 14th epoch.

The confusion matrix in Figure 12B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while

the non-diagonal elements on thematrix consist of the samples that

are misclassified. For class 1, the model correctly classified 99.16%

instances and 0.84% of class 1 instances misclassified as class 2. For

class 2, the model accurately classified 86.63% instances and 4.79%

instances of class 2 incorrectly categorized as class 1 and 8.38%

instances of class 2 incorrectly categorized as class 3. For class 3, the

model correctly classified 85.33% instances and 14.67% of class 3

instances misclassified as class 2. The performance of the model for

each class is shown by the ROC graph in Figure 12C. For different

threshold settings, the graph plots the real positive rate against the

false positive rate. AUC values for all three classes are very high, as

can be seen from the ROC curve, indicating that the model is doing

exceptionally well. Class 0 has an AUC of 1.00, class 1 of 0.98, and

class 2 of 0.98. For all three classes, this demonstrates the model’s

extremely high accuracy level. Classes 0, 1, and 3 have cyan, orange,

and blue ROC curves, respectively. The model has a low false

positive rate and a high true positive rate, as indicated by the fact
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FIGURE 11

Graphical representation of SGCNN model 1’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

that all of its ROC curves are located close to the upper left corner.

This attests to the model’s high classification accuracy among the

three classes.

4.2.4 Result of base CNN model
Figure 13 represented the graphical representation of the Base

CNN Model. Figure 13A presents the model accuracy and loss

of a Base CNN Model. The training accuracy starts from 0.62%

value at 0th epoch. Then, it increases upward, and the training

accuracy stops at 1.00% at 14th epoch. The validation accuracy

starts from 0.53% value at 0th epoch, and it increases at 0.75%

at 2nd epoch. After some fluctuation of increases and decreases,

validation accuracy attained is 0.79% at 14th epoch. The training

loss starts from a 0.9 value at 0th epoch, and it decreases downward

up to a 0.0 value at 14th epoch. The validation loss starts from a 0.9

value at 0th epoch. It decreases up to 0.6 value at 2nd, and then it

increases up to 1.1 value at 3rd epoch, and then it decreases up to 0.4

value at 4th then after going through some fluctuation of increases

and decreases the validation loss stops at 0.8 value at 14th epoch.

The confusion matrix in Figure 13B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while

the non-diagonal elements on the matrix consist of the samples

that are misclassified. For class 1, the model correctly classified

98.02% instances and 1.98% of class 1 instances misclassified as

class 2. For class 2, the model accurately classified 89.16% instances

and 1.20% instances of class 2 incorrectly categorized as class

1 and 9.64% instances of class 2 incorrectly categorized as class

3. For class 3, the model correctly classified 84.15% instances

and 15.85% of class 3 instances misclassified as class 2. The

performance of the model for each class is shown by the ROC
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FIGURE 12

Graphical representation of SGCNN model 2’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

graph in Figure 13C. For different threshold settings, the graph

plots the real positive rate against the false positive rate. AUC

values for all three classes are very high, as can be seen from

the ROC curve, indicating that the model is doing exceptionally

well. Class 0 has an AUC of 1.00, class 1 of 0.97, and class 2 of

0.98. For all three classes, this demonstrates the model’s extremely

high accuracy level. Classes 0, 1, and 3 have cyan, orange, and

blue ROC curves, respectively. The model has a low false positive

rate and a high true positive rate, as indicated by the fact that

all of its ROC curves are located close to the upper left corner.

This attests to the model’s high classification accuracy among the

three classes.

4.2.5 Result of lean CNN model
Figure 14 represented the graphical representation of the Lean

CNN Model. Figure 14A presents the model loss and accuracy of a

Lean CNN Model. The training accuracy starts from 0.62% value

at 0th epoch. Then, it increases upward, and the training accuracy

stops at 1.00% at 14th epoch. The validation accuracy starts from

0.2% value at 0th epoch, and it increases at 0.75% at 1st epoch. After

some fluctuation of increases and decreases, validation accuracy

attained is 0.9% at 14th epoch. The training loss starts from a 0.9

value at 0th epoch, and it decreases downward up to a 0.0 value at

14th epoch. The validation loss starts from a 1.5 value at 0th epoch.

