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Understanding brain function relies on identifying spatiotemporal patterns in
brain activity. In recent years, machine learning methods have been widely
used to detect connections between regions of interest (ROIs) involved in
cognitive functions, as measured by the fMRI technique. However, it’s essential
to match the type of learning method to the problem type, and extracting the
information about the most important ROI connections might be challenging.
In this contribution, we used machine learning techniques to classify tasks
in a working memory experiment and identify the brain areas involved in
processing information. We employed classical discriminators and neural
networks (convolutional and residual) to di�erentiate between brain responses
to distinct types of visual stimuli (visuospatial and verbal) and di�erent phases
of the experiment (information encoding and retrieval). The best performance
was achieved by the LGBM classifier with 1-time point input data during
memory retrieval and a convolutional neural network during the encoding
phase. Additionally, we developed an algorithm that took into account feature
correlations to estimate the most important brain regions for the model’s
accuracy. Our findings suggest that from the perspective of considered
models, brain signals related to the resting state have a similar degree of
complexity to those related to the encoding phase, which does not improve the
model’s accuracy. However, during the retrieval phase, the signals were easily
distinguished from the resting state, indicating their di�erent structure. The study
identified brain regions that are crucial for processing information in working
memory, as well as the di�erences in the dynamics of encoding and retrieval
processes. Furthermore, our findings indicate spatiotemporal distinctions related
to these processes. The analysis confirmed the importance of the basal ganglia
in processing information during the retrieval phase. The presented results reveal
the benefits of applying machine learning algorithms to investigate working
memory dynamics.
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1 Introduction

Working memory (WM) is crucial for preparing and

organizing goal-directed behaviors, with its functions of storing

and manipulating incoming information. This process is capacity-

limited, demanding a balance between stability (preserving the

WM content from irrelevant information) and flexibility (updating

WM with relevant information) (Trutti et al., 2021). It involves

three temporal subprocesses: encoding, maintenance, and retrieval.

Over the years, various models of WM functioning have been

created, but the new ones are based more on the dynamics

of the ongoing processes. The dynamic-processing model of

working memory (Rose, 2020) assumes that relevant information

is retained by creating representations through recurrent activity

and/or strengthening the synaptic weights between neurons. These

processes are very dynamic and context-dependent. One of the

leading hypotheses in functional neuroimaging studies on false

memory retrieval is the sensory reactivation hypothesis. It suggests

that memory retrieval reactivates the processes from the encoding

stage, with true memories involving activation of sensory areas

(see Abe, 2012). However, recent findings indicate that content

representations during retrieval differ from those during encoding.

Memory retrieval appears to bemore of a constructive and dynamic

process involving the frontoparietal cortex, rather than just the

reactivation of the sensory cortex as suggested by the sensory

reactivation hypothesis (see Favila et al., 2020 for a review). To

investigate the dynamic of workingmemory processes, we designed

an fMRI experiment with four visual working memory tasks: two

with visuospatial and two with verbal stimuli based on the Deese–

Roediger–McDermott (DRM) paradigm (Deese, 1959; Roediger

and McDermott, 1995), and additionally resting-state procedure.

The DRM paradigm is widely used in memory research, as it

separates the WM subprocesses like encoding and retrieval.

In recent years, a variety of innovative methods have been

applied to the analysis of fMRI data. These include machine

learning algorithms, nonlinear time series analysis, and complex

network methodologies (Ochab et al., 2022; Singh et al., 2022;

Wen et al., 2018; Onias et al., 2014). Significant research has

focused on utilizing machine learning techniques and neural

networks for fMRI data analysis. The main idea behind this

approach is to analyze the neuroimaging data not from the

point of view of the single voxel, but by identifying the patterns

of neural activity over many brain areas. Thus, classification

based on advanced computational algorithms is one of the most

efficient methods for identifying neural activity and extracting

the complex relationship between the experimental conditions

and spatial-temporal patterns of brain responses measured by the

fMRI technique (O’Toole et al., 2007). However, the machine

learning algorithms and neural network types must be matched to

the problem investigated to obtain statistically reasonable results,

which is not a trivial problem due to the variety of computational

methods, e.g., linear discriminant analysis (LDA), support vector

machines (SVM), random forests (RF), neural networks classifiers

and many others. Therefore, the performance of machine learning

algorithms has been examined in many neuroscience studies,

including research related to the classification and diagnosis

of Alzheimer’s, Huntington and schizophrenia disease (Sarraf

and Tofighi, 2016; Patel et al., 2016), cognitive functions (Wen

et al., 2018), sleep studies (Li et al., 2018b) and conscious visual

perceptions (Haynes and Rees, 2005).

The goal of this paper is twofold. First, we would like to apply

some of the most commonly used machine learning algorithms

and neural networks in the study with working memory and

verify their effectiveness in classifying the tasks (recognition

between the visuospatial and verbal stimuli) and phases of the

experiments (encoding and retrieval). In this study, we considered

a set of linear and nonlinear classifiers and a residual neural

network. We also regarded two kinds of data organizations, i.e.

in the temporal-spatial form and single-time points from each

observation. Secondly, based on the results from classification

experiments, we would like to determine the brain regions that

are the most important for classifiers; thus, important from the

point of view of information processing in the brain. To this end,

we proposed a novel algorithm and compared the results with the

outcomes from the literature.

2 Experiment and data

2.1 Data description

Functional magnetic resonance imaging (fMRI) data from

four short-term memory tasks and a resting-state procedure were

analyzed. Based on questionnaires and genotyping of the PER3

gene, 66 participants out of 5,354 volunteers were selected to

perform the tasks in the MR scanner during two sessions: morning

and evening. After further data quality control, 58 participants were

included in the analysis. The order of the sessions as well as the

versions of the tasks (there were two equivalent versions of each

task) were counterbalanced between participants. The experiment

was conducted on one day (if the morning session was the first) or

two days (if the evening session was the first). Participants spent

the night before or between sessions in the room located in the

laboratory, and their quality of sleep during that night and the week

preceding the experiment was controlled using actigraphs.

