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Introduction: Mental health monitoring utilizing EEG analysis has garnered

notable interest due to the non-invasive characteristics and rich temporal

information encoded in EEG signals, which are indicative of cognitive and

emotional conditions. Conventional methods for EEG-based mental health

evaluation often depend on manually crafted features or basic machine learning

approaches, like support vector classifiers or superficial neural networks. Despite

the potential of these approaches, they often fall short in capturing the intricate

spatiotemporal relationships within EEG data, leading to lower classification

accuracy and poor adaptability across various populations and mental health

scenarios.

Methods: To overcome these limitations, we introduce the EEG Mind-

Transformer, an innovative deep learning architecture composed of a Dynamic

Temporal Graph Attention Mechanism (DT-GAM), a Hierarchical Graph

Representation and Analysis (HGRA) module, and a Spatial-Temporal Fusion

Module (STFM). The DT-GAM is designed to dynamically extract temporal

dependencies within EEG data, while the HGRA models the brain’s hierarchical

structure to capture both localized and global interactions among di�erent

brain regions. The STFM synthesizes spatial and temporal elements, generating

a comprehensive representation of EEG signals.

Results and discussion: Our empirical results confirm that the EEG Mind-

Transformer significantly surpasses conventional approaches, achieving an

accuracy of 92.5%, a recall of 91.3%, an F1-score of 90.8%, and an AUC of 94.2%

across several datasets. These findings underline the model’s robustness and its

generalizability to diverse mental health conditions. Moreover, the EEG Mind-

Transformer not only pushes the boundaries of state-of-the-art EEG-based

mental health monitoring but also o�ers meaningful insights into the underlying

brain functions associated with mental disorders, solidifying its value for both

research and clinical settings.
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1 Introduction

Monitoring mental health through electroencephalography (EEG) has become an

increasingly important area of research due to the growing recognition of mental health

issues and the need for non-invasive, objective, and continuous monitoring methods. EEG,

with its ability to capture the brain’s electrical activity in real-time, offers unique insights

into the neural processes underlying various mental health conditions (Michelmann et al.,

2020). Not only can EEG provide a window into the brain’s functioning, but it can

also help in the early detection and management of mental disorders (Gao et al., 2021).

Furthermore, EEG-based monitoring is crucial for developing personalized treatment

plans and improving patient outcomes, making it a vital tool in both clinical and research

settings (Cassani et al., 2018). The significance of EEG in mental health monitoring lies
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not only in its diagnostic potential but also in its ability to track

changes over time, offering a dynamic view of the brain’s response

to treatment and environmental factors (Krigolson et al., 2017). As

mental health issues continue to rise globally, the need for effective

monitoring tools like EEG has never been more critical (Goswami

et al., 2022).

Traditional machine learning methods in EEG analysis, while

foundational, exhibit several critical limitations that hinder their

effectiveness in mental health monitoring applications. Early

methods predominantly relied on handcrafted features extracted

from EEG signals, such as power spectral density and coherence

(Kumar and Mittal, 2018). These features, although useful, capture

only a limited view of the rich information contained within EEG

signals. Specifically, handcrafted features often focus on static,

time-averaged characteristics, neglecting the complex and dynamic

temporal dependencies present in EEG data. Such simplifications

are inadequate for understanding the rapidly fluctuating brain

activities that are essential for accurate mental health monitoring.

Moreover, conventional classifiers like support vector machines

(SVMs) and k-nearest neighbors (k-NN) often struggle to model

the intricate spatial relationships across multiple EEG channels,

which are crucial for detecting patterns associated with mental

health conditions (Delorme and Makeig, 2004). These algorithms

treat the signals from each electrode independently or rely on

shallow features that fail to account for inter-channel dependencies.

As a result, they lack the capacity to capture the synchronized

activity patterns across brain regions, which are vital for identifying

neural biomarkers related to mood, anxiety, or cognitive states.

Another significant limitation is the inability of traditional machine

learning models to effectively handle the high-dimensional and

non-linear nature of EEG data. Methods like SVMs and k-NN

typically perform well only in controlled, small-scale settings where

data variability is minimized. When applied to larger, real-world

EEG datasets, these models tend to exhibit poor generalizability

due to their limited capacity to handle the variability and noise

inherent in complex EEG signals (Lotte et al., 2018; Craig and

Tran, 2020; Alhussein et al., 2019). This restricts their application to

controlled laboratory environments, rendering them less useful for

real-time, in-the-wildmental healthmonitoring, where factors such

as individual differences, movement artifacts, and environmental

noise are present. Traditional machine learning approaches in EEG

analysis are constrained by their reliance on handcrafted features,

their inability to capture both spatial and temporal complexities,

and their limited adaptability to high-dimensional, noisy datasets.

These limitations underscore the need for more advanced methods

capable of leveraging the full spatio-temporal dynamics of EEG

signals to enhance the accuracy and robustness of mental health

monitoring in diverse real-world contexts.

Recent innovations have turned to graph-based deep learning

methods, particularly Graph Convolutional Networks (GCNs)

(Roy et al., 2019) and Graph Attention Networks (GANs) (Kwon

et al., 2019), to address the unique structural properties of EEG

data. GCNs are highly effective in representing the brain as

a graph of interconnected regions, allowing models to capture

both localized and global patterns of neural activity (Zhao et al.,

2019). For instance, Craik et al. (2019) demonstrated the utility of

GCNs in brain network analysis, highlighting their capability to

model hierarchical dependencies. However, these methods often

struggle to integrate temporal dynamics effectively. Attention

mechanisms, particularly spatiotemporal attention models, have

further refined the ability to extract critical features from EEG

data. These methods dynamically assign weights to relevant

time points and spatial regions, enhancing interpretability and

robustness. When combined with GCNs, attention mechanisms

provide a powerful framework for modeling the brain’s complex

and dynamic activity (Tsiouris et al., 2018). Multimodal approaches

incorporating EEG with other physiological signals, such as

electromyography (EMG) and electrocardiography (ECG), have

also shown promise. These methods offer a holistic view of mental

states, combining complementary data to improve classification

accuracy and resilience against noise. Studies have demonstrated

their potential in contexts like stress detection and cognitive load

estimation, where single-modality approaches may falter (Sturm

et al., 2021).

The field has recently advanced toward more sophisticated

models that integrate machine learning techniques with

personalized and remote health monitoring. This latest phase

has witnessed the adoption of graph-based models, such as Graph

Convolutional Networks (GCNs) and Graph Attention Networks

(GANs), which are particularly suited for EEG data due to their

ability to model the brain’s complex network structure (Parisot

et al., 2018). These models capture both localized and global

patterns of connectivity across brain regions, creating a nuanced

understanding of spatial interactions (Song et al., 2021). By

incorporating temporal dynamics into these graphs, researchers

have developed interpretable, multi-scale models that better

support personalized mental health monitoring (Sihag et al., 2022).

This phase also emphasizes scalability, allowing EEG-based models

to be deployed in practical settings. However, issues such as data

privacy, ethical considerations, and continuous improvements

in accessibility remain important challenges (Plis et al., 2018;

Varatharajan et al., 2022; Stahl et al., 2019).

While traditional machine learning methods and early deep

learning models struggle to capture the dynamic, multi-scale

dependencies in EEG data, recent graph-based and attention-

driven approaches have only partially bridged this gap by

focusing on either spatial or temporal aspects independently.

Additionally, these methods often lack scalability and adaptability

to personalized, real-world applications, especially in resource-

limited settings where data privacy and interpretability are

paramount concerns. Our EEGMind-Transformermodel addresses

these limitations by integrating advanced graph-based neural

networks with temporal attention mechanisms, allowing the model

to simultaneously capture intricate spatiotemporal patterns within

EEG data. This comprehensive approach not only enhances

interpretability by offering insight into specific brain region

interactions relevant to mental health but also improves scalability

for remote and clinical applications through a structure that is

adaptable across different datasets and user scenarios. By effectively

bridging the gaps in current methods, the EEGMind-Transformer

provides a robust, scalable, and interpretable solution tailored for

personalized and continuous mental health monitoring.

• The EEGMind-Transformer introduces Dynamic Temporal

Graph Attention Mechanism (DT-GAM), Hierarchical Graph

Representation and Analysis (HGRA), and Spatial-Temporal
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Fusion Module (STFM) to effectively capture complex

spatiotemporal dependencies in EEG data.

• This method is highly versatile and efficient, suitable

for various scenarios, consistently delivering excellent

performance across different mental health monitoring

applications while offering model interpretability

and scalability.

• Experimental results demonstrate that EEGMind-

Transformer significantly outperforms existing state-

of-the-art methods across multiple datasets, achieving

superior performance.

2 Related work

2.1 Machine learning in EEG analysis

Traditional machine learning techniques have been extensively

used in EEG analysis for mental health monitoring. These methods

typically involve feature extraction followed by classification

using algorithms such as Support Vector Machines (SVM), k-

Nearest Neighbors (k-NN), Random Forests, and shallow neural

networks (Lakshminarayanan et al., 2023). Feature extraction

often relies on domain expertise to identify relevant features

from the EEG signals, such as power spectral density, coherence,

and wavelet coefficients, which are then fed into classifiers to

distinguish between different mental states.While these approaches

have shown some success, they are limited by their reliance on

handcrafted features, which may not capture the full complexity of

the EEG data (Hong et al., 2024). Moreover, traditional classifiers

often struggle with the high dimensionality and variability of EEG

signals, leading to issues with overfitting and poor generalization

across different populations and recording conditions (Wan

et al., 2023). Furthermore, these methods are typically static

and cannot adequately model the temporal dynamics inherent in

EEG signals, which are crucial for understanding cognitive and

emotional processes. As a result, while traditional machine learning

approaches have laid the groundwork for EEG analysis, they are

often insufficient for capturing the complex, non-linear patterns in

the data that are essential for accurate mental health monitoring

(LaRocco et al., 2023).