It decreases up to 0.7 value at 1st, and then it increases up to 2.4

value at 7th epoch, and then it decreases up to 0.4 value at 14th

epoch. The confusion matrix in Figure 14B gives the percentage of

each class that is correctly and incorrectly classified. The elements

on the diagonal consist of the classes that have been well-classified,

while the non-diagonal elements on the matrix consist of the

samples that are misclassified. For class 1, the model correctly

classified 100.00% instances, and 0.00% instances of class 1 were

misclassified. For class 2, the model correctly categorized 90.79%
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FIGURE 13

Graphical representation of base CNN model’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

instances and 2.31% instances of class 2 misclassified as class 1 and

7.51% instances of class 2 misclassified as class 3. For class 3, the

model correctly classified 81.16% instances and 18.84% of class 3

instances misclassified as class 2. Overall, the Lean CNN Model

maintains strong performance in Class 1. The performance of the

model for each class is shown by the ROC graph in Figure 14C. For

different threshold settings, the graph plots the real positive rate

against the false positive rate. AUC values for all three classes are

very high, as can be seen from the ROC curve, indicating that the

model is doing exceptionally well. Class 0 has an AUC of 1.00, class

1 of 0.96, and class 2 of 0.95. For all three classes, this demonstrates

the model’s extremely high accuracy level. Classes 0, 1, and 3 have

cyan, orange, and blue ROC curves, respectively. The model has a

low false positive rate and a high true positive rate, as indicated by

the fact that all of its ROC curves are located close to the upper

left corner. This attests to the model’s high classification accuracy

among the three classes.

4.2.6 Result of deep CNN model
Figure 15 represented the graphical representation of the Deep

CNN Model. Figure 15A presents the model accuracy and loss

of a Deep CNN Model. The training accuracy starts from 0.7%

value at 0th epoch. Then, it increases upward, and the training

accuracy stops at 0.9% at 14th epoch. The validation accuracy starts

from 0.3% value at 0th epoch, and it increases at 0.83% at 2nd

epoch. After some fluctuation of increases and decreases, validation

accuracy attained is 0.9% at 14th epoch. The training loss starts

from a 0.9 value at 0th epoch, and it decreases downward up to a

0.0 value at 14th epoch. The validation loss starts from a 2.6 value

at 0th epoch. It increases up to 4.0 value at 1st, and then it decreases

up to 0.5 value at 2nd epoch, and then some fluctuation of increases

and decreases the validation loss stops at 0.4 value at 14th epoch.

The confusion matrix in Figure 15B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while
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FIGURE 14

Graphical representation of lean CNN model’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

the non-diagonal elements on the matrix consist of the samples

that are misclassified. For class 1, the model correctly classified

99.14% instances, and 0.51% instances of class 1 were misclassified

as class 2. For class 2, themodel correctly classified 92.75% instances

and 0.29% instances of class 2 misclassified as class 1 and 6.96%

instances of class 2 misclassified as class 3. For class 3, the model

correctly classified 79.27% instances and 20.73% of class 3 instances

misclassified as class 2. Overall, the deep CNN Model maintains

strong performance in Class 1. The performance of the model for

each class is shown by the ROC graph in Figure 15C. For different

threshold settings, the graph plots the real positive rate against the

false positive rate. AUC values for all three classes are very high,

as can be seen from the ROC curve, indicating that the model is

doing exceptionally well. Class 0 has an AUC of 1.00, class 1 of

0.98, and class 2 of 0.98. For all three classes, this demonstrates

the model’s extremely high accuracy level. Classes 0, 1, and 3 have

cyan, orange, and blue ROC curves, respectively. The model has a

low false positive rate and a high true positive rate, as indicated by

the fact that all of its ROC curves are located close to the upper

left corner. This attests to the model’s high classification accuracy

among the three classes.

4.3 Discussion and comparison

Table 4 presents a comparative analysis of various models

employed for diagnosing and classifying brain-related disorders.

The comparison includes studies from different years, showcasing

the models used, the datasets involved, and the results achieved.