The short-term memory tasks were based on Deese-Roediger-

McDermott (DRM) paradigm (Deese, 1959; Roediger and

McDermott, 1995), which allows separating the encoding and

retrieval processes, and is dedicated to studying short-term

memory distortions. Two tasks evaluated the perceptual similarity

(focusing on global, GLO, and local, LOC, information processing

of abstract objects), and the remaining two the verbal similarity

(semantic, SEM, and phonological, PHO, task). More specifically,

in GLO task, the stimuli were abstract figures requiring holistic

processing; in LOC task, the objects required local processing

and differed in one specific detail. On the other hand, in

SEM task, participants had to remember four Polish words

matched by semantic similarity, and in PHO task, matched by

phonological similarity.

In each task, the goal of a participant was to memorize the

memory set (encoding phase, 1.2–1.8 s), and then (after a mask

or distractor) recognize if the currently displayed stimulus, called

probe, was present in the preceding set (retrieval phase, 2 s). There

were three possible conditions of the probe: positive (the stimulus
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was the same as presented in the encoding phase), negative (the

stimulus was completely different) or a lure (the stimulus resembled

those presented in the memory set). Participants were asked to

answer with the right-hand key for “yes” and the left-hand key

for “no” responses. Then, after intertrial interval (on average 8.4

s), a fixation point (450 ms) and a blank screen (100 ms), the

new memory set was presented on the screen. Each task had 60

sets of stimuli followed by 25 positive probes, 25 lures, and 10

negative probes. The examples of experimental tasks are depicted

in Supplementary Figure 1.

In the resting-state procedure (REST), participants were

instructed to lie in the scanner with their eyes open and not to

think about anything in particular. They were not involved in any

cognitive process. Participants’ awakeness was monitored using an

eye-tracking system (Eyelink 1000, SR research, Mississauga, ON,

Canada).

Structural and functional data were collected on a 3T scanner

Skyra (Siemens Magnetom, Erlangen, Germany) in Małopolska

Center of Biotechnology in Kraków, Poland, with a 64-channel

head coil. For tasks, 709 volumes (for GLO, LOC, and SEM),

and 736 volumes (for PHO task) with a T2*-weighted echo-

planar sequence were acquired. For the resting-state procedure,

335 volumes with a gradient-echo single-short echo planar imaging

sequence were acquired. The following scanning parameters were

used: TR = 1,800 ms, TE = 27 ms, flip angle = 75◦, FOV = 256 mm,

voxel size: 4 × 4 × 4 mm). Structural data were acquired for each

participant using a T1-weighted MPRAGE sequence with isotropic

voxels (1× 1× 1.1 mm) using the following parameters: 256× 256

mm matrix, 192 slices, TR = 2,300 ms, TE = 2.98 ms. Stimuli were

projected on a screen behind a participant’s head. The participants

viewed the screen in a 45◦ mirror fixated on the top of the head coil.

2.2 Data preprocessing

The flow chart in Figure 1 summarizes data preprocessing

steps. Following the paper that introduced the dataset (Fafrowicz

et al., 2019), we performed the preprocessing using the Statistical

Parametric Mapping software package (SPM12, Welcome

Department of Imaging Neuroscience, UCL, London, United

Kingdom) implemented in MATLAB (Mathworks, Inc., MA,

United States). Scans were slice-time corrected, realigned by

inclusion of field maps, co-registered, and normalized to the EPI

template in Montreal Neurological Institute (MNI) stereotactic

space with a voxel resolution 3 × 3 × 3 mm. Then, data were

spatially smoothed using a Gaussian kernel of FWHM 6 mm,

covariates like motion parameters, mean signal, white matter,

and CSF were removed by linear regression. The signal was then

filtered with a 0.01–0.1 Hz filter, detrended, and despiked.

The signals were then averaged within 116 brain Regions of

Interest (ROIs) using the Automated Anatomical Labeling (AAL1)

brain atlas (Tzourio-Mazoyer et al., 2002). For a given experimental

session, they formed a data matrix with 116 rows corresponding

to the ROIs and the number of columns corresponding to the

length of the time series. Further processing steps follow (Ochab

et al., 2022): for each session, we extracted all data segments

(i.e., columns) related to the encoding or retrieval phase; for

FIGURE 1

Flow chart of data preprocessing. Two topmost steps correspond to
standard BOLD signal processing and coarse-graining into
atlas-based Regions of Interest. The dashed boxes indicate that only
a part of the experimental time series is selected.

each phase, the segments were then concatenated in order of

appearance. The segments started at the stimulus onset and

were 10 s long (6–7 TRs) each, which means that the encoding

segments encompassed the presentation of the distractor and

the retrieval segments encompassed the inter-trial interval. For

a given session, the concatenation of segments from all 60

stimuli resulted in a 400-TR-long time series. Data for the

resting state with eyes open were preprocessed similarly to the

task data. First, in the absence of stimuli that would set the

position of the segments, 400-TR long series were randomly

chosen. Then, they were divided into consecutive, non-overlapping

segments of 10 s. Then, these segments were randomly shuffled

and concatenated.

2.3 Classification tasks

We create eight classification problems using the data described

in Section 2.1, four for each of the two phases of encoding

(ENC) and retrieval (RET). Their variants are binary or 4-class

problems depending on whether we group similar stimuli or

not, e.g. global and local stimuli are both graphical and can be

grouped into a single class. They can be further complicated

by adding the resting state as an additional class, resulting

in a 3- or 5-class classification. Table 1 lists the resulting

experimental setups.

For each of the listed setups, we randomly split the available

data into training and testing subsets using a ratio of 90:10.

In all non-neural classifiers, a sample of input data always has

the dimensions of 116× 1 (number of brain regions times one time

point).We also conduct additional experiments taking into account

the time dimension of the data, where we train neural networks on
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TABLE 1 Classification of the tasks due to the number of classes.