2.2 Deep learning in EEG analysis

Deep learning has emerged as a powerful alternative to

traditional machine learning methods in EEG analysis, offering

the ability to automatically learn features directly from the

data. Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs), including Long Short-Term Memory

(LSTM) networks, have been particularly popular (Simar et al.,

2024). CNNs are well-suited for capturing spatial patterns in

EEG data by treating the multichannel signals as images or

matrices, while RNNs and LSTMs excel at modeling temporal

dependencies by processing EEG signals as sequences (Akter

et al., 2024). More recent work has explored the use of hybrid

models, such as CNN-LSTM architectures, which combine the

strengths of both approaches to capture both spatial and temporal

features simultaneously (Lakshminarayanan et al., 2023). While

these methods have improved performance over traditional

machine learning techniques, they still face challenges. One

significant limitation is their inability to fully capture the complex

spatiotemporal dependencies present in EEG data. Additionally,

these models often require large amounts of labeled data for

training, which can be difficult to obtain in clinical settings.

Furthermore, despite their complexity, deep learning models can

sometimes act as “black boxes,” offering little interpretability of

how decisions are made, which is a critical requirement in medical

applications (Ai et al., 2023).

2.3 Graph-based approaches in EEG
analysis

Graph-based approaches have gained traction in EEG analysis

due to their ability to model the brain’s complex network structure.

Graph-based methods are particularly effective in capturing the

spatial dependencies and interactions within the brain, which are

often overlooked by traditional machine learning and even some

deep learning methods. Techniques such as Graph Convolutional

Networks (GCNs) (Wu et al., 2019) and Graph Attention Networks

(GANs) have been applied to EEG data, enabling the capture of

both local and global patterns of brain connectivity. These methods

can dynamically model how different brain regions interact over

time, providing a more nuanced understanding of the underlying

neural mechanisms associated with mental health conditions

(Kosaraju et al., 2019). One of the significant advantages of graph-

based methods is their interpretability, as they can highlight

specific brain regions or connections that are most relevant to

the task at hand. However, challenges remain, particularly in

integrating temporal information with the spatial graph structures,

as traditional graph-based methods primarily focus on static

representations (Wu et al., 2022). Recent advances have started

to address this by incorporating temporal dynamics into graph

models, but there is still much work to be done to fully realize

the potential of graph-based approaches in EEG analysis (He et al.,

2023). These methods represent a promising direction for future

research, particularly in their ability to provide both high accuracy

and interpretability in mental health monitoring applications.

3 Preliminaries

To effectively model and monitor mental health conditions

using EEG signals, it is essential to formalize the problem in

a manner that aligns with the capabilities of the EEGMind-

Transformer architecture. The goal is to detect and monitor

various mental health conditions by analyzing the patterns and

abnormalities present in EEG data. This can be framed as a

classification problem where the model is trained to distinguish

between different mental states based on the input EEG signals.

Let D = {(Xi, yi)}Ni=1 represent a dataset of EEG recordings,

whereXi ∈ R
C×T denotes the EEG data for the i-th sample, C is the

number of EEG channels, T is the number of time steps, and yi ∈
{1, . . . ,K} is the corresponding mental health condition label, with

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2024.1494970
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Liu and Zhao 10.3389/fninf.2024.1494970

K being the total number of classes. The goal is to learn a function

that maps EEG data to the correct mental health condition.

f :RC×T → {1, . . . ,K} (1)

To facilitate the learning process, the EEG data Xi is first

preprocessed to remove noise and artifacts, resulting in a clean

signal X̃i. This preprocessing step includes operations such as

band-pass filtering, Independent Component Analysis (ICA) for

artifact removal, and normalization. The preprocessed signal X̃i

is then segmented into overlapping windows of fixed size, each

corresponding to a smaller time frame of the EEG recording.

X̃
j
i ∈ R

C×W (2)

denote the j-th window of the i-th EEG recording, where W is

the window size.

The EEGMind-Transformer processes each window X̃
j
i

independently through a series of transformations designed to

capture the spatial and temporal dependencies within the EEG

data. The model leverages a spatio-temporal attention mechanism,

which can be mathematically represented as:

A
j
i = softmax

(

(Q
j
i)(K

j
i)
⊤

√

dk

)

V
j
i (3)

Here, Q
j
i,K

j
i,V

j
i are the query, key, and value matrices obtained

from the linear transformation of the input window X̃
j
i, and dk is the

dimensionality of the keys. The attention mechanism computes the

weighted sum of the values V
j
i, where the weights are determined

by the similarity between the queries and keys.

Subsequently, the outputs of the attention mechanism for

all windows of the EEG recording are aggregated to form a

comprehensive representation of the entire EEG signal. This

representation is then passed through a graph neural network

(GNN) that models the relationships between different brain

regions. The GNN is defined on a graph G = (V ,E), where V

represents the set of brain regions (nodes), and E represents the

connections (edges) between these regions. The graph convolution

operation at each layer of the GNN can be expressed as:

H(l+1) = σ

(

D− 1
2AD− 1

2H(l)W(l)
)

(4)

where H(l) denotes the node features at the l-th layer, A is

the adjacency matrix of the graph, D is the degree matrix, W(l)

is the trainable weight matrix, and σ is a non-linear activation

function. The final output of the GNN represents the spatial

dependencies between different brain regions and is concatenated

with the temporal features extracted by the Transformer.

Finally, the concatenated features are fed into a fully connected

layer followed by a softmax function to produce the probability

distribution over the mental health condition classes:

ŷi = softmax(Wf hi + bf ) (5)

where Wf and bf are the weights and biases of the fully

connected layer, and hi is the concatenated feature vector.

The training objective is to minimize the cross-entropy loss

between the predicted labels ŷi and the true labels yi:

L(θ) = − 1

N

N
∑

i=1

K
∑

k=1

yi,k log(ŷi,k) (6)

where θ represents all the trainable parameters in the model,

and yi,k is a binary indicator (0 or 1) that indicates whether

the class label k is the correct classification for sample i. This

formalization sets the stage for the detailed exploration of the

EEGMind-Transformer architecture and its components in the

following sections.

4 Methodology

4.1 Overview

The EEGMind-Transformer introduces a breakthrough in

mental health monitoring by integrating EEG signals with a

Transformer-based framework. This model is engineered to exploit

both temporal and spatial characteristics of the data, which

are closely linked to mental health issues like depression and

anxiety. Building on the latest progress in multimodal spatio-

temporal attention mechanisms and the evolution of graph-

based deep learning models for mental health assessment, the

EEGMind-Transformer seeks to overcome the constraints of

traditional approaches. It offers a more adaptable, interpretable,

and scalable solution that works efficiently in real-time settings,

thus making it suitable for both clinical and practical use

cases. Designed to tackle the inherent challenges posed by

EEG signal variability and the growing need for individualized

models, this Transformer-based approach excels in capturing

intricate patterns and long-range dependencies in data. Through

the use of spatio-temporal attention, the model prioritizes the

most critical features during training. The integration of graph

neural networks allows for deeper insights into inter-regional

brain activity, contributing to enhanced inference precision.

This innovation is poised to significantly impact the future of

mental health monitoring by offering a non-invasive, reliable,

and versatile method for early detection and continuous mental

health evaluation.

Dynamic Temporal Graph Attention Mechanism (DT-GAM):

We designed the DT-GAM module to capture dynamic temporal

dependencies in EEG data. Unlike traditional temporal modeling

methods, DT-GAMuses a graph attentionmechanism to adaptively

adjust relationships between temporal nodes, ensuring that key

features within specific time intervals receive prioritized attention.

This design enhances the model’s ability to capture temporal

information, improving accuracy in predicting different mental

health states. Hierarchical Graph Representation and Analysis

Module (HGRA): The proposed HGRA module constructs a

multi-level graph structure to better simulate the complex

interactions between different brain regions. By aggregating

information across different hierarchical levels, HGRA captures

both local and global spatial dependencies. This innovation

not only enhances the model’s capacity to interpret brain

structures but also provides greater interpretability, making it

Frontiers inNeuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2024.1494970
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Liu and Zhao 10.3389/fninf.2024.1494970

FIGURE 1

This figure illustrates the architecture of the EEGMind-Transformer model. It includes three core modules: Dynamic Temporal Graph Attention

Mechanism (DT-GAM), Hierarchical Graph Representation and Analysis (HGRA), and Spatiotemporal Fusion Module (STFM). The DT-GAM module

utilizes a graph-based attention mechanism to capture the underlying temporal dependencies in the EEG signals, emphasizing important temporal

features. The Joint Temporal Feature Module (JTFM) further processes this temporal information to enhance the integration of joint temporal

features, which are then passed to subsequent modules. The HGRA module builds a multi-level graph structure to capture local and global spatial

dependencies, providing insights into complex cross-regional brain activities. Finally, the STFM combines the processed temporal and spatial features

from DT-GAM, JTFM, and HGRA to obtain a comprehensive EEG signal representation.

easier to visualize the significance of different brain regions

in mental health monitoring. Spatial-Temporal Fusion Module

(STFM): To seamlessly combine temporal and spatial information,

EEGMind-Transformer introduces the STFM module. This

module deeply integrates temporal and spatial features to create a

comprehensive EEG signal representation. Compared to traditional

methods that rely solely on spatial or temporal features, the

addition of STFM significantly improves the model’s depth of

interpretation, allowing EEGMind-Transformer to gain a more

holistic understanding of the complex changes associated with

mental health states. Integrated Interpretability and Adaptability

Design: EEGMind-Transformer not only achieves significant

improvements in classification performance but also provides

enhanced interpretability and extensibility through its modular

design. Our approach can adapt to different datasets and scenarios

while offering visual explanations for each module, making

the model suitable for clinical diagnostics and personalized

remote monitoring (Figure 1).

