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Power spectral analysis of
voltage-gated channels in
neurons

Christophe Magnani* and Lee E. Moore

Centre Borelli, Université Paris Cité, UMR 9010, CNRS, Paris, France

This article develops a fundamental insight into the behavior of neuronal

membranes, focusing on their responses to stimuli measuredwith power spectra

in the frequency domain. It explores the use of linear and nonlinear (quadratic

sinusoidal analysis) approaches to characterize neuronal function. It further

delves into the random theory of internal noise of biological neurons and the

use of stochastic Markov models to investigate these fluctuations. The text

also discusses the origin of conductance noise and compares di�erent power

spectra for interpreting this noise. Importantly, it introduces a novel sequential

chemical state model, named p2, which is more general than the Hodgkin–

Huxley formulation, so that the probability for an ion channel to be open

does not imply exponentiation. In particular, it is demonstrated that the p2
(without exponentiation) and n4 (with exponentiation) models can produce

similar neuronal responses. A striking relationship is also shown between

fluctuation and quadratic power spectra, suggesting that voltage-dependent

random mechanisms can have a significant impact on deterministic nonlinear

responses, themselves known to have a crucial role in the generation of action

potentials in biological neural networks.
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1 Introduction

The purpose of this article is to elucidate the fundamental behavior of excitable
neuronal membranes by using recent methods in the frequency domain. Since the
historical work of the Frenchmathematician and physicist Fourier (1822) in The Analytical
Theory of Heat, it is known that many kinds of signals admit a dual representation either
as a real valued function u(t) of the time variable t or as a complex valued function û(ω)
of the frequency variable ω where û is the Fourier transform of u. Using this approach,
individual excitable cells usually studied by their responses to constant stimuli can also be
investigated by their responses to multi-sinusoidal stimuli over a broad frequency range.

With the current clamp technique, the reactions of individual cells to current stimuli
generally show threshold impulses of the membrane potential that provide the means for
signal transmission throughout the nervous system. Precisely because of this threshold
property, it is difficult to determine the ionic currents underlying those action potential
impulses. A major technical advance in measuring neuronal properties occurred with the
advent of the voltage clamp technique (Bear et al., 2016), which was first invented by Cole
andMarmont (1949) and later exploited byHodgkin andHuxley (1952) who developed the
Hodgkin–Huxley (HH) equations that have become the gold standard for most neuronal
models in real time simulations. With the voltage clamp, a retroactive electronic device
controls the membrane potential such that the neuronal properties can be quantitatively
determined from the measured current elicited by a change in the potential.
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Both current clamp and voltage clamp techniques can be used
in the frequency domain to characterize neuronal function. A
typical approach considers linear analysis by calculating impedance
and admittance, as described by Mauro (1970) for the squid giant
axon. However, neuronal behavior is fundamentally nonlinear due
to the voltage dependence of most ionic channels (for instance
potassium or sodium). Quadratic sinusoidal analysis (QSA) is a
recent method developed by Magnani and Moore (2011) that
provides a fundamental insight of the linear and quadratic neuronal
behaviors using matrix calculus in the frequency domain. Concrete
applications have been done with neurons involved in the oculo-
vestibular integrator (Magnani et al., 2013) as well as with neurons
of the medial entorhinal cortex which are part of the grid
cell network (Magnani et al., 2014). These linear and nonlinear
approaches in the frequency domain are much more efficient and
concise than time domain methods for extracting stationary and
dynamic features from neurons by slightly perturbing them with
multi-sinusoidal signals around a steady state.

Although such a smooth deterministic description by frequency
waves is able to capture fundamental properties of the neuronal
function, biological neurons are significantly perturbed by internal
noise. Among the different kinds of noise sources described by
Stevens (1972), conductance fluctuations reflect the stochastic
nature of ionic channels at the microscopic level. For this reason,
stochastic Markov models have been used in this article to
investigate the intrinsic fluctuations and their relationships to the
complicated nonlinear behavior of neurons. This approach extends
QSA analysis with stochastic Markov simulations and compares
the power spectra of linear, quadratic and stochastic neuronal
processes.

Some of the earliest measurements of membrane voltage noise
were done on the node of Ranvier by Verveen and Derksen (1968)
who suggested that the opening and closing of ionic channels
lead to voltage fluctuations. Later, voltage clamp measurements on
squid axons suggested that current channel noise was filtered by
the axonal membrane that can be measured as a voltage power
spectrum. Extensivemeasurements have beenmade of spontaneous
fluctuations under both current and voltage clamp conditions along
with linear impedance analysis to assess the basis of the measured
noise power spectrum (Fishman et al., 1983; Conti and Wanke,
1975; Conti, 1984; Poussart, 1969; Poussart and Ganguly, 1977).

An early and perceptive paper by Stevens (1972) showed
that the Hodgkin–Huxley equations themselves provide two
different interpretations of the origin of conductance noise, namely
the opening and closing of whole conductance channel whose
opening is controlled by multiple gating particles (n, m or h),
or alternatively, fluctuations of individual gating particles. The
first case involves probability and correlation functions having
multiple terms. For the potassium conductance where gK =
gmax
K n4, this leads to conductance noise power spectra consisting
of four Lorentzian terms. In the second case, the Hodgkin–Huxley
equations are linearized and the potassium conductance power
spectrum consists of a single term related to the potassium channel
time constant. In the first case, the nonlinear properties of the
channel (n4) would be involved in the origin of the spontaneous
fluctuation, while in the second case, the linearized impedance (n)
would likely be a good predictor of the voltage noise.

The measured squid axon spontaneous noise and the nonlinear
power spectra of the Hodgkin–Huxley model both show resonance
in the voltage measurements and non-resonating Lorentzian
functions under voltage clamp. There is strong experimental
and theoretical evidence that the spontaneous conductance noise
cannot be predicted by the linear response from the same axon
(Fishman et al., 1983; Poussart, 1969).

With the advent of measurements of single ionic channels
in neuronal membranes, many of the detailed properties
of different ionic channels as well as their macromolecular
basis have dominated excitable membrane research. These
findings have stimulated the development of stochastic ionic
conductance models, again using the Hodgkin–Huxley equations
as a fundamental basis. The gold standard method to simulate the
stochastic behavior appears to be Markov models which provide
fluctuation noise power spectra identical to the first Hodgkin–
Huxley interpretation by Stevens discussed above. Numerous
papers have derived stochastic fluctuation power spectra based
on this nonlinear character (O’Donnell and van Rossum, 2014;
Goldwyn and Shea-Brown, 2011, for instance). In addition to
squid axon, measurements from nodes of Ranvier (Conti and
Wanke, 1975; Conti, 1984; Sigworth, 1980; Elinder et al., 2001)
and other preparations are consistent with the nonlinear origin
of ionic power spectra. The interpretation, namely that certain
nonlinear properties can show a probabilistic or stochastic
character, suggests that they are involved in the fundamental
origins of spontaneous channel noise in neurons. Since this clearly
indicates that the stochastic behavior of excitable membranes is
nonlinear, it is useful to quantitatively compare the power spectrum
content of the nonlinear QSA responses with the corresponding
simulations of Markov models. This will be done rigorously from
the Hodgkin–Huxley equations described in the methods.

In the methods section, the Hodgkin–Huxley model is briefly
reviewed. Linear analysis in the frequency domain is introduced
based on the work of Mauro (1970). The quadratic sinusoidal
analysis (QSA) is introduced in two ways, first the basic theory
as described by Magnani and Moore (2011) and second, a new
algorithm of frequency averaging to calculate power spectra.
Fluctuation simulations are done with Markov models based on
the work of Goldwyn et al. (2011) and Goldwyn and Shea-Brown
(2011). The theoretical expressions for fluctuation power spectra
are derived from the work of O’Donnell and van Rossum (2014).

In the results section, the exponentiation of the potassium n4

model is reduced to the minimal degree of nonlinearity n2. Then,
a novel sequential chemical state model named p2 is introduced
as a generalization of the n2 model without exponentiation.
Linear analysis, fluctuation simulations and theoretical power
spectra are applied to the p2 model by adapting the previous
methods. Linear and quadratic functions are compared to neuronal
fluctuations by adapting the previous methods. The p2 and n4

models are compared and it is demonstrated that they can produce
similar neuronal responses. Remarkably, it is illustrated how the
fluctuation-dissipation theorem can be violated at depolarized
membrane potentials. The time constants of the p2 and n4 models
seem more consistent with stochastic analysis than linear analysis.

Finally, the discussion section deals with the origin of
fluctuations in the nonlinear neuronal responses. Surprisingly,
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simulations show that, for certain stimulus amplitudes and
membrane surfaces, random voltage-dependent fluctuations can
significantly modify deterministic nonlinear responses.

2 Methods

2.1 Hodgkin–Huxley model

The standard Hodgkin–Huxley model was originally proposed
by Hodgkin and Huxley (1952) to describe the initiation and
propagation of action potentials in the squid giant axon based on
voltage clamp experiments. In this model, the current across the
lipid bilayer is defined by

Cm
dV

dt
= I − IL − IK − INa

where Cm is the membrane capacitance, V is the membrane
potential, I is the total membrane current, IL is the leak current, IK
is the current through potassium ion channels and INa is the current
through sodium ion channels.

The ionic currents are expressed with conductances





IL = gL(V − VL)

IK = gKn
4(V − VK)

INa = gNam
3h(V − VNa)

where gL is the leak conductance, gK is the maximum potassium
conductance and gNa is the maximum sodium conductance. The
constantsVL,VK andVNa are reversal potentials for leak, potassium
ion channel and sodium ion channel respectively. The gating
variables n, m and h represent potassium channel activation,
sodium channel activation and sodium channel inactivation
respectively, their values are constrained between 0 and 1.

The kinetics of gating variables satisfies the following first order
differential equations determined by pairs of rate constants αi(V)
and βi(V)





dn

dt
= αn(V)(1− n)− βn(V)n

dm

dt
= αm(V)(1−m)− βm(V)m

dh

dt
= αh(V)(1− h)− βh(V)h

At the steady state corresponding to a membrane potential level
V0, the time derivatives vanish with constants





n∞(V0) = αn(V0)τn(V0)

m∞(V0) = αm(V0)τm(V0)

h∞(V0) = αh(V0)τh(V0)

where

τn = (αn + βn)
−1, τm = (αm + βm)

−1, τh = (αh + βh)
−1

2.2 Linear analysis

Cole (1941) was among the first to use the frequency domain
to investigate neurons and suggested that the linear response of the
axon membrane could be modeled with equivalent circuit elements
such as inductances, capacitances and resistances. Hodgkin and
Huxley also showed that their findings were consistent with the
potassium conductance being described as an inductive reactance.
Later, a mathematical equivalence between nonlinear conductance
Hodgkin–Huxley models and electrical circuits was developed by
Mauro (1970) and experimentally confirmed on the squid axon.