Experiment name Class 1 Class 2 Class 3 Class 4 Class 5

ENC2 GLO, LOC SEM, PHO

ENC3 GLO, LOC SEM, PHO REST

ENC4 GLO LOC SEM PHO

ENC5 GLO LOC SEM PHO REST

RET2 GLO, LOC SEM, PHO

RET3 GLO, LOC SEM, PHO REST

RET4 GLO LOC SEM PHO

RET5 GLO LOC SEM PHO REST

samples of dimensions 116 × 6 (sequences of six time points). We

elaborate on this experiment in Section 5.2.

3 Models

We have conducted the fMRI classification by dividing

machine learning methods into classical linear and non-linear

discriminators, and neural networks. In total, ten classifiers were

compared in the study.

3.1 Linear classifiers

3.1.1 Ridge classifier
Ridge classifier was proposed inHoerl and Kennard (1970). The

method addresses the problem of parameter estimation for multi-

collinear independent variables. Ridge achieves that by adding a

penalty term L2, which is equal to the square of the coefficients.

However, while the L2 regularization minimizes coefficients, it

never reduces them to zero (Hoerl and Kennard, 1970).

3.1.2 Logistic regression
Logistic regression is another linear estimation algorithm

that was tested in the study. Unlike the Ridge Classifier, the

logistic regression uses a cross-entropy loss function to output the

probability for the classification (Brown and Mues, 2012).

3.1.3 Support vector machines using stochastic
gradient descent (SGD)

Loss optimization in linear models can also be performed

using stochastic gradient descent SGD. It attempts to discover the

gradients of the cost function for a random selection of data points.

By conducting this operation, stochastic gradient descent can lead

tomuch faster convergence of the algorithm. This timing advantage

is crucial in the case of Support Vector Machines, which tend to

build complex hyperplanes (Wang et al., 2012).

3.1.4 Gaussian naive Bayes
Gaussian naive Bayes is a subset of the Naive Bayes models. The

model assumes a Gaussian distribution of the data and a lack of

feature dependencies within it. Due to its simplicity, the classifier

often performs well on highly dimensional data. It can converge

faster than discriminative algorithms such as Random Forest or

Logistic Regression. The Gaussian Naive Bayes can also serve as

a baseline due to its probabilistic nature (Brown and Mues, 2012;

Jahromi and Taheri, 2017).

3.1.5 Linear discriminant analysis (LDA)
LDA is another linear method that was evaluated in the study.

LDA operates in two stages. First, it extracts all the feature values

linearly. Then it uses those mappings and attempts to linearly

separate classes by presenting points of opposite classes as far as

possible from each other (Wu et al., 1996).

3.2 Non-linear classifiers

In contrast to the discriminators utilizing linear functions,

non-linear classifiers attempt to match the data by minimizing

functions that do not share regular slopes. This approach allows

for creating more strict boundaries between classified data points,

hence increasing the goodness of a fit. However, at the same time,

this can lead to non-linear classifiers overfitting.

3.2.1 Quadratic discriminant analysis (QDA)
Unlike LDA, which relies on the assumption of linear

divisibility of the feature values, Quadratic Discriminant Analysis,

uses non-linear attributes to separate data points. This proves to

be generally more accurate, especially in the problems with high

dimensionality (Wu et al., 1996).

3.2.2 Random forest classifier
Random forest classifier is a model composed of a collection

of decision trees. In simple terms, decision trees can accept both

numeric and categorical inputs to build sets of rules. Those rules are

distributed throughout the trees. The data input can then flow in a

top-to-bottom way and be filtered to produce respective outputs
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FIGURE 2

Schematic overview of a residual network block.

and classification results. Random forests use sets of such rules to

provide even more accurate classification boundaries (Brown and

Mues, 2012; Anyanwu and Shiva, 2009).

3.2.3 Light gradient boosting machine (LGBM)
Over the last few years, boosting methods have been receiving

more attention as their performance shows improvement over

simple tree-based approaches. The reason for this phenomenon

originates in the architecture of the boosted models. Boosting

combines multiple models that are built iteratively, rather than

in parallel. This ensures that each consecutively built algorithm

attempts to minimize the errors made by previous models (Yaman

and Subasi, 2019). Light gradient boosting is a special case of

such an application, as it proves to outperform most of the other

machine learning algorithms in a variety of benchmarks (Ke et al.,

2017).

3.3 Performance baseline

3.3.1 Dummy classifier
To assess the reliability of the performed experiments, We

created a dummy classifier whose sole purpose was to create a

baseline for the other methods. The dummy classifier was fit in

such a way that it ignored the input features and relied only on the

distribution of the classified classes in making predictions.

3.4 Neural networks

One of the motivations for using deep neural networks,

specifically the ones employing convolutional layers (like

convolutional and residual networks), is the ability to

process spatial data. In our case, the original BOLD data

can be considered as having two dimensions—the first

corresponds to the spatial distribution of the ROI, and

the second corresponds to the temporal character of the

time series. Each data sample consists of up to six discrete

measurements, one TR apart, corresponding to the duration

of the encoding/retrieval phases. We hypothesize that

having the data in the temporal-spatial form and a model

processing this data structure can yield better results than using

single-time observations.

3.4.1 Layered convolutional network (CNN)
The 1D convolution is often used for processing temporal data

due to its ability to effectively handle sequential information in

a channel-wise manner (Kiranyaz et al., 2019; Bai et al., 2018).

The CNN architecture we use comprises two 1D convolutional

layers (all the convolutional layers use filters of size 3),

1D maximal pooling, another 1D convolution, a linear layer

with dropout, and the final softmax layer to calculate class

probabilities. Crucially, all the convolutions move along the

temporal dimension. This setup allows interactions between any

subset of brain regions.