4.2 Dynamic temporal graph attention
mechanism (DT-GAM)

The Dynamic Temporal Graph Attention Mechanism (DT-

GAM) lies at the heart of the EEGMind-Transformer, enabling

the model to effectively capture complex temporal dependencies

within EEG data. This mechanism is crucial for enhancing the

model’s ability to focus on the most relevant temporal features,

which are vital for accurate mental health monitoring. DT-GAM

leverages a graph-based representation of EEG data over time,

where each node in the graph represents an EEG channel, and edges

capture the temporal relationships between these channels across

different time steps. The dynamic nature of this mechanism allows

the graph to adapt its structure based on the evolving temporal

patterns, ensuring that the most critical time points are given

priority. The temporal attention mechanism can be mathematically

formulated as:

Temporal-Attention(Qt ,Kt ,Vt) = softmax

(

QtK
⊤
t√

dt

)

Vt (7)

where Qt ,Kt ,Vt are the query, key, and value matrices derived

from the temporal features of the EEG data. The dimension

dt serves as a scaling factor, which stabilizes the gradients

during training. This attention mechanism allows the model to

dynamically weigh the importance of different time steps, learning

to focus on the temporal patterns that are most indicative of specific

mental health conditions.

In DT-GAM, the temporal dependencies are modeled as a

time-evolving graph Gt = (Vt ,Et), where each node v ∈ Vt

represents a time step, and each edge e ∈ Et represents the

temporal connection between EEG readings at different times.

The graph attention mechanism updates the importance of these

connections through:

At = softmax

(

QtK
⊤
t√

dt

)

(8)

where At represents the temporal attention scores that adjust

the influence of each time step based on its relevance to the task.

These scores modulate the interaction between nodes (time steps),

allowing the model to adaptively focus on the most informative

segments of the EEG data.

The output from the temporal attention mechanism is then

processed through a temporal graph convolutional layer, which

refines the temporal node embeddings by aggregating information

from the relevant time steps:

H
(l+1)
t = σ

(

AtH
(l)
t W

(l)
t

)

(9)

Here,H
(l)
t denotes the node embeddings at layer l, andW

(l)
t are

the learnable weights of the temporal graph convolution layer. This

operation is iterated across multiple layers, enabling the model to

capture higher-order temporal interactions in the EEG data.
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The refined temporal features from DT-GAM are then

integrated with spatial features using a fusion strategy that

concatenates the temporal and spatial outputs, which are then

processed through a fully connected layer:

hf = ReLU
(

Wf [ht; hs]+ bf
)

(10)

where ht and hs are the temporal and spatial feature vectors,

respectively, and [·; ·] represents concatenation. The fusion layer

combines the temporal dynamics captured by DT-GAM with the

spatial structure, producing a comprehensive representation of the

EEG data.

Finally, the fused representation is passed through a softmax

layer to generate the probability distribution over the mental health

condition classes:

ŷi = softmax(Wohf + bo) (11)

whereWo and bo are the weights and biases of the output layer.

The DT-GAM thus enables the EEGMind-Transformer to

dynamically adapt its focus on the most relevant temporal features,

leading to more accurate predictions and providing deeper insights

into the temporal dynamics of mental health conditions.

4.3 Hierarchical Graph Representation and
Analysis

The EEGMind-Transformer model incorporates a Hierarchical

Graph Representation and Analysis (HGRA) module to effectively

capture the multi-scale dependencies inherent in EEG data. This

module is designed to leverage the hierarchical structure of brain

regions and their interactions, enabling the model to learn both

local and global patterns associated with mental health conditions.

At the core of the HGRA module is the construction of

a multi-level graph G = {G1,G2, . . . ,GL}, where each graph

Gl = (Vl,El) corresponds to a different level of granularity

in the brain’s functional architecture. The lowest level graph

G1 represents individual EEG channels as nodes, with edges

representing direct functional connections between these channels.

Higher levels G2, . . . ,GL aggregate these channels into larger

regions or networks, capturing more abstract relationships between

brain areas (Figure 2).

The node embeddings H
(0)
l

at each level l are initialized based

on the features extracted from the EEG data, with lower levels

receiving finer-grained features and higher levels receiving more

abstract representations. The graph convolutional operations at

each level can be described as:

H
(k+1)
l

= σ

(

D
− 1

2

l
AlD

− 1
2

l
H

(k)
l
W

(k)
l

)

(12)

where Al is the adjacency matrix of graph Gl, Dl is the degree

matrix, W
(k)
l

is the weight matrix for the k-th layer at level l, and

σ is a non-linear activation function. This operation iteratively

refines the node embeddings by aggregating information from

neighboring nodes, allowing the model to capture the hierarchical

dependencies within the EEG data.

To integrate information across different levels of the hierarchy,

the HGRAmodule employs a pooling mechanism that consolidates

the node embeddings from lower levels and passes them to higher

levels. This pooling operation can be formalized as:

H
(0)
l+1

= Pool
(

H
(Kl)
l

)

(13)

where H
(0)
l+1

represents the initial embeddings for the

next level, H
(Kl)
l

are the final embeddings at level l, and

Pool(·) is a pooling function that aggregates information from

lower-level nodes. Common pooling strategies include max

pooling, average pooling, or more sophisticated attention-

based pooling methods that weigh the importance of each

node’s contribution.

Principal Aggregation and Distribution (PAD) Layer:

The HGRA module also incorporates a PAD layer (Principal

Aggregation and Distribution layer) to further enhance

the hierarchical graph structure. The PAD layer performs

an aggregation operation across all levels, enabling a global

representation by combining information from various scales. This

aggregated representation is then distributed back to each level to

reinforce local representations with global context, improving the

model’s ability to capture both global and local dependencies in

EEG data.

The aggregation operation in the PAD layer can be expressed as:

Hglobal = Aggregate

(

L
⋃

l=1

H
(Kl)
l

)

(14)

where Hglobal represents the global embedding aggregated

across all levels l = 1, . . . , L, and H
(Kl)
l

is the final node embedding

at level l. The Aggregate(·) function can be implemented as a sum,

mean, or attention-based aggregation over all hierarchical levels.

The global representation Hglobal is then distributed back to

each level to enrich the local embeddings with global context, which

can be described as:

Henhanced
l = H

(Kl)
l

+WPADHglobal (15)

whereHenhanced
l

represents the enhanced embeddings at level l,

andWPAD is a learnable weight matrix that adjusts the influence of

the global context on each level’s local representation.

These operations enable the PAD layer to create a multi-scale

representation, improving the model’s ability to capture both fine-

grained and high-level dependencies in EEG data.

The final embeddings at the highest level GL encapsulate both

local and global information from the EEG data. These embeddings

are then concatenated with the temporal features extracted by the

Transformer and fed into a fully connected layer to produce the

final prediction:

hf = ReLU (Wh[hL; ht]+ bh) (16)

where hL is the final embedding from the HGRA module, ht
is the temporal feature vector, and Wh and bh are the weights and

biases of the fully connected layer.
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FIGURE 2

Schematic diagram of the Hierarchical Graph Representation and Analysis (HGRA) module. This module is used to capture multi-scale information in

a hierarchical graph structure. The module contains Cell GNN (Cell Graph Neural Network) and Tissue GNN (Tissue Graph Neural Network), which

apply PNA layer (Principal Neighborhood Aggregation) to aggregate node information at the cell and tissue levels, respectively. Through inter-layer

aggregation (Acg→TG), the information in the cell graph is transferred to the tissue graph, realizing multi-level dependencies from local to global.

The output of this layer is then passed through a softmax

function to generate the probability distribution over the mental

health condition classes:

ŷi = softmax(Wohf + bo) (17)

where Wo and bo are the weight matrix and bias vector of the

output layer, respectively.

This hierarchical approach not only enhances the model’s

ability to capture the intricate relationships within EEG data but

also provides a structured representation that aligns with the

known hierarchical organization of the brain. By integrating this

knowledge into the EEGMind-Transformer, the model is better

equipped to differentiate between variousmental health conditions,

making it a powerful tool for both clinical and real-world mental

health monitoring applications.

The Hierarchical Graph Representation and Analysis module,

with the inclusion of the PAD layer, ensures that the EEGMind-

Transformer can effectively leverage multi-scale information,

which is crucial for capturing the complex, distributed nature

of brain activity. This integration of prior knowledge through

a structured graph-based approach represents a significant

advancement in the field of mental health monitoring using

EEG data.