In papers published by Mauro (1970) and Fishman et al.
(1977), the linearization of the Hodgkin–Huxley equations in the
frequency domain is obtained for small perturbations at steady
state. More precisely, let X = (V , n,m, h) be a dynamic state,
X0 = (V0, n0,m0, h0) a steady state and dX

dt
= F(X) the system

of differential equations. Clearly, n0 = n∞(V0),m0 = m∞(V0) and
h0 = h∞(V0) where V0 can be controlled directly in voltage clamp
or indirectly in current clamp. Then, differential calculus linearizes
the system for a small perturbation steady state

δF = F(X)− F(X0) ∼ δXTDF(X0)

It follows linearization of the kinetic equations, for example for
the potassium variable

δ
dn

dt
= dαn

dV
δV − αnδn− n0

dαn

dV
δV − βnδn− n0

dβn

dV
δV

This leads to the first order linear differential equation

dδn

dt
+ (αn + βn)δn =

[
dαn

dV
− n0

d(αn + βn)

dV

]
δV

Applying the Fourier transform

iωδ̂n+ (αn + βn)δ̂n =
[
dαn

dV
− n0

d(αn + βn)

dV

]
δ̂V

This can be solved in the frequency domain as

δ̂n =
dαn
dV

− n0
d(αn+βn)

dV

iω + αn + βn
δ̂V

and similarly for δ̂m and δ̂h. In order to simplify notations, this
fraction will be denoted as D̂n, D̂m and D̂h respectively.

Similarly, linearization of the ionic currents is given by





δIL = gLδV

δIK = 4gKn
3
0(V0 − VK)δn+ gKn

4
0δV

δINa = 3gNam
2
0h0(V0 − VNa)δm+ gNam

3
0(V0 − VNa)δh

+ gNam
3
0h0δV

which can be solved in the frequency domain as





δ̂IL = gLδ̂V

δ̂IK = gK
[
4n30(V0 − VK)D̂n + n40

]
δ̂V

δ̂INa = gNa
[
3m2

0h0(V0 − VNa)D̂m +m3
0(V0 − VNa)D̂h

+m3
0h0
]
δ̂V
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Similarly, linearization of the current across the lipid bilayer is
given by

Cm
dδV

dt
= δI − δIL − δIK − δINa

or equivalently in the frequency domain

Cmiωδ̂V = δ̂I − δ̂IL − δ̂IK − δ̂INa

The linearized response current δ̂I to the linearized stimulus
voltage δ̂V is characterized by the admittance

Ŷ = δ̂I

δ̂V

Ŷ = Cmiω (1)

+ gL

+ gK
[
4n30(V0 − VK)D̂n + n40

]

+ gNa
[
3m2

0h0(V0 − VNa)D̂m +m3
0(V0 − VNa)D̂h +m3

0h0
]

Equivalently, the impedance is defined as

Ẑ = 1

Ŷ
(2)

Note that the frequency f in Hz is interchangeable with angular
frequency ω = 2π f , both are used in this article depending on the
context.

One of the most striking features of neurons and their
models is the presence of an impedance resonance at certain
membrane potentials V0. This is illustrated for the voltage clamped
Hodgkin–Huxley model especially by the two amplitude peaks at
5 and 25.2mV depolarizations shown in Figure 1A. The plots are
superimposed magnitudes |Ẑ(f ,V0)| of the Equation 2, which is
identical to a small signal sinusoidal stimulus of the full nonlinear
Hodgkin–Huxley equations. The simulation results are similar to
actual measurements on squid axons independent of the electrode
properties.

Although impedance resonance is a linear property of the
Hodgkin–Huxley equations, it is due to the voltage dependence
of the steady state values of the ionic conductances. In particular,
dn∞
dv

> 0 for the potassium conductance [i.e. n∞(V0) does increase
with depolarizing levels V0]. In Equation 1, the potassium term in
gK was shown to be equivalent to an inductive reactance by Mauro
(1970). Similarly the sodium term gNa can be described by other
circuit elements. Thus, the Hodgkin–Huxleymodel or any excitable
cell can be analyzed by a piecewise linear analysis at different
membrane potentials as shown in Figure 1A. Data collected in
this manner over a range of membrane potentials allows one to
determine the voltage dependence of the active conductances in
addition to passive properties, and in turn construct a system of
nonlinear differential equations for a particular model. Thus, a
further advantage of frequency domainmeasurements is thatmodel
discrimination using parameter estimation can be more accurate
if both real time and impedance results are used, as shown by
Murphey et al. (1995).

Since neurons are composed of a minimum of two
conductances, inward sodium or calcium currents and various

FIGURE 1

Impedance functions for the Hodgkin–Huxley model. Di�erent

membrane potential displacements V0 were applied from the

resting potential of zero. Curves from top to bottom at lowest

frequencies: –5, 0, 5, 10.2, 15.2, 25.2 in mV. Abscissa: frequency f in

kHz (logarithmic scale). Ordinate: magnitude |Ẑ(f,V0)| in �

(logarithmic scale). Parameters of the simulation are given in

Table 1. (A) Simulations with potassium and sodium conductances.

(B) Simulations with potassium conductance only (gNa = 0).

outward potassium and other currents, it is useful to consider
their individual contributions to the frequency domain behavior.
This paper is focused on the potassium conductance as a model
of any of the individual conductances, thus gNa = 0. Figure 1B
illustrates one broad impedance resonance maximum for the
Hodgkin–Huxley potassium conductance alone, which shifts to
higher frequencies with increasing depolarizations. In contrast,
the impedances of Figure 1A have sharper resonances and two
peaks (5 and 25.2mV) clearly due to the presence of the sodium
conductance in conjunction with potassium. Thus, one useful
aspect of this analysis is that the number of resonance peaks can
give an indication of the minimum number of active conductance
processes present.

2.3 Quadratric sinusoidal analysis

Biological neurons and their models are fundamentally
nonlinear systems that sometimes significantly contradict the
linear superposition principle. System identification methods
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such as Volterra and Wiener series have been widely used to
characterize nonlinear neuronal functions. In the pioneering work
of Marmarelis and Naka (1972), Wiener theory was applied to
predict the nonlinear behavior of a neuron chain in the catfish
retina. Unfortunately, it is practically difficult and time-consuming
to calculate the kernel coefficients of the Volterra and Wiener
series, as these methods generally require extensive data analysis,
analogous to averaging a small signal from extraneous noise.

In general, the use of random broad band stimuli similar to a
white noise is time consuming, even for linear methods requiring
averaging over experiments. However, significant reduction of
experimental time is possible if a pseudo random stimulus
containing a limited number of frequencies is applied to the
preparation (Fishman et al., 1977; Poussart, 1969). Responses to
such stimuli have an excellent signal to noise ratio and little or
no averaging is necessary when measuring the impedance of a
single cell.

In the case of nonlinear systems, multi-sinusoidal stimuli can
be used to precisely measure deterministic linear and quadratic
responses, provided that generated output frequencies do not
overlap at first and second orders. For example, input frequencies
f1 = 1, f2 = 2, f3 = 3, f4 = 4 (in Hz) generate
unwanted overlaps because f1 + f2 = f3 or f1 + f4 = f2 +
f3. Multi-sinusoidal stimuli with selected frequencies to avoid
overlap at first and second orders were used by Magnani and
Moore (2011) to study subthreshold neuronal responses, as well
as previously by Victor and Shapley (1980) to study cat retinal
ganglion cells.

Such non-overlapping multi-sinusoidal stimuli must have
sufficiently large amplitudes to elicit both linear and quadratic
responses, while remaining sufficiently small to avoid higher order
contamination. The quadratic sinusoidal analysis, termedQSA, was
introduced by Magnani and Moore (2011) to provide a flexible
way to capture the linear and quadratic neuronal functions at
subthreshold membrane potentials, as well as to compare biological
experiments with theoretical models (Magnani et al., 2013, 2014).
In particular, the subthreshold membrane potential just below the
threshold is fundamentally a nonlinear process which is critically
involved in action potential generation.

It is well known that a sinusoidal signal can be expressed as a
sum of complex exponentials in Fourier analysis, for example :

cos(ωt) = 1

2
eiωt + 1

2
e−iωt

where i2 = −1 and ω is the angular frequency. More generally, a
multi-sinusoidal signal of N frequencies can be expressed as a sum
of complex exponentials

x(t) =
∑

k∈Ŵ

xke
iωkt

where Ŵ = {−N, · · · ,−1,+1, · · · ,+N} enumerates integers
between −N and +N (zero excluded), xk are complex Fourier
coefficients such that x−k = xk and ωk are angular frequencies such
that ω−k = −ωk. The duration T (s) of the experiment determines
the lowest frequency 1

T (Hertz). The angular frequencies are defined
by integer multiples of the lowest frequency, that is to say ωk =
2π nk

T where nk are integers such that n−k = −nk. Each Fourier

coefficient is a complex number that can be decomposed as xk =
|xk|eiθk where |xk| is the amplitude (nonnegative real number) and
θk is the phase (between 0 and 2π). It is good practice to randomize
the phases of multi-sinusoidal stimuli to avoid biases in neuronal
responses.

Such a multi-sinusoidal stimulus x(t) can be applied to
neuronal cells in voltage clamp and current clamp experiments.
Assuming that quality criteria for the QSA method are satisfied
(Magnani and Moore, 2011), the output signal measured by the
electrode can be decomposed as

y(t) = y0 + y1(t)+ y2(t)

where y0 is the DC component, y1(t) is the linear component and
y2(t) is the quadratic component. More specifically

y(t) = y0 +
∑

k∈Ŵ

lkxke
iωkt +

∑

i,j∈Ŵ

bi,jxie
iωitxje

iωjt (3)

where lk and bi,j are complex numbers characterizing the neuronal
response to the stimulus, by similarity with impedance or
admittance. By convention, b−k,k = 0 for all k ∈ Ŵ so that all DC
components are encoded in y0.

The QSA theory is based on a vector representation of
multi-sinusoidal signals in an orthonormal vector basis {ek}k∈Ŵ

representing the complex exponentials {eiωkt}k∈Ŵ . In this way, the
multi-sinusoidal stimulus x(t) is encoded as a time independent
vector

x =
∑

k∈Ŵ

xkek

The corresponding time dependent vectors are defined by

xt =
∑

k∈Ŵ

xke
iωktek

Putting the coefficients lk in a row matrix L and the coefficients
bi,j in a square matrixB, Equation 3 can be reformulated with linear
algebra as

y(t) = y0 + Lxt + xTt Bxt (4)

By noticing that

∑

i,j∈Ŵ

bi,jxie
iωitxje

iωjt =
∑

i,j∈Ŵ

b−i,jxieiωitxje
iωjt

we are led to define the QSA matrixQ by

Qi,j = B−i,j

so that

y(t) = y0 + Lxt + xT
t Qxt

Remarkably, the QSA matrix Q is Hermitian (Magnani and
Moore, 2011), which means that

Q
T = Q

This algebraic approach has been widely used in modern
physics, especially in quantum physics where Hermitian operators
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represent physical observables. In particular, the eigenvalues of the
QSA matrix are real numbers which form a spectrum that can be
interpreted as a signature of the quadratic neuronal function.