3.4.2 Residual network (ResNet)
Residual networks (ResNets) (He et al., 2016) are a

more powerful neural network type, in our case also utilizing

convolutions. They consist of an input convolution, followed by

several residual blocks of layers, depending on the network depth.

Each of the blocks comprises two convolutional operations (3 ×

3 filters), batch normalization (Ioffe and Szegedy, 2015), and a

shortcut connection (1 × 1 filters). In the final layers, average

pooling is performed, and a linear operation computes logits for

each label. We utilize 2D convolutions to capture both spatial and

temporal interactions between different ROIs. Taking inspiration

from Li et al. (2018a) and Suk et al. (2017), we organize the ROIs in

a structured format within a 2D matrix. This enables our network

to effectively learn interactions between brain regions neighboring

in the AAL atlas (typically, spatially adjacent or contralateral),

allowing for the extraction of both local spatial relationships and

temporal patterns simultaneously. Figure 2 shows a schematic

overview of a typical architecture of a residual network.

4 Methods

This section expands on two out of the several models described

in Section 3: LGBM and ResNet. This selection was made after

the initial results, where LGBM and ResNet models proved to be

the most promising ones (LGBM scores were comparable or higher

than all othermodels, but for ResNet in two encoding experiments).

Consequently, we included here the hyperparameter tuning and

feature explanation procedures of the two models only.
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TABLE 2 LGBM hyperparameter tuning values.

Hyperparameters Values

Lambda l1 1e-8 to 10

Lambda l2 1e-8 to 10

No. leaves 2 to 128

Feature fraction 0.1–1.0

Bagging fraction 0.1–1.0

Bagging freq 1–7

TABLE 3 Residual network hyperparameter tuning values.

Hyperparameters Values

ResNet size 14, 20, 32, 56

Batch size 32, 64, 128, 256

Learning rate 0.0001, 0.0005, 0.001, 0.005, 0.01

Dropout 0.0, 0.1, 0.2, 0.3

Weight decay 0.01, 0.05, 0.1

TABLE 4 1D CNN hyperparameter tuning values.

Hyperparameters Values

Batch size 32

Learning rate 0.0001, 0.0005, 0.001

Dropout 0.0, 0.1, 0.2, 0.3

4.1 Model training and tuning

4.1.1 LGBM hyperparameter tuning
In our preliminary calculations, the tested machine learning

algorithms were capable of resolving the complexity of correlations

and differences within our sample of the fMRI data with

varying accuracy. Therefore, we decided to pick the most

promising model—LGBM—and improve it with hyperparameter

tuning (Feurer and Hutter, 2019).

To perform the parameter searches, we used Optuna, a

state-of-the-art hyperparameter optimization framework (Akiba

et al., 2019). We conducted 100 repetitions of each experiment,

such as ENC2 or RET4. Within each repetition, there were 100

hyperparameter searches, and optional pruning of trials with

unpromising initial results. This procedure reduces the bias of

human-produced parameters and can be utilized again, even if

the data distributions have changed (Akiba et al., 2019). The

parameters used for the experiments can be seen in Table 2.

Henceforth, we refer to the hyperparameter-tuned Light Gradient

Boosting model as “tuned LGBM.”

4.1.2 Neural network training and
hyperparameter tuning

In neural network experiments, each model is trained from

scratch for up to 100 epochs. Early stopping was employed to

finish the training process before epoch 100 if no improvement

Require: X—train set

Require: C—classifier

Require: sR(r)—importance scoring function for ROIs

r ∈ R

Require: S—map for scores for each ROI

R← ROIs

XR ← X

while |R| != 0 do

C∗ ← C trained on the set XR ⊲ Train the

classifier

Calculate importance score sR(r) for C∗

sR(r)← z(sR(r)) ⊲ Standardize (z-score)

Append sR(r) to S[r] for each r ∈ R

r∗ = argmaxr∈R sR(r) ⊲ Find and remove the most

important ROI

R← R \ {r∗}

XR ← XRwithout row r∗

end while

r← 0

while r <

∣∣ROIs
∣∣ do ⊲ Calculate average scores

S[r]← median(S[r])

r← r + 1

end while

Algorithm 1. Importance algorithm with ROI pruning.

in validation loss was recorded for five epochs in a row. All

networks were trained using the Adam optimizer (Kingma and

Ba, 2014) together with a scheduler to reduce learning rate on loss

function plateaus.

We perform a hyperparameter search for each task, where each

task deals with a different data collection phase (either encoding or

retrieval) and a varying number of classes—depending on whether

the labels are simplified, by joining similar stimuli, and the addition

of resting state data. Table 3 lists hyperparameters and their value

ranges searched during training for ResNets and, similarly, Table 4

lists the hyperparameters for the 1D convolutional model.

4.2 Algorithms for data importance
extraction

4.2.1 ROI importance estimation for LGBM
In addition to obtaining classification metrics for the

experiments carried out, we were also interested in determining

which particular ROIs were the most vital features for the classifier.

To this end, we extracted ROI importance scores from the LGBM

models using the default LGBM feature importance estimation

method (Ke et al., 2017), i.e. the number of splits. The method,

applicable to any tree-based model, counts the number of times a

given feature (ROI activations) was used to split the data to grow

the decision tree. We report the results of the tuned LGBM in the

Supplementary material.