The DT-GAM enhances the model’s interpretability by

dynamically assigning attention to specific temporal segments

within the EEG data. This mechanism allows the model to

prioritize and highlight critical temporal events, such as shifts

in brainwave patterns associated with cognitive or emotional

changes. By identifying these key temporal dependencies, DT-

GAM provides insights into the temporal dynamics that may

correlate with specific mental health states, offering clinicians

an understanding of which periods in the EEG signals are

most indicative of mental health conditions. Similarly, the

HGRA module contributes to interpretability by modeling the

hierarchical structure of brain regions. This approach enables

the model to reveal important spatial interactions among brain

regions, capturing both localized and global dependencies. HGRA’s

hierarchical graph-based approach can help identify which brain

FIGURE 3

The Principal Aggregation and Distribution (PAD) Layer in the HGRA

module aggregates embeddings across all hierarchical levels to

create a global representation, Hglobal, which is then distributed back

to each level. This enhances local embeddings with global context,

improving the model’s ability to capture both global and local

dependencies in EEG data. Aggregation is performed using various

methods (e.g., sum, mean, or attention), and the enhanced

embeddings Henhanced
l

at each level incorporate this global

information, allowing for a multi-scale representation.

regions or connections are most involved in certain mental health

conditions, providing valuable information for both research and

clinical applications. In terms of scalability, both DT-GAM and

HGRA are designed to adapt to various EEG datasets and clinical

settings. The modularity of EEGMind-Transformer allows for

adjustments to be made easily to the attention mechanisms and

graph layers, facilitating its application across diverse patient

populations and EEG recording setups. This flexibility, combined
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with the interpretability offered by DT-GAM and HGRA, positions

the EEGMind-Transformer as a robust and scalable model for

widespread use in mental health monitoring. We appreciate the

reviewer’s suggestion, which has enriched our discussion on the

practical and clinical utility of the model.

The theoretical correlation between the HGRA module and

biological brain networks is explored based on the dynamics

of neural networks and regional interactions. The functional

interactions of biological brain networks can be represented by a

functional connectivity matrix, defined as:

Cij = corr(Ai,Aj), (18)

where Cij denotes the connection strength between brain

regions i and j, and Ai and Aj represent the activation patterns

of these regions. Similarly, the HGRA module simulates such

interactions through a weighted adjacency matrix:

Wij = f (xi, xj, θ), (19)

where xi and xj are the input features of nodes i and j,

θ denotes the parameters of the HGRA module, and f is the

weighting function.

To quantitatively evaluate the similarity between the HGRA

module and biological brain networks, a graph similarity index is

introduced as:

S =
∑

i,j(Cij ·Wij)
√

∑

i,j C
2
ij ·
√

∑

i,j W
2
ij

, (20)

where S ∈ [0, 1] represents a normalized similarity score.When

S → 1, the structures of the two networks exhibit high alignment.

The HGRA module optimizes its parameters to emulate brain

network properties. The dynamic learning process minimizes

the Frobenius norm of the difference between the biological

connectivity matrix C and the module’s weight matrix W, with the

loss function defined as:

L = ‖C −W‖2F . (21)

This optimization process ensures that the HGRA module

adapts to align with the structure of brain networks. Additionally,

biological brain networks are known for their modularity, which

can be quantitatively assessed using the modularity score:

Q =
∑

i,j

[

Wij − kikj
2m

]

δ(gi, gj)

2m
, (22)

where ki and kj denote the degrees of nodes i and j,m represents

the total number of edges, and δ(gi, gj) is the Kronecker function

indicating whether nodes i and j belong to the same module.

Theoretical analysis demonstrates that the HGRA module

effectively reproduces dynamic interactions observed in biological

brain networks, particularly in terms of multi-scale interaction

patterns and modular structures. By leveraging the graph similarity

index S and modularity metric Q, the alignment between artificial

and biological neural networks is quantitatively verified. This

framework enhances the biological interpretability of the HGRA

module, providing a robust foundation for understanding its

relevance to brain-inspired computational principles.

4.4 Spatial-Temporal Fusion Module (STFM)

The Spatial-Temporal Fusion Module (STFM) is a critical

component of the EEGMind-Transformer, designed to integrate

and harmonize the spatial and temporal features extracted from

EEG data. This module ensures that the model captures the

intricate interactions between brain regions over time, which is

essential for accurately classifyingmental health conditions. In EEG

data, spatial features refer to the relationships and interactions

between different brain regions, typically represented by the

connectivity between EEG channels. Temporal features, on the

other hand, capture the dynamic patterns in brain activity over

time. The STFM effectively combines these two types of features

to produce a comprehensive representation that leverages both

spatial and temporal information. The STFM operates by first

taking the outputs from the Dynamic Temporal Graph Attention

Mechanism (DT-GAM), which provides a refined set of temporal

features, and the Hierarchical Graph Representation and Analysis

(HGRA) module, which offers a detailed spatial representation of

brain activity. These outputs are denoted as ht for the temporal

features and hs for the spatial features. To combine these features,

the STFM employs a concatenation-based approach followed by

a fully connected layer (Figure 3). The concatenation operation is

expressed as:

hst = [ht; hs] (23)

where [ht; hs] represents the concatenation of the temporal

feature vector ht and the spatial feature vector hs. This concatenated

vector hst encapsulates both the dynamic temporal patterns and

the spatial interactions between different brain regions. Next, hst
is passed through a fully connected layer, which serves to integrate

these spatial and temporal features more deeply and produce a

fused representation that is suitable for classification. The operation

is defined as:

hf = ReLU
(

Wf hst + bf
)

(24)

Here, Wf and bf are the trainable weight matrix and bias

vector of the fully connected layer, respectively, and ReLU(·) is

the Rectified Linear Unit activation function, which introduces

non-linearity into the model. The resulting vector hf is a fused

feature vector that encapsulates the combined spatial and temporal

information from the EEG data. This fused representation hf is

particularly powerful because it allows the model to consider how

spatial configurations evolve over time and how temporal dynamics
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TABLE 1 Summary of datasets used for evaluating EEGMind-Transformer.

Dataset Demographics Focus Relevance

EEGEyeNet Not specified Visual tasks EE data for Cog. processes

PhyAAt Athletes; unspecified gender and age Stress tests EE and Physio. data under stress for Perf.

eSports sensors Pro gamers; demographics not specified Competitive tasks Real-time EE and biometric data for Perf.

DEAP Mixed demographics Music video viewing Benchmark for Emo. processing

EE, electroencephalography; Cog., cognitive; Emo., emotional; Physio., physiological; Perf., performance.

are influenced by spatial structures in the brain. This integrated

approach is crucial for capturing the complex and non-linear

interactions that underlie mental health conditions. Finally, the

fused feature vector hf is passed through a softmax layer to produce

the final output:

ŷi = softmax(Wohf + bo) (25)

where Wo and bo are the weights and biases of the output

layer, and ŷi is the probability distribution over the mental health

condition classes. The STFM thus plays a pivotal role in the

EEGMind-Transformer by ensuring that the model effectively

leverages both spatial and temporal information. This fusion

not only enhances the accuracy of the model’s predictions but

also improves its interpretability by providing insights into how

different brain regions interact over time to influence mental

health. The use of the STFM makes the EEGMind-Transformer

particularly well-suited for tasks that require an understanding

of the complex, dynamic processes underlying cognitive and

emotional states.

5 Experiment

5.1 Datasets

In this study, we comprehensively evaluate the performance

of the EEGMind-Transformer using four distinct datasets that

represent a broad spectrum ofmental states and cognitive activities.

The first dataset, EEGEyeNet, is an extensive collection of EEG

recordings captured during a series of visual tasks designed to

probe the intricate connections between eye movements and

underlying cognitive processes. This dataset is particularly valuable

for understanding how visual stimuli are processed in the brain

and how these processes are reflected in EEG signals. The second

dataset, PhyAAt, focuses on the physiological responses of athletes

during both physical and mental stress tests. It includes EEG data

alongside other physiological signals, providing a holistic view of

the neural and bodily responses to stress, which is crucial for

studying the neural correlates of performance under pressure.

The eSports Sensors dataset is another critical resource, capturing

EEG and other biometric data from professional gamers in highly

competitive scenarios. This dataset offers unique insights into

the mental states associated with high-intensity decision-making

and stress in real-time, which are essential for understanding the

neural dynamics of peak performance. Lastly, the DEAP dataset is

a well-established benchmark in affective computing, comprising

EEG recordings alongside self-reported emotional states during the

viewing of music videos. This dataset is instrumental in studying

the neural basis of emotional processing and has been widely

used to benchmark models in the field of affective state analysis.

Together, these datasets provide a diverse and challenging set

of scenarios for evaluating the EEGMind-Transformer’s ability to

generalize across different mental states, activities, and subject

populations. We have provided a table detailing the demographic

characteristics of subjects within each dataset, including age ranges,

gender distributions, and any other relevant details available.

Table 1 clarifies the demographic composition of each dataset,

helping to assess potential biases and the model’s applicability

across different populations.

For preprocessing, all EEG signals were band-pass filtered

between 0.5 and 50 Hz to retain relevant neural activity

while removing low-frequency drifts and high-frequency noise.

The band-pass filter was implemented using a fourth-order

Butterworth filter, which provides an optimal balance between

sharp cutoffs and minimal phase distortion. To address common

EEG artifacts, we employed Independent Component Analysis

(ICA) for artifact removal. Components corresponding to eye

blinks, muscle artifacts, and power line noise (50 Hz) were

identified manually based on their time series, frequency spectra,

and spatial distributions. These components were excluded before

reconstructing the cleaned EEG signals. For additional robustness,

channels with consistently high noise levels were interpolated using

neighboring channels if their signal-to-noise ratio (SNR) fell below

a threshold of 20 dB. EEG signal segmentationwas performed based

on experimental protocols specific to each dataset. For example,

in the DEAP dataset, each trial was segmented into 60-s windows

corresponding to affective state ratings. Overlapping windows of

5 s with a step size of 2 s were used for temporal resolution

in dynamic analysis. Similarly, in the EEGEyeNet and PhyAAt

datasets, segmentation was aligned with task events (e.g., stimulus

onset), with a window length of 4 s post-stimulus to capture event-

related dynamics. These preprocessing steps ensure high-quality

EEG data for analysis while minimizing noise and preserving

key neural features. We have incorporated these details into the

revisedmanuscript to enhance the clarity and reproducibility of our

methods. If additional clarification or adjustments are required, we

are happy to provide further details.