One of the studies from 2022 (Shahwar et al., 2022) employed

a Hybrid Classical–Quantum Transfer Learning approach
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FIGURE 15

Graphical representation of deep CNN model’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

that combined ResNet34 with a Quantum Variational Circuit

(QVC). This hybrid model was applied to a dataset focusing

on dementia associated with AD. By leveraging the strengths

of both classical and quantum computing, the model achieved

an accuracy of 92%, demonstrating significant potential for

enhancing the machine learning model’s performance in

dementia detection. In 2023, another study (Nancy Noella

and Priyadarshini, 2023) explored multiple classifiers of machine

learning, including Multi-class Support Vector Machine (SVM),

Naive Bayes, ID3 and Bagged Ensemble. The dataset consisted

of PET images representing AD, Parkinson’s Disease, and

healthy brains. The Bagged Ensemble classifier fared better than

the others, obtaining a 90.3% accuracy rate, according to the

study. This research demonstrates the precision with which

complicated brain disorders can be classified using ensemble

learning techniques.

The study (de Oliveira et al., 2024) utilized a logistic

regression model with L1 and L2 regularization to diagnose

AD. The performance of the model was evaluated using several

measures, with the Area Under the Curve (AUC) reaching

94.75%, indicating a strong ability to generalize to unseen

neuroimages. The proposed SGCNNmodel is specifically designed

to classify AD images, Parkinson’s disease images, and control

subjects. This classifier attained an accuracy of 95%, surpassing

the performance of previous studies and demonstrating its

effectiveness in accurately diagnosing these conditions. The

proposed model seems to be effective for AD detection from

MRI images because they excel at capturing complex brain

connectivity patterns, which are disrupted in AD. MRI data

reflects the brain’s structural and functional connectivity, which

can be represented as a graph, where nodes correspond to

brain regions, and edges represent connections between them.
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TABLE 4 Comparison of proposed model’s result with existing techniques.

References Year Models Dataset Results

Shahwar et al. (2022) 2022 Hybrid classical–quantum transfer

learning with ResNet34 and

Quantum variational circuit (QVC)

Dementia of AD Accuracy 92%

Nancy Noella and

Priyadarshini (2023)

2023 Bagged ensemble, ID3, Naive

Bayes, multiclass support vector

machine

Image dataset (AD, PD,

healthy brain)

Accuracy 90.3%

de Oliveira et al. (2024) 2024 Logistic Regression with L1 and L2

regularization

Images dataset (AD, CN) AUC 94.75%

Proposed model 2024 SGCNNmodel 1 Image dataset (AD, PD,

and CONTROL)

Accuracy 95%

Traditional CNNs, designed for grid-like data such as images,

struggle with such irregular structures. The proposed model,

however, operates on graphs by applying spectral convolutions

that capture intricate relationships in the brain’s network, enabling

them to identify subtle alterations in brain connectivity that

are characteristic of Alzheimer’s, improving the model’s ability

to detect the disease accurately. The outcomes demonstrate the

elevated precision of the suggested approach and its potential

for practical use in the prompt identification and diagnosis of

neurodegenerative illnesses.

5 Conclusion

The purpose of this study was to increase the diagnostic

precision of AD by proposing and evaluating many CNN

models for picture categorization. We were able to provide

a strong basis for model training and evaluation by carefully

splitting our experimental dataset and using strict pre-processing.

Further ablation investigations showed that structural alterations

could improve performance, as illustrated by the Ablation of

SGCNN Model 1, which achieved the maximum accuracy of

95%. The SGCNN Original Model served as a solid baseline

with a 93% accuracy. Furthermore, with accuracies ranging from

93% to 94%, the BASE CNN, LEAN CNN, and Deep CNN

models showed strong performance. Our results indicate the

prospect of the ablation of SGCNN Model 1 as a very powerful

tool for classifying AD images, underscoring its potential to

support early diagnosis and therapy of AD. Additionally, the

constant performance across different models suggests that CNN-

based methods can be quite dependable for tasks involving

the classification of medical images. To further advance the

field of diagnosing neurodegenerative diseases, future studies

could focus on enhancing these models by incorporating more

diverse and larger datasets, integrating multi-modal data such

as genetic or biochemical markers, and exploring real-time

applications for early detection and continuous monitoring.

Additionally, investigating the use of advanced techniques like

transfer learning, ensemble methods, and model interpretability

could help improve diagnostic accuracy and reliability in

clinical settings.
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