Unfortunately, such scores—as many others (see, e.g. Molnar,

2020, Ch. 8.1.4, 9.1.3, 9.5)—cannot account for possible

correlations between the features. This lack could result, for

example, in a pair of equally informative and highly correlated
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FIGURE 3

An illustration of the first few steps of Algorithm 1 on a subsample of LGBM classification results. (Top) Each row depicts the LGBM split scores. In
consecutive steps, ROIs number 53, 56, 81 (not shown), and 54 are removed, and the scores are recalculated. (Middle left) Importance values are
z-scored to correct for the decreasing number of features. (Middle right) The average across all removal iterations forms the final importance score
of an ROI. ROIs are ordered into functionally associated groups of brain regions. (Bottom) The di�erences between importance scores indicate how
classification is a�ected by feature correlations. Cyan (blue) pixels—regions removed in a given step n (in a previous step); green (red) pixels—regions
whose importance increased (decreased) due to the removal. This diagram corresponds to the upper right corner in the top panel of Figure 7.

features being recognized as an important and an unimportant

one; if, however, the former was removed from the data, the latter

would take over its importance. To alleviate this problem, we

performed an additional feature pruning procedure as described

in the Algorithm 1: at each step, (i) the most important feature

was removed from the training set, (ii) importance scores of

the remaining features were recomputed, (iii) to correct for the

decreasing number of features, the mean of importance across the

remaining features was subtracted from the importance of each

individual feature. The process finished when all features have

been removed. To obtain the final corrected score, such demeaned

scores were averaged over all the steps in which ROI was present

in the model. The process is illustrated in Figure 3. Given the

significant computational time and resources required for feature

pruning, we limited the validation to untuned LGBMmodels.

4.2.2 ROI importance estimation for ResNets
By design, deep neural networks are black-box models, i.e.,

there is no simple way to obtain insight about why they

generated a certain prediction. As opposed to a linear model,

in deep neural networks the input representation is non-linearly

transformedmultiple times. Because of that, to extract interpretable

knowledge about a network’s decision process, we have to resort to

various heuristics.

Our approach, outlined in Algorithm 2, is inspired by methods

that perturb the input data during evaluation and measure the

decrease in performance (Ribeiro et al., 2016). More formally,

given a trained fixed ResNet model f and a validation set X =

(x1, x2, . . . , xn), we sample batches from the validation set, XB =

(xB1, . . . , xBk) and perturb in them a subset R of ROIs X̃B =

P(XB,R). Both the perturbed batch X̃B and the original XB are then

passed to the model and have their predictions compared. Finally,

differing predictions contribute to the scores collected for each

perturbed ROI in R.

In more detail, the perturbation function P(·,R) is assumed to

change only a subset of the input space so that this modified subset

of features would now be unusable by the model f . We choose a

zeroing perturbation function P∅(x,R), which sets to 0 a subset of

feature representation of x— in our case, a subset of k ROIs chosen

uniformly at random for each batchXB. For each original data point

x ∈ XB and its perturbed counterpart, x̃ ∈ X̃B we compare their

prediction p = f (x) and p̃ = f (̃x) and note if they differ. If they do,

we add one to the batch score

s =
1

|XB|

∑

x∈XB

1p6=̃p

In other words, the score s is a percentage of predictions in the

perturbed batch differing from the predictions in the original batch.

We store it in a buffer, for each zeroed ROI r ∈ R in this batch.

The per-batch scores s are collected over multiple iterations and
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Require: f—classification model

Require: N—number of iterations

Require: X—validation set

Require: k—ROI subset size

Require: P(x,R)—perturbation function

Require: S[·]—map for scores buffers for each r ∈ ROI

i← 0

while i < N do

Sample uniformly subset R ⊂ ROI of size k = |R|

for XB ∈ X do

Perturb input data X̃B ← P∅(XB,R)

Forward both batches through the network pB ←

f (XB), p̃B ← f (X̃B)

Calculate importance score s← 1
|XB |

∑
x∈XB

1p 6=̃p

Store scores for each r ∈ R to the buffer

S[r]← S[r] ∪ s

end for

i← i+ 1

end while

r← 0

while r < |ROIs| do ⊲ Calculate average scores

i← |S[r]|

S[r] = 1
i

∑
S[r]

r← r + 1

end while

Algorithm 2. Importance algorithm with data perturbation.

batches for each r ∈ ROIs, and their average is the final importance

score S[r].

The procedure was run for N = 10,000 iterations, with k = 12

out of 116 ROIs zeroed in each batch – the choice was arbitrary,

but it involves a reasonable trade-off between the coverage of

potential multichannel interactions and the computational cost of

the procedure (with the number of iterations limited as above, one

could only cover all pairwise interactions). A dropout layer in the

model architecture enhances parameter randomization, promoting

the generalization of the identified ROIs. Still, using a probabilistic

scoring method did not significantly affect the results.

4.3 Evaluation metrics

We evaluated precision, recall, F1, and classifier convergence

times as suggested in Taha and Hanbury (2015). Our main focus

was on F1 scores and convergence times. Given that the data had

varying numbers of samples for each class, we used the weighted

micro-averaged F1 score to account for the class imbalance. The

F1 formula below shows how the final score is calculated, given

precision, recall, and F1 score for each class i. This ensures that each

class’s contribution is proportional to its prevalence in the data set.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1i =
2× Precisioni × Recalli

Precisioni + Recalli
F1 =

∑N
i=1(Wi × F1i)∑N

i=1 Wi

FIGURE 4

Model Convergence Times and F1 scores achieved on the test data
for discriminators. Notice the logarithmic horizontal time axis. Each
point corresponds to the result of a single experiment (i.e., ENC2,
ENC3 and so on); cf. the left panel in Figure 5.

where TP is the number of true positives, FP is the number

of false positives, and FN is the number of false negatives.

The weights Wi correspond to the number of true samples

of class i.

5 Results

5.1 Classifier performance comparison

As indicated in the Evaluation Metrics subsection, we made

final comparisons based on F1 and convergence time. The

combined results can be seen in Figures 4, 5, and Table 5.

Based on the results, a few major conclusions can be drawn.

1. In terms of model convergence times and F1 scores, the

nonlinear classifiers achieved the best performance (see

Figure 4). Additionally, Quadratic Discriminant Analysis

achieved the highest F1 score in the shortest amount of time,

at least one order of magnitude less than other nonlinear

discriminators.