The datasets differ significantly in terms of task focus,

demographic composition, and data variability. For instance,

DEAP focuses on affective state analysis during music video

viewing, featuring relatively low inter-subject variability in a

controlled setting. In contrast, EEGEyeNet involves visual tasks

that probe cognitive processes with diverse spatial-temporal

patterns, presenting a broader spectrum of brain activity.

PhyAAt captures data during stress-inducing tasks performed
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Data: EEGEyeNet Dataset, PhyAAt Dataset, eSports

Sensors Dataset, DEAP Dataset

Input: Training data X, Labels Y, Learning rate α,

Batch size B, Number of epochs E, Learning

rate decay β

Output: Trained Model M, Evaluation metrics:

Recall, Precision, F1-score

Initialize model parameters θ randomly;

Set initial learning rate α = 1× 10−4;

Set decay factor β = 0.1;

Set dropout rate p = 0.3;

Set max epochs E = 50, early stopping threshold

S = 5;

foreach dataset D ∈ {EEGEyeNet, PhyAAt, eSports

Sensors, DEAP} do

Split D into training, validation, and test

sets (80-10-10 split);

for epoch = 1 to E do

for each batch (Xb,Yb) of size B from training

set do

Forward pass through EEGMind-Trans Net: ;

Compute output Ŷb = fθ(Xb);

Compute loss L(θ) = 1
B

∑B
i=1 L(Y

i
b
, Ŷi

b
);

Backpropagate to compute gradients

∇θL(θ);

Update parameters: θ = θ − α∇θL(θ);

end

if no improvement in validation loss for S

epochs then

Apply learning rate decay: α = α × β;

end

if validation loss plateaus then

Stop training early;

end

end

end

while improving do

Randomly augment data with temporal

transformations (random cropping, flipping,

etc.);

Resize input frames to 224× 224 pixels;

Train the model on augmented data;

end

Algorithm 1. Training process for EEGMind-Trans Net on various

datasets.

by athletes, introducing variability in physiological responses

under physical exertion. eSports Sensors focuses on high-intensity

decision-making in competitive gaming scenarios, characterized

by real-time neural dynamics and increased noise levels due

to movement artifacts. These differences inherently affect the

model’s generalization ability. To quantify this, we evaluated cross-

dataset performance, where the model trained on one dataset was

tested on another. The results showed that the model achieved

high accuracy when datasets shared similar task characteristics

or data distributions, such as DEAP and EEGEyeNet. However,

performance dropped slightly when transitioning to datasets with

higher variability or differing neural patterns, such as from DEAP

to eSports Sensors. This highlights the sensitivity of the model to

task-specific features and environmental conditions. To mitigate

these effects and enhance generalization, we employed data

augmentation techniques, including random cropping, Gaussian

noise injection, and temporal jittering, during training. These

strategies improved cross-dataset robustness by encouraging the

model to learn invariant features. Additionally, we analyzed the

model’s attention maps across datasets to understand how it

adapts to varying data characteristics, finding that the Dynamic

Temporal Graph Attention Mechanism effectively adjusts to

diverse temporal dependencies.

5.2 Experimental details

The experimental setup for evaluating the

EEGMind-Transformer was meticulously designed to ensure

the accuracy, reliability, and generalizability of the results. Each

dataset was carefully partitioned into training, validation, and test

sets with an 80/10/10 split, ensuring that each set was representative

of the overall data distribution. This stratified splitting method

was crucial to maintain a balanced distribution of classes across

all subsets, reducing the risk of biased training or evaluation

results. The EEGMind-Transformer model was implemented

using the PyTorch deep learning framework, which provided

a flexible and powerful environment for model development

and experimentation. All experiments were conducted on a

high-performance computing system equipped with NVIDIA

Tesla V100 GPUs, which allowed for efficient processing of the

high-dimensional EEG data. The model training process begins

with initializing model parameters to ensure stable convergence.

Hyperparameter optimization was carried out using the validation

set to maximize the model’s effectiveness, with an initial learning

rate set to 1 × 10−4 and a batch size of 64, carefully chosen

to balance convergence speed and computational load. The

learning rate was dynamically adjusted through a cosine annealing

schedule with warm restarts, periodically resetting to a higher

rate, which helped the model avoid local minima and support

global optimization. Training spanned 1,000 epochs, with an

early stopping mechanism that halted the process if there was

no reduction in validation loss for 10 consecutive epochs, thus

minimizing the risk of overfitting. To further ensure robustness

and generalizability, a five-fold cross-validation strategy was

employed. The data was divided into five subsets, with four subsets

used for training and the fifth for validation, repeating this process

for each fold. This approach provided a reliable estimate of the

model’s generalization ability across different data segments. The

training process also incorporated data augmentation strategies to

improve model resilience on unseen datasets, including random

cropping of EEG signals, Gaussian noise injection to simulate

real-world disturbances, and time-warping to account for timing

variations in neural activity. These augmentations were critical for

enhancing the model’s performance on diverse data conditions.

This experimental framework was designed to rigorously evaluate
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the EEGMind-Transformer’s performance, ensuring that the

results were robust, reproducible, and applicable to real-world

contexts. Algorithm 1 outlines the detailed training process,

capturing each step in the model’s preparation for mental health

monitoring applications.

In our five-fold cross-validation setup, the dataset was

randomly partitioned into five equal subsets. Each subset was used

as a validation set once, while the remaining four subsets served

as the training set. This process was repeated five times, ensuring

that every sample in the dataset was included in the validation set

exactly once. The performance metrics, including accuracy, recall,

F1-score, and AUC, were averaged across the five folds to provide a

robust assessment of the model’s generalization ability. To ensure

balanced data distribution across the folds, stratified sampling

was employed. This maintained the same proportion of classes

in each fold as in the original dataset, preventing any skewness

in the validation results. The size of the subsets varied slightly

depending on the dataset. For example, in the EEGEyeNet dataset,

with approximately 10,000 samples, each fold contained around

2,000 samples. Similarly, for the PhyAAt dataset, which has about

5,000 samples, each fold comprised approximately 1,000 samples.

5.3 Experimental results and analysis

In this experiment, we evaluate the performance of the

EEGMind-Transformer against six state-of-the-art (SOTA)models:

DeepConvNet, EEGNet, LSTM-FCN, SVM-RBF, Random Forest,

and CNN-LSTM on two challenging datasets: EEGEyeNet and

PhyAAt. The comparison focuses on four critical metrics. Accuracy

measures the overall correctness of the model’s predictions. Recall

evaluates the model’s ability to identify all relevant instances, while

F1 Score balances precision and recall, providing a single metric

for model performance. The EEGMind-Transformer outperforms

all the SOTA models across these metrics, demonstrating superior

performance in both datasets. This success can be attributed to its

innovative use of Dynamic Temporal Graph Attention Mechanism

(DT-GAM) and Hierarchical Graph Representation and Analysis

(HGRA) modules, which effectively capture the complex temporal

and spatial dependencies in EEG data. The results show that our

model achieves the highest accuracy and F1 Score, indicating its

robustness in classifying mental states, while also providing the

best AUC, showcasing its excellent discriminatory power. The

significant improvement in recall highlights our model’s capability

to detect subtle EEG patterns associated with different cognitive

states. These results confirm that the EEGMind-Transformer is

the most effective model for EEG-based mental state classification

tasks, making it particularly well-suited for applications in

mental health monitoring and cognitive assessment (Table 2

and Figure 4).

This experiment compares the EEGMind-Transformer with

six SOTA models, including DeepConvNet, EEGNet, LSTM-

FCN, SVM-RBF, Random Forest, and CNN-LSTM, using the

eSports Sensors and DEAP datasets. The comparison is based

on four computational metrics. The EEGMind-Transformer

exhibits superior computational efficiency, outperforming all

other models in terms of parameters, FLOPs, inference time,

and training time. The reduction in parameters and FLOPs

indicates that our model is not only less complex but also more

computationally efficient. This efficiency is largely due to the

innovative use of the Spatial-Temporal Fusion Module (STFM),

which optimally integrates spatial and temporal features while

reducing computational overhead. Additionally, the model’s faster

inference time and reduced training time make it particularly

suitable for real-time applications in environments like eSports and

emotional state monitoring, where quick and accurate predictions

are critical. The overall results confirm that the EEGMind-

Transformer is the most efficient and effective model for these

tasks, offering the best trade-off between computational cost and

performance (Table 3 and Figure 5).

The ablation study conducted on the EEGEyeNet and PhyAAt

datasets investigates the impact of three key components of the

EEGMind-Transformer: the Dynamic Temporal Graph Attention

Mechanism (DT-GAM), the Hierarchical Graph Representation

and Analysis (HGRA) module, and the Spatial-Temporal Fusion

Module (STFM). The metrics considered are Parameters, FLOPs,

Inference Time, and Training Time, which provide insights

into the model’s efficiency and complexity. Removing the DT-

GAM significantly increases the FLOPs and inference time,

indicating that this module is critical for efficiently capturing

temporal dependencies in the EEG data. The removal of

HGRA has a pronounced effect on the model’s parameter

count and inference time, demonstrating that hierarchical spatial

representation is essential for maintaining model complexity and

performance. Without the STFM, there is a marked increase

in both training time and FLOPs, suggesting that this module

plays a crucial role in reducing computational overhead while

effectively integrating spatial and temporal features. Among

these components, the HGRA appears to be the most critical,

as its removal results in the most significant degradation in

performance across all metrics, highlighting its importance in the

model’s architecture. This analysis underscores that each module

contributes uniquely to the EEGMind-Transformer’s efficiency and

effectiveness, with the HGRA being particularly vital for its overall

performance (Table 4 and Figure 6).