The most glaring property of the quadratic neuronal response
is the generation of second order frequencies that are not present
in the stimulus. More precisely, Equation 3 shows that the linear
components lkxke

iωkt contain only the stimulus frequencies ωk,
while the quadratic components bi,jxieiωitxje

iωjt = bi,jxixje
i(ωi+ωj)t

contain new frequencies ωi+ωj that are not present in the stimulus
in the absence of overlap. The row matrix L and the QSA matrix
Q can be interpreted as linear and quadratic filters respectively, by
extension of the impedance or admittance concept.

2.4 Multi-sinusoidal power spectra

The concept of power spectrum is useful in statistical analysis,
both for signal processing and for stochastic processes, so it is
natural to use it in this paper. The power spectrum of a multi-
sinusoidal signal u(t) is given by |û(ω)|2 where û is the Fourier
transform of u andω is the frequency variable. The power spectrum
can be averaged over a set of measurements.

For a single measurement of the output y(t) in response
to a stimulus x(t) with fundamental frequencies |ωk|, the
multi-sinusoidal power spectra cover the positive frequencies of
linear and quadratic analyses:

• Linear power spectrum at fundamental frequencies:

SL(|ωk|) = |ŷ1(|ωk|)|2

• Quadratic power spectrum at frequency doubling:

SD(2|ωk|) = |ŷ2(2|ωk|)|2

• Quadratic power spectrum at frequency sums for |ωi| 6= |ωj|:

SP(|ωi| + |ωj|) = |ŷ2(|ωi| + |ωj|)|2

• Quadratic power spectrum at frequency differences for |ωi| 6=
|ωj|:

SM(||ωi| − |ωj||) = |ŷ2(||ωi| − |ωj||)|2

The quadratic power spectra are indexed by second order
frequencies, which are not stimulus frequencies because they were
chosen without overlap. Thus, it would be convenient to have also a
quadratic power spectrum indexed by fundamental frequencies as
an alternative representation. To this end, a function similar to the
“R summation function” of Magnani et al. (2013) is introduced in a
different way below, computing the mean squared quadratic output
by matrix columns:

SR(ωj) =
1

2N

∑

i∈Ŵ

|Qi,jxixj|2

Although these multi-sinusoidal power spectra reflect exact
neuronal responses, they are not accurate because they are defined
over a small set of non-overlapping frequencies. Therefore, it

is necessary to average multiple measurements to increase the
accuracy of the power spectra.

To perform this averaging, a set of M stimuli x(m)(t) is
generated with sets of non-overlapping random frequencies �(m)

for m = 1, . . . ,M. Each set of first order frequencies �(m)

determines a set of second order frequencies 4(m). The global sets
of first and second order frequencies are defined by merging the
individual sets, respectively





� =
M⋃

m=1

�(m)

4 =
M⋃

m=1

4(m)

Importantly, different individual sets of the same order can
share frequencies, so it is necessary to count redundancies

{
N�(ω) = #{m | ω ∈ �(m)}
N4(ξ ) = #{m | ξ ∈ 4(m)}

where # indicates the number of elements in a set.
Fourier analysis of the measured linear responses y(m)

1 (t) yields

output sets ŷ(m)
1 (ω) defined at the first order frequencies ω ∈ �(m)

and zero elsewhere. This allows to calculate the averaged linear
power spectrum for ω ∈ �

SL(ω) =
1

N�(ω)

M∑

m=1

|ŷ(m)
1 (ω)|2

where ω ∈ � impliesN�(ω) ≥ 1 so the denominator is not zero.
Fourier analysis of the measured quadratic responses y

(m)
2 (t)

yields output sets ŷ(m)
2 (ξ ) defined at the second order frequencies

ξ ∈ 4(m) and zero elsewhere. This allows to calculate the averaged
quadratic power spectrum for ξ ∈ 4

S2(ξ ) =
1

N4(ξ )

M∑

m=1

|ŷ(m)
2 (ξ )|2

where ξ ∈ 4 impliesN(ξ ) ≥ 1 so the denominator is not zero. The
partial quadratic power spectra SD, SP, SM can be calculated using
the same method.

The power spectra SR are calculated on first order frequencies
using the same method for ω ∈ �

SR(ω) =
1

N�(ω)

M∑

m=1

S
(m)
R (ω)

In particular, ω ∈ � impliesN�(ω) ≥ 1 so the denominator is
not zero.

It should be noted that although different sets �(m) and 4(m)

may share frequencies, such post-result frequency redundancy is
not frequency overlap, with each individual measurement y(m)(t)
being the response to a stimulus without overlap.
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2.5 Stochastic Markov simulations

Although the Hodgkin–Huxley model is empirical, it has led to
various biophysical interpretations. The potassium ion channel is
generally considered to have four independent identical subunits,
each characterized by a two-state process

0
α
⇋

β
1

where αn(V) and βn(V) are voltage-dependent transition rates
given in the Hodgkin–Huxley model. All four subunits must be
open for the channel to be open. If n denotes the gating variable for
subunit activation, the total potassium conductance is proportional
to n4.

This four-subunits interpretation suggests molecular-scale
conformational changes that exceed the accuracy of the Hodgkin–
Huxley model. However, this concept provides a theoretical
interpretation of the fundamental nonlinearity of the neuron that is
interesting for exploring equivalent forms of the Hodgkin–Huxley
model.

The original Hodgkin–Huxley model is nonlinear in two ways:
one is the use of an exponentiation for the gating variable, such as
n4; the other is the voltage dependence of the rate constants. In the
first case, an exponentiation is used to describe the delay in current
response observed after a step change inmembrane potential. In the
second case, the use of the voltage clamp at a constant membrane
potential V0 has the effect of linearizing the differential equation
dn
dt

= αn(V0)(1− n)− βn(V0)n since the rate constants αn(V0) and
βn(V0) become constants.

The two-state process can be extended to multiple sequential
states typical of higher order chemical relaxation models. More
precisely, the four independent identical subunits of the potassium
ion channel can be modeled as a five-state Markov chain

0
4αn
⇋

βn
1
3αn
⇋

2βn
2
2αn
⇋

3βn
3

αn
⇋

4βn
4 (5)

where each state 0, 1, 2, 3, 4 corresponds to the number of open
subunits at a given time. Each channel has the probability pk(t)
to be in state k. In particular, 1 = p0 + p1 + p2 + p3 + p4. The
channel is open when all four subunits are open, which corresponds
to state 4 with probability p4. When the system is in the state k,
there are k open subunits and (4−k) closed subunits. For k < 4, the
transition k → k+1 opens one of the (4−k) closed subunits, which
corresponds to the rate (4−k)αn. Similarly, for k > 0, the transition
k → k− 1 closes one of the k open subunits, which corresponds to
the rate kβn.

More generally, arbitrary rate constants could be chosen other
than integer multiples of αn and βn. Numerous models of this
type with more than two independent rate constants have been
compared to the original Hodgkin–Huxley model, e.g. Vandenberg
and Bezanilla (1991).

Stochastic Markov simulations were based on Gillespie (1977)
and Goldwyn et al. (2011); Goldwyn and Shea-Brown (2011)
considering a statistical population of N potassium ion channels
and a time interval t ∈ [0;T] discretized by 1t. Let Nk(t) be
the number of channels in state k at time t. In particular, N =
N0 + N1 + N2 + N3 + N4. In the limit, for a large population,

the proportion of channels in state k tends to the corresponding
probability

lim
N→∞

Nk(t)

N
= pk(t)

Let1Nk(t) be the variation of the number of channels in state k
during1t. Let1Ni→j(t) be the number of channels switching from
state i to state j during 1t.

To ensure validity, it will always be assumed that pk, Nk, 1Nk,
1Ni→j are zero for indices outside the range {0, 1, 2, 3, 4}.

The proportion of channels switching from state k to state k±1
during 1t is determined by the transition rates

{
1Nk→k+1 = (4− k)αnNk1t

1Nk→k−1 = kβnNk1t

Furthermore, the variation of the number of channels in state k
during1t corresponds to the number of transitions to state kminus
the number of transitions from state k. More precisely

1Nk = 1Nk−1→k + 1Nk+1→k − 1Nk→k−1 − 1Nk→k+1

Replacing expressions

1Nk = (5− k)αnNk−11t + (k+ 1)βnNk+11t − kβnNk1t

−(4− k)αnNk1t

Dividing by N and taking the limit, a system of differential
equations is obtained

dpk

dt
= (5− k)αnpk−1 + (k+ 1)βnpk+1 − kβnpk − (4− k)αnpk

More explicitly, this gives the master equation





dp0

dt
= −4αnp0 + βnp1

dp1

dt
= 4αnp0 − (3αn + βn)p1 + 2βnp2

dp2

dt
= 3αnp1 − 2(αn + βn)p2 + 3βnp3

dp3

dt
= 2αnp2 − (αn + 3βn)p3 + 4βnp4

dp4

dt
= αnp3 − 4βnp4

The conductance of the population of channels is calculated as
gKf where gK is the conductance of an individual channel and f

is the proportion of open channels (Goldwyn et al., 2011). In the
limit, for a large population, the proportion of open channels tends
to the probability p4 that a channel is open, which corresponds to
the deterministic conductance gKp4.

Although the master equation does not use exponentiation, the
equivalence with the n4 model is discussed by Dayan and Abbott
(2001). Indeed, in the Hodgkin–Huxleymodel, n is a gating variable
representing the probability that a subunit is open and 1 − n the
probability that it is closed. In state k, k of the four subunits are

open and the 4− k others are closed, thus pk =
(
4
k

)
nk(1−n)4−k.
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In particular, in state 4, all four subunits are open, thus p4 = n4

which is consistent with the exponentiation of theHodgkin–Huxley
model.

Therefore, at a fundamental level, nonlinearities generated
by neuronal responses are likely to reflect fluctuations between
internal states for which the master equation is controlled by
transition rates involving energy for the movement of charges, the
associated Boltzmann factor is discussed by Dayan and Abbott
(2001). The master equation provides a deterministic description
of the probabilities of these fluctuations.

Although Markov simulations are widely used to describe
ion channel noise in the Hodgkin–Huxley model, alternative
methods have been proposed, offering different trade-offs between
accuracy and complexity. The Langevin approach, introduced
by Fox and Lu (1994) and further refined by Fox (1997),
incorporates stochasticity by adding Gaussian white noise terms
to the equations, making it suitable for systems with a
large number of channels. Goldwyn and Shea-Brown (2011)
critically evaluated such stochastic formulations, highlighting the
limitations of certain approximations in accurately representing
neuronal behavior. Linaro et al. (2011) developed an improved
diffusion approximation that enhances the accuracy of simulations,
providing a more reliable alternative for neuronal modeling.
Furthermore, Baravalle et al. (2017) presented a path integral
approach to the Hodgkin–Huxley model, using methods from
theoretical physics to analyze stochastic dynamics in which noise
processes may be influenced by neural network interactions and
feedforward correlations.