2. The nonlinear models have shown better accuracy compared

to the linear models when examining the experimental data

split into encoding and retrieval phases (see Figure 5). The

F1 measure tends to decrease as the number of considered

classes for the encoding phase increases. However, after

correcting the results with dummy classifiers, a nearly

constant relationship between accuracy and the number of

classes is observed. Furthermore, including the resting state

in tasks improves the performance of the discriminators,

especially during the retrieval phase, where tasks involving

the resting state achieve the highest accuracy. This also

highlights differences in the data structures recorded in different

experimental phases.

3. When looking at the results for the discriminators in

Table 5, we found that the best model accuracy came from

the tuned LGBM Classifier (nonlinear discriminators).

The only exceptions were ENC2 and RET4, where

Quadratic Discriminant Analysis and random Forest
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FIGURE 5

F1 score for the Encoding and Retrieval experimental phase and di�erent classifiers. For all models other than the CNN, the data used for training
were instantaneous brain activations (1 TR × 116 ROI vectors).

TABLE 5 Model evaluation results—F1 scores achieved on the test data (single time point: 1 TR × 116 ROIs).

Model Classifier
type

ENC2 ENC3 ENC4 ENC5 RET2 RET3 RET4 RET5

Dummy classifier Baseline 0.507 0.347 0.247 0.200 0.504 0.353 0.252 0.204

Ridge classifier Linear 0.577 0.438 0.306 0.237 0.551 0.621 0.287 0.402

Logistic regression Linear 0.577 0.442 0.311 0.245 0.551 0.622 0.292 0.406

SGD classifier Linear 0.535 0.455 0.206 0.084 0.544 0.622 0.142 0.283

Gaussian naive

Bayes

Linear 0.583 0.395 0.316 0.264 0.577 0.651 0.299 0.416

Decision tree

classifier

Nonlinear 0.615 0.505 0.355 0.318 0.601 0.664 0.342 0.443

Random forest

classifier

Nonlinear 0.751 0.634 0.533 0.508 0.734 0.780 0.532 0.612

Linear

discriminant

analysis

Linear 0.577 0.442 0.314 0.247 0.551 0.627 0.292 0.409

Quadratic

discriminant

analysis

Nonlinear 0.758 0.598 0.492 0.456 0.730 0.777 0.487 0.569

LGBM classifier Nonlinear 0.715 0.631 0.467 0.443 0.697 0.756 0.458 0.545

LGBM classifier

tuned

Nonlinear 0.754 0.684 0.543 0.521 0.737 0.792 0.530 0.603

Bold values indicate the best score in a given column.

Classifiers performed slightly better than the tuned LGBM

Classifier, respectively.

5.2 Classifiers based on neural networks

In our study, we applied CNNs and ResNets with various

parameters (e.g., the number of residual blocks). Results on

their performance are collected in Figure 6 and Table 6. We

hypothesized that models processing temporal-spatial data

can yield better results than using single-time observations.

Consequently, we involved two approaches as mentioned above,

i.e. as an input to ResNet, we used 1-time point data related

to the instantaneous view of the brain state and 6-time points

corresponding to the dynamics of the brain during the processing

of the tasks.

It can be easily drawn that the networks give more

accurate results when data in 6-time point segments are used

to train the model. Moreover, the higher number of residual

blocks within the middle layer does not imply better network

performance, which is evident when results for the encoding

phase for the 1-time point and the 6-time point are compared.

For the former case (1-time point), the best results are obtained
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FIGURE 6

F1 score for the Encoding and Retrieval experimental phase and di�erent neural networks: ResNet (blue and orange) and (green) CNN. The data used
for training were either instantaneous brain activations (t = 1; 1 TR × 116 ROIs) or data segments of 6 time points (t = 6; 6 TRs × 116 ROIs) for
comparison with the other classifiers. CNNs used only t = 6 data format.

TABLE 6 Neural retworks evaluation results—F1 scores achieved on the test data.

Input length Model ENC2 ENC3 ENC4 ENC5 RET2 RET3 RET4 RET5

1 time point ResNet14 0.652 0.451 0.351 0.372 0.652 0.464 0.367 0.357

ResNet20 0.675 0.444 0.292 0.361 0.652 0.551 0.348 0.390

ResNet32 0.678 0.502 0.383 0.385 0.652 0.521 0.368 0.383

6 time points ResNet14 0.834 0.731 0.492 0.490 0.724 0.655 0.453 0.479

ResNet20 0.808 0.720 0.430 0.509 0.663 0.658 0.375 0.481

ResNet32 0.782 0.725 0.484 0.498 0.652 0.682 0.429 0.481

6 time points 1D CNN 0.841 0.767 0.547 0.539 0.788 0.722 0.506 0.502

The input data used for training were either brain activations during 1 time point (1 TR × 116 ROIs) or data segments of 6 time points (6 TRs × 116 ROIs). Bold values indicate the best score

in a given column.

for ResNet32, whereas in the latter case, ResNet14 gives better

outcomes. Interestingly, the model outperforms the non-neural

classifiers only for ENC2 and ENC3 cases. Adding the resting

state to the tasks enhances the accuracy only when four

classes are considered, i.e. F1 for ENC4 (RET4) is lower than

ENC5 (RET5). The best 1D CNNs found have performance

better than any of the considered ResNets, even though they

have a considerably simpler architecture. Interestingly, for the

encoding phase, they perform comparably or better than any

non-neural classifier, but are comparable or worse for the

retrieval phase.

5.3 Explainability: ROI importance

The ROI pruning procedure, Algorithm 1, allowed us to

see whether, after removing a highly significant feature r∗,

some other remaining ROIs considerably changed their scores.

Such changes are visualized in the upper panel of Figure 7

and in Figure 11, where in each row of the heatmap green

(red) pixels indicate the regions whose importance increased

(decreased) due to the removal of a single ROI (cyan tips of

blue vertical lines). These changes can be interpreted as the

model compensating for the information loss due to the r∗

removal by using similar information obtained from the several

remaining ROIs, whose importance increased. We observed those

remaining features improving their importance scores, with just

a small overall F1 performance decrease. The importance of the

other remaining ROIs would decrease if the information they

carried was only useful in combination with the one that had

been removed.