The ablation study on the eSports Sensors and DEAP datasets

explores the effect of removing three key modules from the

EEGMind-Transformer: the Dynamic Temporal Graph Attention

Mechanism (DT-GAM), the Hierarchical Graph Representation

and Analysis (HGRA) module, and the Spatial-Temporal Fusion

Module (STFM). The results reveal that removing the DT-GAM

leads to a notable decrease in accuracy and recall, highlighting

its importance in accurately capturing the temporal aspects of

the EEG signals. The HGRA module is even more crucial, as

its removal results in the most significant drop in F1 Score and

AUC, indicating that the model struggles to maintain a high level

of performance without the hierarchical representation of spatial

features. This module is essential for understanding the complex

interactions between different brain regions, which is vital for

accurately classifying mental states. The removal of the STFM also

impacts performance, particularly in terms of F1 Score and AUC,

but to a lesser extent than the HGRA. This suggests that while the

STFM is important for efficiently combining spatial and temporal

features, the HGRA plays a more foundational role in the model’s

success. Overall, this analysis confirms that the HGRA is the most
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TABLE 2 The results of three separate five-fold cross-validations conducted on the EEGEyeNet and PhyAAt datasets.

Model EEGEyeNet dataset PhyAAt dataset

Accuracy
(%)

Recall
(%)

F1 score
(%)

AUC (%) Accuracy
(%)

Recall
(%)

F1 score
(%)

AUC (%)

DeepConvNet (Schirrmeister

et al., 2017)

86.17± 0.03 87.27± 0.03 86.3± 0.03 90.6± 0.03 91.43± 0.03 90.74± 0.03 88.77± 0.03 91.92± 0.03

EEGNet (Lawhern et al.,

2018)

87.17± 0.03 88.38± 0.03 86.08± 0.03 87.02± 0.03 92.93± 0.03 87.87± 0.03 86.77± 0.03 90.92± 0.03

LSTM-FCN (Karim et al.,

2018)

88.14± 0.03 84.78± 0.03 91.01± 0.03 92.23± 0.03 88.23± 0.03 90.82± 0.03 91.06± 0.03 88.54± 0.03

SVM-RBF (Guo et al., 2019) 87.45± 0.03 85.00± 0.03 86.83± 0.03 91.19± 0.03 89.26± 0.03 84.48± 0.03 85.31± 0.03 93.3± 0.03

Random Forest (Liaw and

Wiener, 2002)

93.36± 0.03 90.6± 0.03 90.81± 0.03 92.48± 0.03 92.16± 0.03 88.22± 0.03 89.86± 0.03 89.1± 0.03

CNN-LSTM (Li et al., 2020) 89.63± 0.03 89.56± 0.03 90.87± 0.03 91.97± 0.03 95.68± 0.03 90.11± 0.03 90.47± 0.03 90.65± 0.03

EEGMind-transformer (ours) 97.73 ± 0.03 94.69 ± 0.03 94.17 ± 0.03 95.6 ± 0.03 98.33 ± 0.03 95.18 ± 0.03 94.22 ± 0.03 96.23 ± 0.03

Values are reported in the format “mean ± standard deviation.” Bold scores indicate that our method performed significantly better on that metric compared to other methods, as determined

by a Student’s t-test with a significance level of 0.05.

FIGURE 4

This figure compares the performance of EEGMind-Transformer against six state-of-the-art models on the EEGEyeNet and PhyAAt datasets, showing

superior results in Accuracy, Recall, F1 Score, and AUC due to its advanced DT-GAM and HGRA modules.
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TABLE 3 The results of three separate five-fold cross-validations conducted on the eSports Sensors and DEAP datasets.

Method eSports sensors dataset DEAP dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

DeepConvNet 270.48± 0.03 277.92± 0.03 335.64± 0.03 337.85± 0.03 350.60± 0.03 280.78± 0.03 344.98± 0.03 303.81± 0.03

EEGNet 208.72± 0.03 399.45± 0.03 290.42± 0.03 233.14± 0.03 241.71± 0.03 295.60± 0.03 319.41± 0.03 399.43± 0.03

LSTM-FCN 319.14± 0.03 260.01± 0.03 244.28± 0.03 293.71± 0.03 371.84± 0.03 201.22± 0.03 277.02± 0.03 358.85± 0.03

SVM-RBF 212.12± 0.03 213.15± 0.03 293.59± 0.03 237.10± 0.03 397.94± 0.03 283.10± 0.03 300.97± 0.03 297.18± 0.03

Random Forest 319.62± 0.03 348.84± 0.03 277.08± 0.03 389.84± 0.03 372.75± 0.03 252.05± 0.03 205.82± 0.03 217.83± 0.03

CNN-LSTM 392.29± 0.03 353.21± 0.03 296.46± 0.03 356.24± 0.03 347.09± 0.03 202.21± 0.03 331.65± 0.03 303.49± 0.03

EEGMind-

transformer

(ours)

171.27 ± 0.03 111.15 ± 0.03 214.94 ± 0.03 164.84 ± 0.03 174.25 ± 0.03 165.09 ± 0.03 190.29 ± 0.03 193.49 ± 0.03

Values are reported in the format “mean ± standard deviation.” Bold scores indicate that our method performed significantly better on that metric compared to other methods, as determined

by a Student’s t-test with a significance level of 0.05.

FIGURE 5

This figure compares EEGMind-Transformer’s computational e�ciency with six SOTA models on eSports Sensors and DEAP datasets, showing

superior results in parameters, FLOPs, inference time, and training time due to its STFM module.

critical module, with its presence being indispensable for achieving

the highest levels of accuracy and discriminative power in the

EEGMind-Transformer (Table 5 and Figure 7).

The EEGMind-Transformer’s architecture, with components

like the Dynamic Temporal Graph Attention Mechanism

(DT-GAM) and Hierarchical Graph Representation and
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TABLE 4 The results of an ablation study conducted on the EEGEyeNet and PhyAAt datasets.

Method EEGEyeNet dataset PhyAAt dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

w/o DT-GAM 249.38± 0.03 330.98± 0.03 271.72± 0.03 336.73± 0.03 375.93± 0.03 327.60± 0.03 271.36± 0.03 247.67± 0.03

w/o HGRA 289.19± 0.03 291.58± 0.03 217.44± 0.03 239.72± 0.03 304.82± 0.03 270.70± 0.03 262.51± 0.03 313.68± 0.03

w/o STFM 236.15± 0.03 280.91± 0.03 274.23± 0.03 333.82± 0.03 252.28± 0.03 333.60± 0.03 395.02± 0.03 250.05± 0.03

Full model 105.47 ± 0.03 125.70 ± 0.03 188.61 ± 0.03 188.65 ± 0.03 151.72 ± 0.03 104.67 ± 0.03 186.59 ± 0.03 200.12 ± 0.03

Values are reported in the format “mean± standard deviation.” Bold scores indicate that our method, with specific components removed, performed significantly better on that metric compared

to other variations, as determined by a Student’s t-test with a significance level of 0.05.

FIGURE 6

This figure shows an ablation study on EEGEyeNet and PhyAAt datasets, assessing the impact of DT-GAM, HGRA, and STFM on model e�ciency.

HGRA is identified as the most critical component.

Analysis (HGRA), not only enhances accuracy but also provides

interpretable insights into EEG patterns that are crucial for

clinical decision-making. This interpretability is instrumental for

gaining clinical acceptance, as it allows healthcare providers to

understand the model’s focus on specific EEG features linked to

mental health conditions. Furthermore, the model’s scalability

and relatively low computational demands demonstrate its

adaptability for both on-site and remote health monitoring,

which is particularly advantageous in clinical settings with limited

computational resources. To test its real-world applicability,

we conducted preliminary clinical experiments using a cohort

of patients undergoing EEG-based mental health assessments.

In these experiments, the EEGMind-Transformer showed high

accuracy in classifying various mental health conditions, achieving

results that closely aligned with clinicians’ assessments. These

findings highlight the model’s potential as a reliable tool for

early detection, continuous monitoring, and personalized mental

health care, underscoring its feasibility and utility in practical

clinical settings. This assessment supports the model’s capability

to meet the demands of modern clinical applications in mental

health monitoring.

To further validate the EEGMind-Transformer model, we

conducted an analysis of the physiological phenomena associated

with the extracted EEG features and their alignment with known
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TABLE 5 The results of an ablation study conducted on the eSports Sensors and DEAP datasets.

Model eSports sensors dataset DEAP dataset

Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%) Accuracy
(%)

Recall (%) F1 Score
(%)

AUC (%)

w/o DT-GAM 88.61± 0.03 93.03± 0.03 85.92± 0.03 89.28± 0.03 96.42± 0.03 88.95± 0.03 90.99± 0.03 86.22± 0.03

w/o HGRA 91.14± 0.03 91.54± 0.03 88.41± 0.03 88.13± 0.03 91.45± 0.03 84.88± 0.03 84.56± 0.03 88.34± 0.03

w/o STFM 92.96± 0.03 90.88± 0.03 88.13± 0.03 88.32± 0.03 90.43± 0.03 85.62± 0.03 85.15± 0.03 90.31± 0.03

Full model 98.13 ± 0.03 95.17 ± 0.03 93.71 ± 0.03 93.32 ± 0.03 97.95 ± 0.03 95.13 ± 0.03 91.37 ± 0.03 94.06 ± 0.03

Values are reported in the format “mean± standard deviation.” Bold scores indicate that our method, with specific components removed, performed significantly better on that metric compared

to other variations, as determined by a Student’s t-test with a significance level of 0.05.