The advantage ofMarkovmodels lies in their ability to explicitly
represent individual states of ion channels and the stochastic
transitions between them, closely reflecting microscopic behavior.
Unlike traditional Hodgkin–Huxley models, they inherently
capture stochastic fluctuations in channel opening and closing,
as transitions are governed by probabilistic processes. This
enables Markov models to account for complex behaviors,
including multiple transition pathways, nonlinear kinetics, and
independent inactivation or recovery processes that are challenging
to address with conventional methods. Notably, Markov models
establish a connection between stochastic processes and nonlinear
multiplicative effects, such as p4 = n4, while Langevin approaches
are based on the addition of noise. Furthermore, hierarchical
Markov models (Siekmann et al., 2016) allow for the inclusion of
modal gating of ion channels, capturing both transitions between
modes and stochastic dynamics within modes. Overall, Markov
models provide a scalable and versatile method for simulating
neuronal phenomena, widely recognized as a standard in the field.

2.6 Markov power spectra

Stochastic analysis of Markov models provides power spectra
of conductance noise identical to the first interpretation of Stevens
(1972) involving probability and correlation functions. Many
papers have derived noise power spectra based on the nonlinear
nature of the potassium channel (n4), especially O’Donnell and
van Rossum (2014) which is used in this article. In addition to
the squid axon, measurements on the nodes of Ranvier (Conti,

1984) are consistent with the nonlinear origin of the conductance
noise power spectra. Such an interpretation that certain nonlinear
properties can induce a probabilistic or stochastic character,
suggests that they are involved in the fundamental origin of
spontaneous fluctuations in neurons.

The conductance noise can be predicted from the Hodgkin–
Huxley equations for potassium conductance as described by
O’Donnell and van Rossum (2014). Their approach is explored here
for further adaptation in this article.

Let Xt be the random variable measuring if the channel is open
(Xt = 1) or closed (Xt = 0) at time t. Let p(t) be the probability
that the channel is open at time t, namely p(t) = p(Xt = 1). Let p∞
be the steady state probability, which coincides with the average of
p(t) over time. Actually, p = p4 = n4 using the previous Markov
probability notations, but the p notation is used here to be more
general.

By definition, the autocorrelation r(t1, t2) characterizes the
similarity of Xt between times t1 and t2. Denoting by E the expected
value of a random variable

r(t1, t2) = E[Xt1Xt2 ]

SinceXt only takes the values 0 or 1, the autocorrelation is given
by

r(t1, t2) =
∑

i,j∈{0,1}
i · j · p(Xt1 = i,Xt2 = j)

= p(Xt1 = 1,Xt2 = 1)

= p(Xt2 = 1 | Xt1 = 1)p(Xt1 = 1)

or more concisely

r(t1, t2) = p(t1)p(t2 | t1)

The autocorrelation can also be reformulated betwen times t0
and t0 + s to make the time lag s explicit

r(t0, t0 + s) = p(t0)p(t0 + s | t0)

Here, p(t0+s | t0) is the conditional probability that the channel
is open at time t0+s provided that it is open at time t0. Importantly,
if the channel is open at time t0 then p(t0) = 1. In this special case,
the Markov state (p0, p1, p2, p3, p4) = (0, 0, 0, 0, 1) is unique due to
the constraint p0 + p1 + p2 + p3 + p4 = 1. The same reasoning is
valid for other sequential models with fewer or moreMarkov states.
Thus, the time evolution of p(t0 + s | t0) from the unique state
(0, 0, 0, 0, 1) between t0 and t0+s is identical to the time evolution of
p(s | 0) from the unique state (0, 0, 0, 0, 1) between 0 and s, the two
trajectories of the dynamical system are identical because they start
from the same unique state (0, 0, 0, 0, 1) and have the same duration
s. Therefore

r(t0, t0 + s) = p(t0)p(s | 0)

Averaging over the time origin t0 gives the autocorrelation as a
function of the time lag

r(s) = 〈r(t0, t0 + s)〉t0
= 〈p(t0)p(s | 0)〉t0
= 〈p(t0)〉t0p(s | 0)
= p∞p(s | 0)
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By definition, the autocovariance C(t1, t2) characterizes the
similarity of Xt − E[Xt] between times t1 and t2. Namely

C(t1, t2) = E[(Xt1 − E[Xt1 ])(Xt2 − E[Xt2 ])]

= E[(Xt1 − p∞)(Xt2 − p∞)]

= E[Xt1Xt2 ]− p∞E[Xt1 ]− p∞E[Xt2 ]+ p2∞
= r(t1, t2)− p2∞

The autocovariance can also be reformulated betwen times t0
and t0 + s to make the time lag s explicit

C(t0, t0 + s) = r(t0, t0 + s)− p2∞

Averaging over the time origin t0 gives the autocovariance as a
function of the time lag

C(s) = 〈C(t0, t0 + s)〉t0
= r(s)− p2∞
= p∞p(s | 0)− p2∞

When the channel is open, the single-channel current is given
by Ohm’s law, namely iK = γK(V − VK) where γK is the single-
channel conductance, V is the voltage imposed by voltage clamp
and VK is the reversal potential. Then, the fluctuating single-
channel current is defined as iKXt . In particular, the fluctuating
single-channel current is zero when the channel is closed and is
given by Ohm’s law when the channel is open. For a population
of NK channels, let Xn

t be the random variables for each channel
n = 1 . . .NK. The total fluctuating current is

IK(t) =
NK∑

n=1

iKX
n
t

By definition, the autocovariance CIK (t1, t2) of the total
fluctuating current between times t1 and t2 is given by

CIK (t1, t2) = E
[
(IK(t1)− E[IK(t1)])(IK(t2)− E[IK(t2)])

]

= E

[(
NK∑

n=1

iKX
n
t1
− E

[
NK∑

n=1

iKX
n
t1

])(
NK∑

m=1

iKX
m
t2

−E

[
NK∑

m=1

iKX
m
t2

])]

= i2KE

[(
NK∑

n=1

Xn
t1
−

NK∑

n=1

E[Xn
t1
]

)(
NK∑

m=1

Xm
t2

−
NK∑

m=1

E[Xm
t2
]

)]

= i2KE

[(
NK∑

n=1

(
Xn
t1
− E

[
Xn
t1

])
)(

NK∑

m=1

(
Xm
t2
− E

[
Xm
t2

])
)]

= i2K

NK∑

n=1

NK∑

m=1

E
[
(Xn

t1
− p∞)(Xm

t2
− p∞)

]

It can be noticed that

E
[
(Xn

t1
− p∞)(Xm

t2
− p∞)

]
= E[Xn

t1
Xm
t2
]− p∞E[Xn

t1
]− p∞E[Xm

t2
]+ p2∞

= E[Xn
t1
Xm
t2
]− p2∞

If n 6= m, the random variables Xn
t and Xm

t are independent,
then

E
[
(Xn

t1
− p∞)(Xm

t2
− p∞)

]
= E[Xn

t1
]E[Xm

t2
]−p2∞ = p∞p∞−p2∞ = 0

If n = m, the random variables Xn
t and Xm

t are the same as Xt ,
then

E[(Xn
t1
−p∞)(Xm

t2
−p∞)] = E[Xt1Xt2 ]−p2∞ = r(t1, t2)−p2∞ = C(t1, t2)

These remarks on the indices n and m allow to simplify the
double sum in the autocovariance of the total fluctuating current
so that

CIK (t1, t2) = i2K

NK∑

n=1

C(t1, t2)

= NKi
2
KC(t1, t2)

The autocovariance can also be reformulated betwen times t0
and t0 + s to make the time lag s explicit

CIK (t0, t0 + s) = NKi
2
KC(t0, t0 + s)

Averaging over the time origin t0 gives the autocovariance as a
function of the time lag

CIK (s) = 〈NKi
2
KC(t0, t0 + s)〉t0

= NKi
2
K〈C(t0, t0 + s)〉t0

= NKi
2
KC(s)

The Wiener–Khinchin theorem provides the power spectrum
S±IK as the Fourier transform of the autocovariance CIK , using the
non-unitary Fourier transform with angular frequencies

S±IK (ω) =
∫ ∞

−∞
CIK (s)e

−iωs ds

The autocovariance is an even function of the lag because under
stationarity, the average over the time origin t0 is independent of a
time lag

C(s) = 〈C(t0, t0 + s)〉t0
= 〈C(t0 − s, t0)〉t0−s

= 〈C(t0 − s, t0)〉t0
= 〈C(t0, t0 − s)〉t0
= C(−s)

Thus, the power spectrum can be decomposed into two parts

S±IK (ω) =
∫ 0

−∞
CIK (s)e

−iωs ds+
∫ +∞

0
CIK (s)e

−iωs ds

=
∫ +∞

0
CIK (−s)eiωs ds+

∫ +∞

0
CIK (s)e

−iωs ds

=
∫ +∞

0
CIK (s)[e

iωs + e−iωs] ds

= 2
∫ +∞

0
CIK (s) cos(ωs) ds
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To follow the convention of O’Donnell and van Rossum (2014),
the power spectrum SIK will be considered for positive frequencies
only, i.e.

SIK (ω) = 2S±IK (ω) = 4ℜ
∫ +∞

0
CIK (s)e

−iωs ds

In order to calculate the Markov power spectra for the
fluctuating potassium current, it is necessary to determine the
autocovariance C(s) = p∞p(s | 0) − p2∞ based on the two
components p(s | 0) and p∞. The kinetics of the potassium gating
variable n is given by

dn

dt
= αn(1− n)− βnn

or equivalently

dn

dt
= n∞ − n

τn

The general solution can be formulated with an exponential
decay and an arbitrary initial condition n0

n(t) = n∞ + (n0 − n∞)e−t/τn

The solution n(t | 0) is interpreted as the conditional
probability that the gate is open at time t provided that it is open
at time 0, which is implemented by the initial condition n0 = 1

n(t | 0) = n∞ + (1− n∞)e−t/τn

The potassium ion channel having four independent identical
subunits, this provides the probability that the channel is open at
time t

p(t) = n4(t)

At steady state

p∞ = n4∞

The conditional probability that the channel is open at time t
provided that the channel is open at time t = 0 is given by

p(t | 0) = n4(t | 0)

=
[
n∞ + (1− n∞)e−t/τn

]4

=
4∑

q=0

(
4

q

)
n
4−q
∞ (1− n∞)qe−qt/τn

The autocovariance does follow

CIK (t) = NKi
2
KC(t)

= NKi
2
K[p∞p(t | 0)− p2∞]

= NKi
2
K[n

4
∞p(t | 0)− (n4∞)2]

= NKi
2
Kn

4
∞[p(t | 0)− n4∞]

= NKi
2
Kn

4
∞

4∑

q=1

(
4

q

)
n
4−q
∞ (1− n∞)qe−qt/τn

where the term corresponding to q = 0 in the sum has been
canceled with−n4∞.