Notable examples of correlated clusters of highly important

ROIs are the ones responsible for visuals: 53, 54, and 55 (left

inferior occipital gyrus, right inferior occipital, and left fusiform

gyrus) or 48 and 56 (right lingual gyrus and right fusiform

gyrus) appearing in encoding and retrieval experiments without

resting state; see Figure 7. Similarly, certain basal ganglia (39,

40, 71, 72) and some cerebellar areas (97, 103, 105, 108) had

correlated scores and were important for the classifier’s decisions

in encoding experiments against the resting state. The full

list of ROI names can be found in Supplementary material.

Figure 8, together with Supplementary Figures 2–4, offer
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FIGURE 7

ROI importance scores of the tuned LGBM model, taking into account feature correlations. (Top) For the ENC2 experiment, the heatmap shows the
change of importance score 1n = sR\{r∗}(r)− sR(r) after iteratively removing the n-th most important ROI (only the first ten steps are shown). These
changes indicate correlations between features. Cyan (blue) pixels—regions removed in a given step n (in a previous step); green (red) pixels—regions
whose importance increased (decreased) due to the removal. See Figure 11 for the other experiments. Note, for instance, the increased importance
of the right inferior occipital (54) and left fusiform gyrus (55) after removing the left inferior occipital gyrus (53). Cf. results in the bottom panels and
the unmodified split importance in Supplementary Figure 1. (Middle and bottom) The panels show the median over all iterations until the removal of
a given ROI of the z-scored importance S(r). These scores account for the increases and drops visible in the top panel due to ROI correlations. ROIs
are ordered according to the resting-state networks given at the bottom. The ROI numbering of AAL atlas is given at the top; see
Supplementary material for ROI names.

a visualization of where the most important brain regions

are located.

The ROI importance scores (not corrected for possible

correlations) of the tuned LGBM model are shown in

Supplementary Figure 1, together with all the 100 optimisation

trials in Supplementary Figures 5, 6. Comparing these scores

with the ones obtained from pruning, one can notice where the

procedure was indeed beneficial. For instance, before pruning

(Supplementary Figure 1) the right inferior occipital gyrus (54)

had low importance, while the left inferior occipital gyrus

(53) was highly important, but after pruning (Figure 7) both

areas are almost equally highly important. Similarly, before

pruning the right middle occipital gyrus (52) was considerably

more important than the left middle occipital gyrus (51),

but after pruning in most of the experiments they both have

medium importance.

The respective results obtained from ResNets and Algorithm 2

are shown in Figures 9, 10 and in Supplementary Figures 9–13.

Fewer ROIs than in the previous method reach high scores,

notably: 85, 86 visual processing regions, 4 and 6 executive

regions, 91 and 92 in the cerebellum, and several auditory ROIs

(e.g., 81, 84, 87).

Surprisingly, there is no significant correlation

between respective ResNet and LGBM importance

scores, even though their classification performance is

comparable. For 2- and 4-class tasks the encoding and

retrieval scores are less correlated for ResNet (correlation

coefficient 0.27 and 0.55, respectively) than LGBM (0.94
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FIGURE 8

Plot of z-scored LGBM importance from Figure 7 in 5-class encoding (top) and retrieval (bottom). For each phase, some of the most important AAL
ROIs are labeled. 2-, 3-, and 4-class results are shown in Supplementary material. Rendered with nilearn (Abraham et al., 2014).

in both cases), but are similarly correlated for 3- and

5-class tasks (0.48 and 0.57 versus 0.38 and 0.50). The

correlation between 2- and 4-class importance scores

(0.88 for ENC and 0.76 for RET) and 3- and 5-class

(0.89, 0.80) are comparable with LGBM (0.91, 0.92,

0.95, 0.68, respectively).

6 Discussion

From the neurocognitive perspective, the discriminant analysis

allows us to reveal the dynamic process of working memory.

As visualized in Figure 7, the first 10 steps of pruning showed

important ROIs mainly in auditory, sensory-motor, and visual

networks in both encoding and retrieval phases. Superior temporal

gyrus and temporal pole (ROIs 81, 82, 83) from the auditory

network are responsible for the encoding of speech sounds (Yi

et al., 2019), speech representation (Chang et al., 2010), or

visual cognition (Herlin et al., 2021). In the 2-class task,

when the distinction between visuospatial and verbal tasks was

made, these regions seem to play a significant role (see brain

maps in Supplementary Figure 2). In the visual networks, the

important regions are inferior occipital gyri (ROIs 53, 54; see

brain maps in Figure 8), which are involved in spatial feature

processing (de Haas et al., 2021) as well as in insightful problem

solving (Qiu et al., 2010). The results are in line with the sensory

reactivation theory, according to which the retrieval phase involves

the reinstatement of a process that appeared in the encoding

phase (Abe, 2012).

When we look at the influence of feature pruning on

importance scores (see Figure 11), it can be easily noticed that

all experiments in the encoding phase are very similar, but

differences are seen in the retrieval stage. Regarding the results

from experiments during encoding, the visual regions (like

ROIs 46, 47, 53, 54) gain higher importance, which suggests

the differences in the involvement of visual networks related

to memorizing different visual stimuli. In the retrieval phase,

we also observed the significance of visual brain areas, which

could be interpreted using the sensory reactivation hypothesis.

However, our results showed mainly the importance of regions

in the Visual III network, namely the fusiform gyri and inferior

temporal gyri (ITG). The fusiform gyri are engaged in high-level

information processing such as object recognition, visual language

perception, and visual attention (Caspers et al., 2014). They

are defined as critical structures for visual categorization (Grill-

Spector and Weiner, 2014), whereas the inferior temporal gyri

are also involved in visual object recognition, as well as in

phonological and lexical processing, and decision-making. ITG is

assumed to be a key region in the visual association area with

connections from visual regions and high-order areas including
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FIGURE 9

ROI importance scores for the ResNet. The scores were calculated as described in Algorithm 2 with additional z-scoring for comparison with
Figure 7.

the prefrontal cortex (Lin et al., 2020). Our analysis revealed

the importance of the superior frontal gyrus, a part of the

medial prefrontal cortex, which is engaged in higher levels of

working memory processing like monitoring and manipulation

and in spatial feature processing (Boisgueheneuc et al., 2006).