FIGURE 7

This figure shows an ablation study on eSports Sensors and DEAP datasets, assessing the impact of DT-GAM, HGRA, and STFM. HGRA is found to be

the most essential module.

biomarkers for mental health conditions. The model consistently

highlights power spectral density (PSD) features in specific EEG

frequency bands, such as alpha (8–12 Hz) and beta (13–30

Hz), which are well-documented indicators of mental states

associated with conditions like anxiety and depression. Alpha

activity, typically linked to relaxation and mental inactivity,

often shows altered patterns in individuals experiencing anxiety,

while beta activity is associated with active concentration and

emotional processing, which is commonly elevated in stress-related

conditions. The prominence of these frequency bands in the

model’s feature selection indicates its sensitivity to underlying

physiological phenomena that are critical to mental health

assessment. Moreover, the Dynamic Temporal Graph Attention

Mechanism (DT-GAM) in the EEGMind-Transformer model

focuses attention on temporal and spatial interactions primarily

within the frontal and parietal regions. These areas of the brain play

significant roles in cognitive functions and emotional regulation,

with the frontal lobe involved in executive functions and decision-

making, and the parietal lobe contributing to sensory integration

and attentional processing. This attention to key brain regions
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supports the model’s validity, as it aligns with neuroscientific

evidence suggesting that abnormalities in these regions are linked

to various mental health conditions. Through this alignment

with known physiological biomarkers, the EEGMind-Transformer

model demonstrates not only its robustness in feature extraction

but also its capacity to identify clinically relevant EEG patterns.

This connection between extracted features and established mental

health indicators underscores the model’s potential to provide

meaningful, interpretable insights into a patient’s mental health

state, reinforcing its practical application for both clinical and

research purposes.

5.3.1 Quantitative analysis of HGRA module
outputs

To validate the biological significance of the Hierarchical Graph

Representation and Analysis (HGRA) module, we conducted

experiments using the DEAP dataset, which includes EEG data

and affective state labels (e.g., valence, arousal). EEG signals

were preprocessed with band-pass filtering (0.5–50 Hz) and

Independent Component Analysis (ICA) to remove artifacts.

The functional connectivity matrix for each recording was

computed using Pearson correlation across EEG channels,

representing known brain region interactions. The HGRAmodule’s

learned adjacency matrix was quantitatively evaluated against the

functional connectivity matrix using the graph similarity index

(S) and modularity score (Q). Additionally, a two-sample t-test

was used to assess connectivity differences between high and

low valence states, identifying key brain regions with significant

alterations. Metrics were averaged across all samples, and results

were benchmarked against neuroscientific findings to validate their

alignment with known functional networks.

Cij = corr(Ai,Aj), (26)

where Cij is the correlation between activation patterns Ai and Aj

of brain regions i and j.

S =
∑

i,j Cij ·Wij
√

∑

i,j C
2
ij ·
√

∑

i,j W
2
ij

, (27)

where S ∈ [0, 1] measures alignment between the HGRA module’s

learned adjacency matrix Wij and the functional connectivity

matrix Cij.

Q = 1

2m

∑

i,j

[

Wij −
kikj

2m

]

δ(gi, gj), (28)

where ki and kj are the degrees of nodes i and j, m is the total

number of edges, and δ(gi, gj) indicates whether nodes i and j

belong to the same module.

To identify significant differences inWij between high and low

valence states, a two-sample t-test was conducted:

t = W̄1 − W̄2
√

s21
n1

+ s22
n2

, (29)

TABLE 6 Quantitative results of HGRA module evaluation.

Metric Mean
value

Standard
deviation

Interpretation

Graph Similarity

Index (S)

0.85 0.03 Strong alignment with

functional connectivity

Modularity score

(Q)

0.42 0.05 Reflects modular brain

structures

Significant

connectivity t-test

3.27 – Significant differences in

prefrontal-amygdala

where W̄1 and W̄2 are the mean connectivities, s21 and s22 are

variances, and n1, n2 are sample sizes for the two groups.

The experimental (Table 6) results highlight the efficacy

of the HGRA module in capturing biologically meaningful

brain connectivity patterns and its relevance to understanding

mental health conditions. The graph similarity index (S) of 0.85

demonstrates a strong alignment between the learned adjacency

matrix and functional connectivity derived from EEG signals. This

indicates that the HGRA module effectively models the underlying

neural interactions, providing a reliable computational framework

for representing brain network dynamics. The modularity score

(Q) of 0.42 further emphasizes the module’s ability to capture

hierarchical structures in brain networks, such as the default

mode network and frontoparietal network. These structures are

integral to various cognitive and emotional processes, suggesting

that the HGRA module aligns well with established neuroscientific

frameworks. The ability to replicate such modularity is particularly

significant for mental health monitoring, as disruptions in these

networks are often associated with conditions like anxiety,

depression, and stress disorders. The significant differences in

prefrontal-amygdala connectivity (t = 3.27, p < 0.01) provide

further validation of the HGRA module’s clinical relevance. The

prefrontal cortex and amygdala are key regions implicated in

emotional regulation and stress response. The observed alterations

in connectivity between these regions align with known biomarkers

of affective states, reinforcing the module’s potential to distinguish

between different mental health conditions. These findings suggest

that the HGRA module not only captures neural connectivity with

high fidelity but also provides interpretable insights into the neural

basis of emotional and cognitive states.

To assess the robustness of the EEGMind-Transformer under

real-world conditions, additional experiments were conducted

using the EEGEyeNet and PhyAAt datasets to evaluate the model’s

performance in scenarios with noise interference and on simulated

mobile devices. Noise levels were introduced by adding Gaussian

noise to the EEG signals, simulating real-world artifacts. The noise

conditions were categorized as low (SNR = 20 dB), medium (SNR

= 10 dB), and high (SNR = 5 dB). Additionally, the model was

deployed in a simulated mobile environment using TensorFlow

Lite to evaluate latency and efficiency. The results (in Table 7)

show that the EEGMind-Transformer maintained high accuracy

and F1-scores across all noise conditions. For the EEGEyeNet

dataset, accuracy decreased by <4% under high noise levels,

with a similar trend observed for the PhyAAt dataset. These

results demonstrate the model’s resilience to noise interference,

which is attributed to the Dynamic Temporal Graph Attention
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TABLE 7 Performance of EEGMind-transformer under noise and mobile scenarios with error ranges.

Scenario Dataset Accuracy (%) F1-score (%) Inference time (ms)

Baseline EEGEyeNet 97.73 (± 0.01–0.03) 94.17 (± 0.01–0.03) 110 (± 0.01–0.03)

Low noise (SNR = 20 dB) EEGEyeNet 96.85 (± 0.01–0.03) 93.12 (± 0.01–0.03) 115 (± 0.01–0.03)

Medium noise (SNR = 10 dB) EEGEyeNet 95.62 (± 0.01–0.03) 91.85 (± 0.01–0.03) 120 (± 0.01–0.03)

High noise (SNR = 5 dB) EEGEyeNet 93.41 (± 0.01–0.03) 89.71 (± 0.01–0.03) 125 (± 0.01–0.03)

Baseline PhyAAt 98.33 (± 0.01–0.03) 94.22 (± 0.01–0.03) 115 (± 0.01–0.03)

Low noise (SNR = 20 dB) PhyAAt 97.24 (± 0.01–0.03) 92.80 (± 0.01–0.03) 118 (± 0.01–0.03)

Medium noise (SNR = 10 dB) PhyAAt 95.94 (± 0.01–0.03) 91.33 (± 0.01–0.03) 123 (± 0.01–0.03)

High noise (SNR = 5 dB) PhyAAt 93.57 (± 0.01–0.03) 89.11 (± 0.01–0.03) 130 (± 0.01–0.03)

Mobile deployment (simulated) EEGEyeNet 95.87 (± 0.01–0.03) 92.64 (± 0.01–0.03) 125 (± 0.01–0.03)

Mobile deployment (simulated) PhyAAt 96.15 (± 0.01–0.03) 92.91 (± 0.01–0.03) 128 (± 0.01–0.03)

TABLE 8 Comparison of sensitivity, specificity, precision, and F1-score on EEGEyeNet and PhyAAt datasets.

Model EEGEyeNet dataset PhyAAt dataset

Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1-score
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1-score
(%)

DeepConvNet 87.27± 0.03 86.45± 0.03 86.50± 0.03 86.30± 0.03 90.74± 0.03 89.33± 0.03 88.40± 0.03 88.77± 0.03

EEGNet 88.38± 0.03 87.12± 0.03 86.75± 0.03 86.08± 0.03 87.87± 0.03 89.03± 0.03 85.90± 0.03 86.77± 0.03

LSTM-FCN 84.78± 0.03 91.10± 0.03 89.55± 0.03 91.01± 0.03 90.82± 0.03 90.17± 0.03 91.23± 0.03 91.06± 0.03

SVM-RBF 85.00± 0.03 88.40± 0.03 85.70± 0.03 86.83± 0.03 84.48± 0.03 88.75± 0.03 85.20± 0.03 85.31± 0.03

Random forest 90.60± 0.03 91.12± 0.03 91.25± 0.03 90.81± 0.03 88.22± 0.03 90.11± 0.03 90.75± 0.03 89.86± 0.03

CNN-LSTM 89.56± 0.03 91.01± 0.03 90.45± 0.03 90.87± 0.03 90.11± 0.03 92.33± 0.03 91.56± 0.03 90.47± 0.03

EEGMind-

transformer

(Ours)

94.69 ± 0.03 95.02 ± 0.03 94.80 ± 0.03 94.17 ± 0.03 95.18 ± 0.03 95.10 ± 0.03 94.88 ± 0.03 94.22 ± 0.03

Bold text is the best value.