The power spectrum SIK is computed by integrating each term
of the sum in CIK

Sq (ω) =
∫ +∞

0

(
4

q

)
n
4−q
∞ (1− n∞)q e−qt/τne−iωt dt

=
(
4

q

)
n
4−q
∞ (1− n∞)q

∫ +∞

0
e−qt/τne−iωt dt

Using the non-unitary Fourier transform F[e−a|t|] = 2a
a2+ω2

with angular frequencies and divided by 2 because of the positive
half of the time [0;+∞]

Sq(ω) =
(
4

q

)
n
4−q
∞ (1− n∞)q

q/τn

q2/τ 2n + ω2

=
(
4

q

)
n
4−q
∞ (1− n∞)q

qτn

q2 + ω2τ 2n

Applying Sq to each q





S1(ω) = 4n3∞(1− n∞)
τn

1+ ω2τ 2n

S2(ω) = 6n2∞(1− n∞)2
2τn

4+ ω2τ 2n

S3(ω) = 4n∞(1− n∞)3
3τn

9+ ω2τ 2n

S4(ω) = (1− n∞)4
4τn

16+ ω2τ 2n

the power spectrum is obtained

SIK (ω) = 4NKi
2
Kn

4
∞
[
S1(ω)+ S2(ω)+ S3(ω)+ S4(ω)

]
(6)

There are four Lorentzians with corner frequencies ω1 = 1
τn
,

ω2 = 2
τn
, ω3 = 3

τn
, ω4 = 4

τn
respectively. In particular, jωq

correspond to the poles.
The parameters of Table 1 were reused with the potassium

channel density ρK = 18/µm2, the membrane area AK = 500µm2,
the number of potassium channels NK = ρKAK and the potassium
single-channel conductance γK = gK/NK.

Figure 2A illustrates a voltage clamp Markov simulation
(Equation 5) for a 5mV depolarization of the spontaneous
potassium current fluctuations superimposed on the theoretically
predicted power spectrum SIK, the four Lorentzians, the four corner
frequencies and the admittance. The simulation was done with
the Markov model and QSA multi-sinusoidal stimuli of amplitude
0.25mV. At this potential, the predicted power spectrum SIK
(magenta curve) have relative equivalent contributions from all
the Lorentzian functions S1, S2, S3, S4 and certainly not just those
present in the lowest corner frequency, ω4 = 1

τn
. The voltage

responses at the stimulus frequencies are accurately described by
the squared admittance |Ŷ|2 (green curve) after adjustment of the
vertical offset. The square of the admittance is obtained with an
input of constant amplitude, which makes it possible to compare
it to other curves independent of the input. Figure 2B shows that
simulation done without stimulus gave identical power spectra.
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FIGURE 2

Markov simulations of the n4 model. The power spectra approximated by 128 iterations are represented by the blue scatterplot. The predicted power

spectrum SIK (magenta curve) accurately fits the blue scatterplot. The four Lorentzians compose the predicted power spectrum with S1 (brown

curve), S2 (orange curve), S3 (yellow curve), S4 (blue curve). The corresponding corner frequencies ω1, ω2, ω3, ω4 are represented by vertical lines. (A)

Simulations for a 5mV depolarization with QSA multi-sinusoidal stimulus of amplitude 0.25mV and frequencies (2, 3, 10, 21, 35, 50, 76, 104, 134, 143,

223, 239, 285, 388, 405, 515, 564, 636, 815, 892, 982) Hertz. The squared admittance |Ŷ|2 (green curve) matches the linear Markov responses after

adjustment of the vertical o�set. (B) Simulations for a 5mV depolarization without stimulus. The fluctuation power spectra are the same as those in

(A) but there is no admittance. (C) Simulations for a 55mV depolarization without stimulus.

2.7 Validity

Although this article focuses on potassium channels, the
methods are compatible with the full Hodgkin–Huxley model,
including sodium channels.

Linear analysis allows the analytical linearization of
conductance-based models around a steady state (Mauro,
1970) and their frequency-domain representation using the
Fourier transform. This method efficiently captures the behavior of
the system under small perturbations.

Quadratic sinusoidal analysis (QSA) investigates nonlinear
responses in the frequency domain around a steady
state. It supports multi-sinusoidal measurements in both

conductance-based models and experimental data (Magnani
and Moore, 2011). This method has also been applied beyond
Hodgkin–Huxley, including neurons of the prepositus hypoglossi
nucleus (Magnani et al., 2013) and neurons of themedial entorhinal
cortex (Magnani et al., 2014).

Multi-sinusoidal power spectra extend QSA by averaging
multiple measurements while preserving its general applicability.
Although demonstrated here for potassium channels,
this method is also applicable to other channels, such
as sodium.

Stochastic Markov simulations are here considered for
potassium channels to focus on the interplay between spontaneous
fluctuations and nonlinear responses in a single ion channel type.
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TABLE 1 Parameters of the simulation of the Hodgkin–Huxley equations

used to compute impedances given by Equation 2 at di�erent membrane

potential displacements V0.

Cm 1 µF/cm2

gL 0.3 mS/cm2

VL 10.6mV

gK 36 mS/cm2

VK –12mV

gNa 120 mS/cm2

VNa 120mV

αn(V) 0.01 · (10− V)/
(
e(10.001−V)/10 − 1

)

βn(V) 0.125 · e−V/80

αm(V) 0.1 · (25− V)/
(
e(25−V)/10 − 1

)

βm(V) 4 · e−V/18

αh(V) 0.07 · e−V/20

βh(V) 1/
(
e(30−V)/10 + 1

)

Stimulus amplitude 0.0125mV for Hodgkin–Huxley model, default
0.25mV for n4 and p2 models

Stimulus frequencies 0.2, 0.7, 2, 3, 10, 21, 35, 50, 76, 104, 134, 143, 223,
239, 285, 388, 405, 515, 564, 636, 815, 892, 982
(units in Hz)

Stimulus phases Pseudo-random values [0;π] rad

However, this Markov modeling method is also well-documented
for sodium channels (Destexhe and Rudolph-Lilith, 2012; Goldwyn
et al., 2011; Goldwyn and Shea-Brown, 2011; O’Donnell and van
Rossum, 2014) and continues to evolve in the literature (e.g.,
Ramlow and Lindner, 2024).

Markov power spectra, computed here for potassium channels,
are a method that can be adapted to sodium channels by replacing
n4 withm3h, as described by O’Donnell and van Rossum (2014).

By focusing on potassium channels, this article isolates
specific dynamics. Extending to sodium channels in future work
would provide complementary insights into neuronal behavior,
particularly in understanding the integrated roles of multiple ion
channel types.

3 Results

3.1 The n2 model

Since chemical relaxation models generally obey the
fluctuation-dissipation theorem (FDT), it is useful to compare
their linear and nonlinear behaviors using both averaged quadratic
(QSA) and noise (Markov) power spectra. This will be done with
the potassium conductance of Hodgkin–Huxley equations, namely
n4, and compared with more general relaxation models having
fewer sequential states. A similar comparison could be done with
the sodium conductance.

A variant of the Hodgkin–Huxley equations, the
Frankenhaeuser and Huxley (1964) equations for myelinated
nerve, uses a n2 model for the potassium conductance, which can

be simulated as a three-state Markov chain

0
2αn
⇋

βn
1

αn
⇋

2βn
2

Thus, the n2 model has only two independent rate constants, αn

and βn. More generally, such a n2 model is a particular sequential
kinetic model 0 ⇋ 1 ⇋ 2, arbitrarily called p2 in this paper, having
the four specific rate constants above with only two independent
rate constants. However, a general p2 model, which has four
independent rate constants, will be shown to be a reasonable model
for a potassium conductance. In particular, the rate constants of
the p2 model can be selected to show similar behavior to the
Hodgkin–Huxley n4 model. In this case, the p2 model is a model
without exponentiation, which is not identical to the n2 model, but
approximates the Hodgkin–Huxley n4 model.

3.2 The p2 model

The general p2 model has four independent rate constants, two
forward k1, k3, and two backward k4, k2, as follows:

p0
k1
⇋

k2
p1

k3
⇋

k4
p2 (7)

The n2 model is a special case of the p2 model with k1 = 2αn,
k3 = αn, k4 = 2βn and k2 = βn.

More generally, it may be convenient to rewrite k1, k2, k3, k4 in
terms of αn and βn such that k1 = Aαn, k3 = αn, k4 = Bβn and
k2 = βn, where A and B are arbitrary factors. In this way, the n2

model is a special case of the p2 model with A = B = 2.
In this article, the p2 model simulations use A = 0.35 and B =

4. The other parameters are the same as the n4 model simulations
given in Table 1.

The master equation is deduced from the three-state Markov
chain as follows





dp0

dt
= −k1p0 + k2p1

dp1

dt
= k1p0 − (k2 + k3)p1 + k4p2

dp2

dt
= k3p1 − k4p2

(8)

Since p0+p1+p2 = 1, the system can be reduced to the variables
p1 and p2





dp1

dt
= −

(
k1 + k2 + k3

)
p1 +

(
−k1 + k4

)
p2 + k1

dp2

dt
= k3p1 − k4p2

(9)

This can be rewritten in matrix form

d

dt

(
p1
p2

)
=
(

α11 α12

α21 α22

)(
p1
p2

)
+
(
−α22 − α12

0

)
(10)

where




α11 = −
(
k1 + k2 + k3

)

α12 = −k1 + k4

α21 = k3

α22 = −k4

Frontiers inNeuroinformatics 12 frontiersin.org

https://doi.org/10.3389/fninf.2024.1472499
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Magnani and Moore 10.3389/fninf.2024.1472499

At steady state

(
p∞1
p∞2

)
=
(

α11 α12

α21 α22

)−1 (
α22 + α12

0

)

= 1

α11α22 − α12α21

(
α22 −α12

−α21 α11

)(
α22 + α12

0

)
(11)

p∞1 = α22(α22 + α12)

α11α22 − α12α21
, p∞2 = −α21(α22 + α12)

α11α22 − α12α21
(12)

3.3 Linear analysis of the p2 model

The linear admittance of the p2 model can be obtained using
a method similar to that previously described for the Hodgkin–
Huxley model by Mauro (1970). The matrix form given in
Equation 10 represents the p2 model of Equation 9 with k1, k2, k3,
k4 replaced by α11, α12, α21, α22 as follows





dp1

dt
= α11p1 + α12p2 − (α22 + α12),

dp2

dt
= α21p1 + α22p2

(13)