The study by Hu et al. (2016) showed also the role of the

superior frontal gyrus in executive control, more specifically in

efficient response inhibition. The results of a recent study using a

combination of electrocorticography and direct cortical stimulation

suggested that this structure might be a key node coordinating

working memory (Alagapan et al., 2019). Our results showing

the significance of inferior temporal and superior frontal gyri

in retrieval phase seem to confirm the evidence that content

representations during encoding and retrieval in WM, differ

and engage distinct brain regions. Specifically, the importance

of the superior frontal gyri indicates the conversion of content

representations from visual to frontoparietal regions (Favila et al.,

2020; Fafrowicz et al., 2023). The applying machine learning

algorithms allowed us to achieve results that go beyond the sensory

reactivation hypothesis. They seem to be in line with the recent

evidence showing differences in neural activity patterns of encoding

and retrieval processes, revealing change in the neural localization

of content representations (Favila et al., 2020; Fafrowicz et al.,

2023).

In RET3 and RET5 (the experiments including REST),

the regions in basal ganglia and cerebellum networks scored

the highest importance. The basal ganglia were shown to be

involved in the control of attention to problem features, as

well as the transport of information between higher visual

regions and the prefrontal cortex. There is also evidence of

the basal ganglia-cerebellum-prefrontal cortex network, whose

activation is associated with working memory and executive

functions (Bostan and Strick, 2018). Current computational models

shed new light on working memory as a process that strikes

a trade-off between stability and flexibility (the core feature of

executive control) controlled by the basal ganglia and cerebral

cortex (Trutti et al., 2021). It is well known that dopamine

is a key transmitter in the working memory process (Ott and

Nieder, 2019). The recent study revealed the role of a balance

between prefrontal and striatal dopamine secretion and dynamic

dopamine-dependent adjustment for adaptive cognition. The

results showed the influence of basal ganglia on cognitive control

modulation in a way that striatal dopamine controls flexible

gating of actions with increasing activity in the direct “go”

pathway and decreasing activity of the indirect “no-go” pathway

of this structure (Cools, 2019). Regarding the cerebellum, recent

studies have shown that this structure is involved in a much

higher number of cognitive functions than was assumed (Stoodley,
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FIGURE 10

Plot of z-scored ResNet importance from Figure 9 in 5-class encoding (top) and retrieval (bottom). For each phase, the three most important AAL
ROIs are labeled. 2-, 3-, and 4-class results are shown in Supplementary material. Rendered with nilearn (Abraham et al., 2014).

2011; Schmahmann, 2018). The basal ganglia and cerebellum

regions seem to be key regions in the distinction between

cognitive and non-cognitive (REST) tasks, which to our knowledge

has been confirmed for the first time in the present neural

networks analysis.

Regarding the ResNet model results (see Figure 9), high

ROI importance was attributed to cerebellum regions and

higher-order visual processing areas (Visual III network).

Notably, during the retrieval phase, ResNets place importance

on the executive network, which is not observed in the

LGBM outcomes (shown in Figure 7). This suggests that

ResNet may be more effective at identifying structures

involved in a task, even though LGBM’s importance

scores are more consistent. Additionally, when examining

the three most important ROIs in the ResNet model

(see Figure 10), we observe differences in hemispheric

locations between the encoding and retrieval phases.

These differences seem to support the newly established

model of Activity Silent Working Memory, highlighting

the involvement of episodic memory in working memory

tasks related to context representation (for the review, see

Beukers et al., 2021).

The importance scores of the LGBM model, on the

other hand, are remarkably similar to the results obtained

from measuring temporal correlations in the same data

(Ochab et al., 2022). In particular, the differences in Hurst

exponents between the perceptual (GLO, LOC) and verbal

similarity (PHO, SEM) tasks pointed to the same regions in

Sensory Motor, Visual I and Visual II networks, and partly in

Dorsal networks for the encoding phase; a similar pattern in

Sensory Motor, Visual I and Visual II networks appeared also

in the retrieval phase. There are no such striking similarities

with the ResNet results. This observation is intriguing,

since the LGBM had no access to the temporal information

(classification based on single time points), whereas the

Hurst exponents quantify the temporal correlation structure

of time series. And vice versa, the Hurst exponents were

computed separately for each ROI, whereas LGBM results

depend solely on the equal-time cross-correlations between

ROIs. Such interconnection between autocorrelation and cross-

correlation in fMRI data has been previously observed in

Ochab et al. (2019).

Our results based on the new methods of data analysis

confirmed the dynamic-processing model of working memory.

This process is much more stable in the encoding phase than

in the retrieval phase. This stability related to the capacity-

limited WM process can be seen in the similarity of the

encoding phase, where the differences are revealed only in

the visual processing regions regarding specific characteristics

of visual stimuli. The retrieval of information from memory is
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FIGURE 11

Influence of feature pruning on importance scores of the LGBM model. Each colored row in a matrix represents standardized di�erences in
importance scores after dropping one feature. The feature dropped in a given step is cyan, and all features dropped before are blue. ROIs whose
importance increased (decreased) in a given step are green (red). Full matrices with 115 pruning steps are shown in the Supplementary material.

more flexible (changing over time) and is context-dependent.

We also observed the change in the neural localization

from visual to frontoparietal regions, which is not in line

with the sensory reactivation hypothesis. To conclude, we

believe that the application of some of the most commonly

used machine learning algorithms and neural networks to
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investigate the encoding and retrieval phases is very promising for

future research.
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