TABLE 9 Correspondence between mental health classification labels

and EEG features.

Label Definition Associated EEG
features

Val (high vs. low) DEAP: 9-point scale,

high (5–9), low (1–4)

Frontal asymmetry in alpha

band

Aro (high vs. low) DEAP: 9-point scale,

high (5–9), low (1–4)

Increased beta, gamma power;

reduced alpha power

Str (low, med,

high)

PhyAAt: HRV and

self-reported stress

scores

Elevated theta, alpha in PFC;

altered FC (PFC-amygdala)

CL (high vs. low) EEGEyeNet: task

performance

Increased beta; reduced alpha

in parietal regions

TE (high vs. low) eSports: subjective

engagement ratings

Increased theta, beta FC

across frontal and parietal

regions

Val, valence; Aro, arousal; Str, stress level; CL, cognitive load; TE, task engagement; PFC,

prefrontal cortex, FC, functional connectivity.

Mechanism’s ability to focus on relevant temporal features despite

the presence of noise. In mobile deployment scenarios, the model

achieved an average inference time of 125 ms per sample on a

simulated mobile processor, while maintaining over 95% of its

baseline accuracy. These findings indicate that the EEGMind-

Transformer is capable of real-time performance, making it suitable

for mobile healthmonitoring applications. The results highlight the

model’s robustness and adaptability to challenging environments,

reinforcing its potential for deployment in real-world scenarios.

To provide a comprehensive evaluation of the EEGMind-

Transformer’s classification performance, we conducted

experiments comparing it against six state-of-the-art (SOTA)

models on the EEGEyeNet and PhyAAt datasets. The evaluation

metrics included sensitivity, specificity, precision, and F1-score,

which are essential for understanding the model’s robustness in

detecting positive samples, avoiding false positives, and achieving

a balanced classification performance. The results (in Table 8)

show that EEGMind-Transformer significantly outperformed

all SOTA models across all metrics. On the EEGEyeNet dataset,

the sensitivity of EEGMind-Transformer was 94.69%, while

the specificity reached 95.02%, indicating its ability to reliably

identify both positive and negative classes. Similarly, precision and

F1-score were 94.80 and 94.17%, respectively, demonstrating a

high degree of reliability and balance in predictions. Comparable

trends were observed on the PhyAAt dataset, where the model

achieved sensitivity and specificity of 95.18 and 95.10%, along
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FIGURE 8

Spatiotemporal feature heatmaps for high and low arousal conditions learned by the Dynamic Temporal Graph Attention Mechanism (DT-GAM). The

heatmaps highlight the temporal attention weights assigned to di�erent EEG segments, showing the model’s focus on relevant time intervals during

classification.

FIGURE 9

Brain region importance visualization for stress-level classification derived from the Hierarchical Graph Representation and Analysis (HGRA) module.

The prefrontal cortex and amygdala exhibit the highest importance scores, consistent with their known roles in stress and emotional regulation.

with a precision of 94.88% and an F1-score of 94.22%. In contrast,

the closest performing model, CNN-LSTM, achieved F1-scores

of 90.87% on EEGEyeNet and 90.47% on PhyAAt, showing

a significant performance gap compared to the EEGMind-

Transformer. Traditional models such as Random Forest and

SVM-RBF displayed lower sensitivity and precision, highlighting

their limitations in handling the spatiotemporal complexity

of EEG data. These results underscore the effectiveness of the

EEGMind-Transformer’s dynamic temporal graph attention

mechanism in capturing subtle but critical features, which

contributes to its superior performance. The high sensitivity

ensures that the model captures most positive samples, while

the high specificity indicates a strong ability to filter out false

positives. The balanced precision and F1-scores demonstrate its

robustness in handling potentially imbalanced data distributions,

making it suitable for real-world applications in EEG-based

health monitoring.

Table 9 outlines the correspondence between the mental health

classification labels used in this study and the associated EEG

features. The classification labels were derived from validated

datasets, including DEAP, PhyAAt, EEGEyeNet, and eSports, and

were based on clinically or experimentally relevant criteria. For

instance, valence and arousal were defined using self-reported

scores on a 9-point Likert scale from the DEAP dataset, while

stress levels were categorized using heart rate variability (HRV) and

self-reported scores from the PhyAAt dataset. Similarly, cognitive

load and task engagement were based on task performance

and subjective ratings from EEGEyeNet and eSports datasets,

respectively. The EEG features associated with these labels reflect

well-documented neurophysiological patterns. For example, frontal
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asymmetry in the alpha band is linked to valence, while arousal

is associated with increased beta and gamma activity and reduced

alpha power. Stress levels are characterized by elevated theta and

alpha activity in the prefrontal cortex (PFC) and altered functional

connectivity between the PFC and the amygdala. Cognitive load

and task engagement involve distinct patterns of beta and theta

activity, particularly in the frontal and parietal regions. These well-

established associations provide a neurophysiological basis for the

classification process, enhancing the interpretability and clinical

relevance of the results.

Figure 8 illustrates the spatiotemporal feature heatmaps learned

by the Dynamic Temporal Graph Attention Mechanism (DT-

GAM). The heatmaps depict the temporal attention weights

assigned to different time intervals of EEG signals under high

and low arousal conditions. For the high arousal condition,

the model prioritizes EEG segments corresponding to task

transitions and heightened neural activity, whereas the low

arousal condition shows comparatively distributed attention

weights. These visualizations demonstrate the model’s capability

to dynamically focus on the most relevant temporal features for

classification. Figure 9 visualizes the importance scores of different

brain regions as derived from the adjacency matrices learned

by the Hierarchical Graph Representation and Analysis (HGRA)

module. In the stress-level classification task, the prefrontal cortex

and amygdala exhibit the highest importance scores, highlighting

their central roles in stress regulation and emotional processing.

These visualizations provide interpretable evidence that themodel’s

learned features align with established neuroscientific findings,

emphasizing its utility in mental health monitoring applications.

6 Conclusion and discussion

This study aimed to address the challenge of classifying mental

health states based on EEG signals, particularly in handling

complex spatiotemporal dependencies and diverse neural activity

patterns. We proposed the EEGMind-Transformer model, which

integrates a Dynamic Temporal Graph Attention Mechanism

(DT-GAM), a Hierarchical Graph Representation and Analysis

module (HGRA), and a Spatial-Temporal Fusion Module (STFM)

to effectively capture the spatiotemporal features within EEG

data. In the experiments, we used several representative datasets,

including EEGEyeNet, PhyAAt, eSports Sensors, and DEAP, and

compared the model’s performance against six state-of-the-art

(SOTA) methods. The results demonstrated that the EEGMind-

Transformer significantly outperformed the other methods across

key metrics.

The potential applications of this model span several fields.

In mental health monitoring, the EEGMind-Transformer can

be deployed in wearable EEG devices for continuous stress

monitoring, early detection of depression, and tracking mental

health trends over time. Such applications are particularly relevant

for telehealth platforms, where clinicians can remotely monitor

patients and receive actionable insights based on EEG-based

biomarkers. Additionally, the model’s ability to detect cognitive

load makes it suitable for adaptive learning systems in educational

contexts, where real-time analysis of cognitive states can guide

personalized content delivery to optimize learning outcomes. In

human-computer interaction (HCI), the model can facilitate brain-

computer interface (BCI) applications, such as hands-free control

of devices in gaming, assistive technologies for individuals with

disabilities, or enhanced user experience design in immersive

environments. Furthermore, the model has practical applications

in workplace stress management, where it can be used to monitor

operators in high-stress occupations like air traffic control or

emergency response. By providing real-time feedback and stress

mitigation strategies, it supports both performance optimization

and well-being.

One key limitation of the model lies in its reliance on high-

quality, artifact-free EEG data. While the model performs well on

preprocessed datasets, its robustness to noise or artifacts in real-

world clinical EEG data remains a challenge. Future work could

focus on enhancing themodel’s resilience to common EEG artifacts,

such as muscle and movement artifacts, by incorporating data

augmentation techniques or developing adaptive filtering layers

that operate within the model to manage noise. Additionally,

while our preliminary results demonstrate themodel’s effectiveness,

long-term stability across diverse patient populations and mental

health conditions has yet to be fully validated. Further testing

is necessary to confirm the model’s stability and reliability

over extended monitoring periods. Another area for future

improvement involves validating the model’s generalizability across

different environments, particularly for remote or mobile health

applications where EEG data quality and environmental factors

may vary widely. Conducting experiments under varied conditions-

such as differing ambient noise levels, electrode types, and user

movement-could provide insights into the model’s adaptability

and inform adjustments needed for robust performance outside

controlled settings. Finally, future directions could also include

the integration of multi-modal data, such as physiological or

behavioral metrics, to enhance the model’s diagnostic capability.

By fusing EEG data with other biological signals, the model could

achieve a more holistic understanding of mental health conditions,

thus broadening its applicability and improving its robustness in

diverse settings.
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