The linearization for a small perturbation at steady state is given
by





δ
dp1

dt
= dα11

dV
δVp∞1 + α11δp1 +

dα12

dV
δVp∞2

+ α12δp2 −
d(α22 + α12)

dV
δV

δ
dp2

dt
= dα21

dV
δVp∞1 + α21δp1 +

dα22

dV
δVp∞2 + α22δp2

or equivalently





δ
dp1

dt
− α11δp1 − α12δp2 =

[
dα11

dV
p∞1 + dα12

dV
p∞2

−d(α22 + α12)

dV

]
δV

δ
dp2

dt
− α21δp1 − α22δp2 =

[
dα21

dV
p∞1 + dα22

dV
p∞2

]
δV

Applying the Fourier transform with angular frequency ω





(iω − α11)δ̂p1 − α12δ̂p2 =
[
dα11

dV
p∞1 + dα12

dV
p∞2

−d(α22 + α12)

dV

]
δ̂V

(iω − α22)δ̂p2 − α21δ̂p1 =
[
dα21

dV
p∞1 + dα22

dV
p∞2

]
δ̂V

Then δ̂p2 can be deduced from





α21(iω − α11)δ̂p1 − α21α12δ̂p2 = α21

[
dα11

dV
p∞1 + dα12

dV
p∞2 − d(α22 + α12)

dV

]
δ̂V

(iω − α11)(iω − α22)δ̂p2 − (iω − α11)α21δ̂p1 = (iω − α11)

[
dα21

dV
p∞1 + dα22

dV
p∞2

]
δ̂V

By summation

[(iω − α11) (iω − α22) − α21α12] δ̂p2

= α21

[
dα11

dV
p∞1 + dα12

dV
p∞2 − d (α22 + α12)

dV

]
δ̂V

+ (iω − α11)

[
dα21

dV
p∞1 + dα22

dV
p∞2

]
δ̂V

This implies the rate of variation

δ̂p2

δ̂V
=

α21

(
dα11
dV

p∞1 + dα12
dV

p∞2 − d(α22+α12)
dV

)

+(iω − α11)
(
dα21
dV

p∞1 + dα22
dV

p∞2

)

(iω − α11)(iω − α22)− α21α12

The current across the lipid bilayer is given by

I = Cm
dV

dt
+ gL(V − VL)+ gKp2(V − VK)

It is linearized by

δI = Cm
d(δV)

dt
+ gLδV + gK

[
δp2(V0 − VK)+ p∞2 δV

]

Applying the Fourier transform with angular frequency ω

δ̂I = Cmiωδ̂V + gLδ̂V + gK
[
δ̂p2(V0 − VK)+ p∞2 δ̂V

]

This provides the admittance of the p2 model

Ŷ = δ̂I

δ̂V
= Cmiω + gL + gK

(
δ̂p2

δ̂V
(V0 − VK)+ p∞2

)

3.4 Markov power spectra of the p2 model

From Equations 10, 11, the differential equation can be written
in the homogeneous form

d

dt

(
p1 − p∞1
p2 − p∞2

)
=
(

α11 α12

α21 α22

)(
p1 − p∞1
p2 − p∞2

)

More concisely

dp

dt
= Mp

where p =
(
p1 − p∞1
p2 − p∞2

)
andM =

(
α11 α12

α21 α22

)
.

The general solution is a linear combination

p = c1e
λ1tv1 + c2e

λ2tv2 (14)

where λ1, λ2 are eigenvalues ofM, v1, v2 are eigenvectors ofM and
c1, c2 are constants. Indeed

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2024.1472499
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Magnani and Moore 10.3389/fninf.2024.1472499

Mp = c1e
λ1tMv1 + c2e

λ2tMv2

= c1e
λ1tλ1v1 + c2e

λ2tλ2v2

= dp

dt

The trace T = α11+α22 and determinantD = α11α22−α12α21

ofM determine the eigenvalues

λ1,2 =
T ±

√
T2 − 4D

2

λ1,2 =
α11 + α22 ±

√
(α11 + α22)2 − 4(α11α22 − α12α21)

2

Since p represents probabilities, λ1 and λ2 must be negative to
have exponential decreases rather than exponential increases. This
determines two time constants for the p2 model

τ1 = − 1

λ1
, τ2 = − 1

λ2

The eigenvectors v1 and v2 are obtained by solving the equation
Mv = λv and substituting eigenvalues λ = λ1 and λ = λ2

v1 =
(

λ1−α22
α21

1

)
, v2 =

(
λ2−α22

α21

1

)

Inserting v1 and v2 into Equation 14

(
p1 − p∞1
p2 − p∞2

)
= c1e

λ1t

(
λ1−α22

α21

1

)
+ c2e

λ2t

(
λ2−α22

α21

1

)

The time t = 0 determines the coefficients c1 and c2 as follows




p1(0)− p∞1 = c1

λ1 − α22

α21
+ c2

λ2 − α22

α21

p2(0)− p∞2 = c1 + c2




p1(0)− p∞1 = c1

λ1 − α22

α21
+
(
p2(0)− p∞2 − c1

) λ2 − α22

α21

c2 = p2(0)− p∞2 − c1




c1

(
λ2 − λ1

α21

)
= p2(0)

λ2 − α22

α21
− p∞2

λ2 − α22

α21
− p1(0)+ p∞1

c2 = p2(0)− p∞2 − c1




c1 =

(λ2 − α22)(p2(0)− p∞2 )− α21(p1(0)− p∞1 )

λ2 − λ1

c2 = p2(0)− p∞2 − c1

The power spectrum can be calculated using the same
reasoning as with the model n4 previously because it is a sequential
model with three states instead of five states. In particular,
the single-channel autocovariance is based on the conditional
probability p2(t | 0) and the steady state probability p∞2

C(t) = p∞2 · p2(t | 0)−
(
p∞2
)2

Considering the unique state
(
p0, p1, p2

)
= (0, 0, 1) when the

channel is open




c1 =

(λ2 − α22)(1− p∞2 )+ α21p
∞
1

λ2 − λ1

c2 = 1− p∞2 − c1

As a result, the conditional probability p2 (t|0) is given by

p2(t | 0) = p∞2 + c1e
λ1t + c2e

λ2t

The autocovariance is given by

C(t) = p∞2
[
p∞2 + c1e

λ1t + c2e
λ2t
]
− (p∞2 )2

= p∞2 c1e
λ1t + p∞2 c2e

λ2t

This implies autocovariance CIK (t) of the total fluctuating
current

CIK (t) = NKi
2
KC(t)

= NKi
2
Kp

∞
2

(
c1e

λ1t + c2e
λ2t
)

Following the same conventions as previously, the power
spectrum is

SIK (ω) = 2S±IK (ω)

= 4ℜ
∫ +∞

0
CIK (t)e

−iωt dt

= 4NKi
2
Kp

∞
2 ℜ

∫ +∞

0

(
c1e

λ1t + c2e
λ2t
)
e−iωt dt

There are two integrals to be calculated for each number q =
1, 2

Sq(ω) =
∫ +∞

0
cqe

λqte−iωt dt

Using the non-unitary Fourier transform F[e−a|t|] = 2a
a2+ω2

with angular frequencies and divided by 2 because of the positive
half of the time [0;+∞]

Sq(ω) = cq
−λq

λ2q + ω2

Then, the power spectrum is deduced

SIK (ω) = 4NKi
2
Kp

∞
2

(
c1

−λ1

λ21 + ω2
+ c2

−λ2

λ22 + ω2

)

By using the time constants τ1 = − 1
λ1

and τ2 = − 1
λ2

SIK (ω) = 4NKi
2
Kp

∞
2

(
c1

1/τ1
1/τ 21 + ω2

+ c2
1/τ2

1/τ 22 + ω2

)

= 4NKi
2
Kp

∞
2

(
c1

τ1

1+ ω2τ 21
+ c2

τ2

1+ ω2τ 22

)

Figure 3A illustrates a voltage clamp Markov simulation for
a 5mV depolarization of the spontaneous potassium current
fluctuations superimposed on the theoretically predicted power
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spectrum SIK, the two Lorentzians, the two corner frequencies
and the squared admittance |Ŷ|2. The simulation was done with
the Markov model and QSA multi-sinusoidal stimuli of amplitude
0.25mV. At this potential, the predicted power spectrum SIK
(magenta curve) is well described by a single Lorentzian function
for frequencies greater than the corner frequency. The square of the
admittance is obtained with an input of constant amplitude, which
makes it possible to compare it to other curves independent of the
input. Figure 3B shows that simulations done without stimulus gave
identical power spectra.

3.5 Neuronal functions compared to
neuronal fluctuations

Individual neurons are characterized both by deterministic
neuronal functions, such as those revealed by linear and quadratic
analysis (QSA), and by random fluctuations, such as those
produced by Markov models. Both behaviors play an essential role
in subthreshold neuronal processing to generate action potentials
and, consequently, for neuronal networks in general.

Both behaviors are fundamentally related to the nonlinear
kinetic processes underlying ion channels, such as the n4 model,
its n2 simplification, or the generalization of n2 to the p2
model without exponentiation, as described above. In contrast,
the fluctuation-dissipation theorem implies that ion channel
fluctuations should be described by a linearization of the underlying
nonlinear channel kinetics. To address these issues, the sequential
kinetic model p2 described above is an approximate alternative
to the Hodgkin–Huxley model that may be useful because it is
not based on exponentiation. In all cases, Markov models are
considered an adequate approach to simulate the fluctuations of
a single-channel. Other neuronal noise fluctuation models are of
interest, such as stochastic differential equations (SDEs), but are not
considered in this paper. Since sequential kinetic models include
Hodgkin–Huxley models with exponentiation as a special case, and
have been shown to describe kinetic behavior as well as or better
than the Hodgkin–Huxley model, it is appropriate to compare
the simple p2 model with the n4 model. This will be done in the
following voltage clamp simulations for the model with nonlinear
exponentiation n4 and the model without exponentiation p2 to
provide a comparison of Markov fluctuations, their linear and
quadratic (QSA) stimulated behavior. A fundamental question is
whether models with exponentiation of the Hodgkin–Huxley type
or models without exponentiation are the best descriptions of a
single neuron behavior. These fluctuation simulations determine
whether or not the spontaneous current noise at a fixed voltage
clamped membrane potential should be based on a nonlinear
exponentiation such that n4.

The control case for nonlinear exponentiation is the Hodgkin–
Huxley n4 model. The frequency domain analysis is performed
on simulated data measurements at two different depolarized
membrane potentials, namely 5mV and 55mV, such as one could
record from a voltage clamped biological neuron. These two voltage
clamp potentials were chosen to be either near the resting value
or full activation of the voltage-dependent ionic conductances.
Simulations were performed usingMATLABR2022b (MathWorks)

with the nonlinear classical Hodgkin–Huxley n4 model described
in above sections. Two modes have been considered, deterministic
and stochastic, based on the programs of Goldwyn et al. (2011)
and Goldwyn and Shea-Brown (2011). The deterministic mode
was done using Euler’s method for ODE, while the stochastic
mode was based on Gillespie’s algorithm. The results of the
numerical simulations are superimposed on an analytical form
for the impedance (Equation 2) and the Markov fluctuations
(Equation 6). Thus, the simulations are analogous tomeasured data
from a biological neuron, which can be analyzed in the frequency
domain using the methods described above. As demonstrated by
Magnani et al. (2013), this type of frequency domain analysis is
an especially efficient and useful way to determine the accuracy
of a particular model, since frequency domain analysis of data
from biological neurons is a sensitive experimental measure that
can be rigorously compared to model predictions. When data
are produced by a model, as in this paper, comparisons between
numerical simulations and analytical expressions of impedance
and Markov fluctuations are used to check the accuracy of
calculations. In addition, the QSA method provides a nonlinear
analysis independent of a particular type of model or experiment,
and thus can be applied to compare simulated data for different
models.

Figure 4 illustrates the frequency analysis of the n4 model for
a 5mV depolarization. The upper left plot (Figure 4A) shows a
typical low frequency linear admittance anti-resonance (smooth
line) generated by a QSA multi-sinusoidal stimulus of amplitude
0.25mV. The upper right plot (Figure 4B) shows the QSA matrix
as a 3D representation, an intersection of lines on the plane for
any two linear frequenciesωi,ωj represents an interactive quadratic
frequency ωi + ωj for i, j ∈ {−N, . . . ,−1,+1, . . . ,+N} and the
color code indicates the amplitude of the quadratic response.
Remarkably, the quadratic response shows no anti-resonance.
The lower left plot (Figure 4C) shows the power spectra of the
Markov simulation superimposed on the analytical estimate of the
Equation 6. It is clear that the analytical estimation provides an
excellent control of theMarkov simulation, both of which reveal the
characteristics of a low-pass filter. The lower right plot (Figure 4D)
shows the quadratic power spectra averaged over several ODE
simulations for different random sets of QSA frequencies. Indeed,
since the QSA frequency sets have few frequencies, it is necessary
to average several measurements to increase the accuracy of the
power spectra. Individual amplitudes of the various quadratic
responses are represented at their particular frequencies, namely
SP(|ωi| + |ωj|) at frequency sums (red points), SM(||ωi| − |ωj||)
at frequency differences (blue points), SD(2|ωk|) at frequency
doubling (orange points) and SR(|ωj|) for the mean squared
quadratic output by matrix columns (black points). All of these
responses exhibit low-pass filter characteristics, but they flatten out
by reaching a constant value at high frequencies, with the exception
of SD(2|ωk|) at frequency doubling for which the amplitudes
decrease at high frequencies. Unlike the QSA matrix which is
based on ratios of outputs to inputs, quadratic power spectra
are evaluated directly from output measurements like Markov
power spectra.

The amplitudes of the quadratic power spectra are smaller than
those of the Markov power spectra. Indeed, quadratic responses
are an order of magnitude smaller than linear responses, while the
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FIGURE 3

Markov simulations of the p2 model. The power spectra approximated by 128 iterations are represented by the blue scatterplot. The predicted power

spectrum SIK (magenta curve) accurately fits the blue scatterplot. The two Lorentzians compose the predicted power spectrum with S1 (brown curve)

and S2 (orange curve). The corresponding corner frequencies ω1 and ω2 are represented by vertical lines. (A) Simulations for a 5mV depolarization

with QSA multi-sinusoidal stimulus of amplitude 0.25mV and frequencies (2, 3, 10, 21, 35, 50, 76, 104, 134, 143, 223, 239, 285, 388, 405, 515, 564,

636, 815, 892, 982) Hertz. The squared admittance |Ŷ|2 (green curve) matches the linear Markov responses after adjustment of the vertical o�set. (B)

Simulations for a 5mV depolarization without stimulus. The fluctuation power spectra are the same as those in (A) but there is no admittance. (C)

Simulations for a 55mV depolarization without stimulus. The rate constants have been manually selected to approximate the frequency domain

responses of the n4 model, which can be compared to Figure 2C.

fluctuation-dissipation theorem relates spontaneous fluctuations to
linear responses. In particular, Markov power spectra are based on
autocorrelation, which corresponds to the second order cumulant,
whereas higher order spectra would involve at least the third order
cumulant as explained by Mendel (1991). At this end of this
paper, the discussion provides some simulations to compare the
amplitudes of quadratic responses and spontaneous fluctuations.

It is well known that nonlinear systems can generate frequency
mixing processes, such as those producing interactive frequencies
|ωi| + |ωj|, ||ωi| − |ωj|| and 2|ωk|. Frequency mixing behavior
is fundamental in some scientific fields, such as nonlinear optics,
as described for example by Boyd (2008). Frequency mixing
introduces complexity into the response, which may contain

frequencies that are not present in the stimulus. Thus, neurons
mix stimulus oscillations into quadratic responses that may appear
less uniform than linear responses. In particular, the power spectra
SP(|ωi| + |ωj|) and SM(||ωi| − |ωj||) show scatter plots with a lot
of dispersion that look like stochastic fluctuations. It should be
noted that although different random sets of QSA frequencies were
used for averaging, each individual QSA matrix is obtained from a
deterministic ODE. Randomizing the frequencies only extends the
range of frequencies for analysis, implying that the dispersion is due
to the quadratic neuronal function rather than a lack of frequencies.
In contrast, frequency doubling generates power spectra SD(2|ωk|)
that approximately follow a smooth line. This is because frequency
doubling is calculated along the frequency diagonal (ωk,ωk) on the
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FIGURE 4

Frequency analysis of the n4 model for a 5mV depolarization. (A) Linear admittance (smooth line) generated by a QSA multi-sinusoidal stimulus of

amplitude 0.25mV and frequencies (2, 3, 10, 21, 35, 50, 76, 104, 134, 143, 223, 239, 285, 388, 405, 515, 564, 636, 815, 892, 982) Hertz. The linear

responses at stimulating frequencies are marked by small circles. (B) QSA matrix in 3D representation obtained with the same stimulus as the linear

function, but the plot is cut at 500Hz for a better readability. The color code indicates the amplitude of the quadratic response. Each value

(ωi,ωj, |Qi,j|) in the 3D plot represents the magnitude of the quadratic response to a frequency interaction. (C) Power spectra of the Markov simulation

(128 iterations) superimposed on the analytical estimate. The frequencies are continuous up to twice the maximum stimulus frequency to include

the highest QSA frequency (frequency doubling). The analytical estimation provides an excellent control of the Markov simulation. (D) Quadratic

power spectra averaged over several ODE simulations (128 iterations) for di�erent sets of QSA frequencies randomized up to 1,000Hz. Quadratic

responses are represented at their particular frequencies, namely SP(|ωi| + |ωj|) at frequency sums (red points), SM(||ωi| − |ωj||) at frequency di�erences
(blue points), SD(2|ωk|) at frequency doubling (orange points) and SR(|ωj|) for the mean squared quadratic output by matrix columns (black points).

Unlike the QSA matrix which is based on ratios of outputs to inputs, quadratic power spectra are evaluated directly from output measurements like

Markov power spectra.

3D representation, which decreases smoothly from low frequencies
(color-coded red for height) to high frequencies (color-coded blue
for height). Similarly, the power spectra SR(|ωj|) for the mean
squared quadratic output by matrix columns appear to be quite
smooth for the reason that the 3D representation is smooth
and summed column by column. Remarkably, the power spectra
SD(2|ωk|) tends to zero at high frequencies due to the attenuation
of quadratic responses along the diagonal (ωk,ωk), while the power
spectra SR(|ωj|) flatten at high frequencies because of the residual
quadratic responses around the horizontal (x, 0) and vertical axes
(0, y). Therefore, the irregularity of the power spectra SP(|ωi|+|ωj|)
and SM(||ωi|−|ωj||) are fundamentally due to non-trivial quadratic
frequency interactions between ωi and ωj when they do not follow
the smooth shape of the 3D representation (by diagonal or by
columns).

Figure 5A shows the superposition of five curves of the n4

model for a 5mV depolarization. This allows a comparison of the
linear, nonlinear and fluctuation amplitudes behavior. The curves
were scaled to unity at low frequencies. The curve SIK represents the
analytical estimate of Markov fluctuations. The curve SL represents
the linear power spectrum at fundamental frequencies. The curve
SD represents the quadratic power spectrum at frequency doubling.

The curve SR represents the mean squared quadratic output by
matrix columns. The multi-sinusoidal power spectra SL, SD, SR
were averaged over different random sets of non-overlapping
frequencies as in Figure 4. The curve |Ŷm|2 represents the squared
admittance modified from the Equation 1 without the membrane
capacitance nor the frequency independent terms, namely

Ŷm = gK
[
4n30 (V0 − VK) D̂n

]

The contribution of the capacitance to the actual admittance
is in part responsible for an anti-resonance that leads to high
frequency responses that are dominant, thus preventing a direct
comparison of the linearized admittance with nonlinear responses
or fluctuation behavior. The square of the admittance is obtained
with an input of constant amplitude, which makes it possible to
compare it to other curves independent of the input.

The fall of the modified squared admittance |Ŷm|2 is more
marked than that of the Markov fluctuations SIK, which is also
the case for the linear power spectrum SL over a limited range
of frequencies before the reversal. The fall of the quadratic power
spectra SD and SR is more marked than that of the Markov
fluctuations SIK but less than that of the modified squared

Frontiers inNeuroinformatics 17 frontiersin.org

https://doi.org/10.3389/fninf.2024.1472499
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Magnani and Moore 10.3389/fninf.2024.1472499

FIGURE 5

Power spectral analysis of the n4 model. Comparison between the analytical estimate of Markov fluctuations SIK (magenta), the linear power

spectrum SL (green), the quadratic power spectra SD (orange) and SR (black), the modified squared admittance |Ŷm|2 (blue). (A) Simulations for a 5mV

depolarization. (B) Simulations for a 55mV depolarization.

admittance, as well as compared to the linear power spectrum SL
before the reversal. As explained previously, SD and SR follow the
smooth 3D representation of the QSA matrices, in particular SD
decreases indefinitely while SR flattens at high frequencies.

These results show that the evoked nonlinear responses have
a lower frequency behavior than spontaneous fluctuations,
suggesting that Markov fluctuations have a different
origin than the nonlinearity evoked by stimulus despite
nonlinearity of rate constants or exponentiation n4 in the
stochastic equations.

Figure 6 shows the frequency analysis of the n4 model for a
55mV depolarization, which is very different from the previous
5mV depolarization, clearly illustrating the voltage dependence
of the potassium channel in both the linear and nonlinear
analyses. The upper left plot shows linear admittance (smooth
line) generated by a QSA multi-sinusoidal stimulus of amplitude
0.25mV, which reveals the onset of a high frequency anti-resonance
minimum. The upper right plot shows the QSA matrix as a 3D
representation, which is increased in a slightly shifted bandwidth
from the previous depolarization of 5mV. The lower left plot shows
the power spectra of the Markov simulation superimposed on the
analytical estimate, which is similar to a low-pass filter as for a
depolarization of 5mV. The lower right plot shows the quadratic
power spectra averaged over several ODE simulations for different
random sets of QSA frequencies. The individual components SP,
SM , SD confirms the slightly shifted bandwidth observed on the
QSA matrix, revealing more precisely the marked resonance. In
particular, the nonlinear resonant frequencies are clearly lower than
that of the linear anti-resonance. However, the SR component based
on each matrix column has low-pass filter characteristics. Thus,
low-pass behavior is observed at 5 and 55mV for the Markov
simulation of and the column-mean-square SR. Interestingly,
the nonlinear behavior for highly activated conductances shows

resonance in the quadratic responses at frequencies different from
the anti-resonance observed for the linear response.

Figure 5B (55mV) shows the superposition of five curves of the
n4 model for a 55mV depolarization, using the same presentation
as in Figure 5A (5mV). The modified squared admittance |Ŷm|2
nearly superimposes on the Markov fluctuations SIK, which is an
effect of the voltage-dependent potassium conductance induced by
the 55mV depolarization.

Also, by comparing Figure 2C (55mV) and Figure 2B (5mV),
each of the four relaxation time constants clearly appears as a
function of the membrane potential and at large depolarizations
the slowest time constant is dominant, i.e. the component S1 fits
the Markov fluctuations SIK accurately.

Thus, at 55mV depolarization, the fluctuation behavior SIK is
dominated by S1 and has a kinetic behavior similar to that of a
modified squared admittance |Ŷm|2, which does not occur at the
less depolarized potential 5mV shown above.

The linear power spectrum SL is similar to the modified
squared admittance |Ŷm|2 at low frequencies, but it does not fall at
high frequencies due to the membrane capacitance and frequency
independent terms. The column-mean-square component SR has
a higher frequency content than the linear behavior, although
less dramatic than the marked scaled resonance of the frequency
doubling component SD.

In summary, the power spectra of the QSA responses
for the n4 model are clearly different than those of Markov
fluctuations and the power spectra of the linear responses do
not generally follow that of the spontaneous fluctuations. Thus,
Markov fluctuations are not predicted by small signal evoked
linear or quadratic responses. Interestingly, Markov fluctuations at
depolarized membrane potentials are dominated by the linear time
constant, this is not generally the case for lesser depolarizations, as
illustrated between a 5 and 55mV depolarizations.
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FIGURE 6

Frequency analysis of the n4 model for a 55mV depolarization. The plots were generated using the same presentation as in Figure 4. (A) Linear

function. (B) Quadratic function. (C) Markov power spectra (M = 128). (D) Quadratic power spectra (M = 128).

3.6 Observations on the linear
fluctuation-dissipation theorem

As discussed by Stevens (1972), the power n4 in Hodgkin–
Huxley equations leads to two interpretations of the origin of
potassium conductance noise. The first case involves Markov
simulations and power spectra with four Lorentzian terms, as
illustrated in Figure 2B. The second case involves linearization of
the Hodgkin–Huxley equations with a single relaxation time, as
illustrated by the term gK

[
4n30 (V0 − VK) D̂n + n40

]
in Equation 1.

The linear fluctuation-dissipation theorem states that the
spontaneous fluctuations should have the same kinetic behavior
as a response to a small signal, namely a linear response. The
fact that Markov simulations have four time constants whereas the
linearization has a single relaxation time does not agree with the
linear fluctuation-dissipation theorem. Thus, the linear fluctuation-
dissipation theorem does not hold for the n4 model. This suggests
exploring nonlinear extensions of the linear fluctuation-dissipation
theorem in the physics literature. However, it is also interesting
to consider the case when Markov simulations have fewer time
constants, as with the p2 model described in this article.

3.7 Comparison between n4 and p2 models

3.7.1 Depolarization of 55mV
As discussed above, sequential kinetic models can produce

the exponentiation of the n4 Hodgkin–Huxley model, so that the

probability of the channel opening coincides with n4. Similarly, for
the n2 model, the probability of the channel being open coincides
with n2. However, the p2 model generalizes the rate constants of
the n2 model, so that the probability of the channel opening is
not necessarily an exponentiation. Thus, sequential kinetic models
are more general than the Hodgkin–Huxley model, as that they
do not require exponentiation. In these models, the nonlinear
voltage dependence of neuronal ionic conductances lies essentially
in the rate constants between sequential states and not in an
exponentiation functional dependence of the conductance gating
variable.

If such non-exponentiation-based sequential kinetic models
also fit the data, then their nonlinear behavior may more
realistically describe the underlying molecular mechanisms
of ion channel activity. Indeed, in accordance with the
principle of parsimony, these models free themselves from
the constraint that the probability of channel opening must be
an exponentiation.

Figures 3C, 7 show an example of a p2 model, in which the
rate constants have been manually selected to approximate the
frequency domain responses of the n4 model, for a depolarization
of 55mV. As expected, both models show similar resonance
behavior for the linear and quadratic responses. However, there are
quantitative differences. First, the SD quadratic power spectra of
the p2 model (Figure 7) show not one, but two resonances reflected
by a peak and bump, unlike the n4 model (Figure 6). Second, the
Markov fluctuations of the p2 model (Figure 3C) are also different
with the indication of more than one time constant illustrated by
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FIGURE 7

Frequency analysis of the p2 model for a 55mV depolarization. The rate constants have been manually selected to approximate the frequency

domain responses of the n4 model, which can be compared to Figure 6. (A) Linear function. (B) Quadratic function. (C) Markov power spectra (M =

128). (D) Quadratic power spectra (M = 128).

the inflection just before the final slope of S2, unlike the n4 model
(Figure 2C) for which S1 fits SIK accurately.

Figure 8B shows the superposition of five curves of the p2 model
for a 55mV depolarization, using the same presentation as for the
n4 model in Figure 5B. As with the n4 model, the modified squared
admittance |Ŷm|2 nearly superimposes on the Markov fluctuations
SIK. However, the power spectra are quite different between the two
models. The inflection of the Markov fluctuations SIK is matched
by the modified squared admittance |Ŷm|2, which is consistent with
the fact that the analytical expressions for Markov fluctuations and
admittance both have two relaxation processes in the p2 model.
In contrast, the n4 model has only one relaxation process due
to the linearization of the exponentiation. Similarly, the modified
squared admittance |Ŷm|2 agrees well, at low frequencies, with the
linear power spectrum SL and column-mean-square component
SR. Interestingly, the frequency doubling component SD exhibits
a double resonance, suggesting the existence of more than one
relaxation process.

3.7.2 Depolarization of 5mV
Figure 9 shows the same simulations as in Figure 7 but for

a depolarization of 5mV. The results are quite similar to the
n4 model in Figure 4. The upper left plot shows a typical low
frequency linear admittance anti-resonance. The upper right plot
shows the QSA matrix as a 3D representation, which shows no
anti-resonance. The lower left plot shows the power spectra of
the Markov simulation superimposed on the analytical estimate,

both of which reveal the characteristics of a low-pass filter. The
lower right plot shows the quadratic power spectra averaged
over several ODE simulations, all of these responses exhibit low-
pass filter characteristics, but they flatten out by reaching a
constant value at high frequencies, with the exception of SD(2|ωk|)
at frequency doubling for which the amplitudes decrease at
high frequencies.

Figure 8A shows that, as with the n4 model at 5mV in
Figure 5A, the linear behavior represented by the modified squared
admittance |Ŷm|2 does not accurately describe quadratic power
spectra or Markov fluctuations. In particular, as with the n4 model
at 5mV, the modified squared admittance and quadratic power
spectra of the p2 model have lower frequency components than the
Markov fluctuations.

3.8 Validity

Depolarizations at 5 and 55mV were selected to investigate
potassium channel dynamics under contrasting conditions for both
the n4 model and the p2 model. At 5mV, n4∞ ≃ 0.0247 and
p∞2 ≃ 0.0297 indicate negligible activation, reflecting the near-
closed state of the channels. At 55mV, n4∞ ≃ 0.596 and p∞2 ≃
0.565 correspond to partial activation, illustrating the dynamics of
channel opening under significant depolarization. These voltage
levels were chosen to explore and compare the behavior of the
two models across a physiologically relevant range under identical
stimulation conditions.
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FIGURE 8

Power spectral analysis of the p2 model. Comparison between the analytical estimate of Markov fluctuations SIK (magenta), the linear power

spectrum SL (green), the quadratic power spectra SD (orange) and SR (black), the modified squared admittance |Ŷm|2 (blue). (A) Simulations for a 5mV

depolarization. (B) Simulations for a 55mV depolarization.

4 Discussion

4.1 Spontaneous fluctuations and
nonlinear responses

Neuronal fluctuations influence both transient and steady state
responses, which fundamentally set the thresholds for neuronal
impulse propagation. The fluctuating behavior of neurons in
the central nervous system can be divided into three categories:
(1) subthreshold synaptic bombardment from multiple networks,
(2) additional nonlinear components generated for a particular
stimulus, and (3) intrinsic spontaneous noise independent of
external stimulus. Computational neuroscience is an attempt to
understand the network behavior of the nervous system. However,
it is highly dependent on neuronal models determined from
numerous systems using very restricted data sets. The tools for
extracting experimental data are impressive, ranging from current
and voltage clamp, single channel and noise analysis, multi-
electrode arrays recording activity on a population of cells, imaging
techniques to estimate activity in intact systems, transfer function
analysis and a variety of nonlinear approaches such as Wiener and
Volterra kernels. The QSA method used in this article refines the
quantitative characteristics of neuronal models in the frequency
domain.

The above simulations shown for the potassium conductance
suggest that the non-smooth fluctuations of the QSA power spectra
SP and SM generate an alternative kind of noise due to the
complexity of nonlinear interactions, which is not identical to
the spontaneous fluctuations simulated by a stochastic Markov
process. Although each individual QSA characterization uses a
limited number of non-overlapping frequencies, this is overcome
relatively well by averaging the power spectra for different stimulus
sets. The p2 sequential model of the ion channel suggests that the

fluctuation-dissipation theoremmay be, in part, valid since both the
linear and fluctuation spectra have similar relaxation times (corner
frequencies), which is not the case for the n4 model.

QSA analysis of a Markov model requires the averaging of
individual trace measurements using the same multi-sinusoidal
stimulus, which will converge to the deterministic response if
a sufficient number of averages are performed. QSA analysis of
individual trace measurements leads to highly variable QSA power
spectra, unlike the same procedures performed on deterministic
models, which are invariant. As real biological neuronal cells
are intrinsically fluctuating, QSA experiments on patch clamped
neurons have been performed on averaged trace measurements
(Magnani and Moore, 2011), leading to a deterministic response
that averages out the spontaneous fluctuation behavior of
ion channels. The above-mentioned QSA power spectra were
performed with random QSA stimulus frequencies applied to
ODEs in order to compare them with the Markov noise power
spectra. Alternatively, a single set of QSA stimulus frequencies
can be applied to a set of Markov simulations, in which case the
power spectra of the QSA matrix coefficients for the same stimulus
can be averaged to determine how prominent the Markov model’s
responses are at the nonlinear interactive frequencies. This can be
called an average QSA Markov noise power spectrum.

Figure 10 shows the power spectra of the QSA matrix
coefficients of the p2 model for a 55mV depolarization, comparing
two different stimulus amplitudes 4mV (top) and 1mV (bottom).
Stimulus amplitudes are relatively larger than those used previously
in deterministic analyses, as quadratic responses must overcome
spontaneous fluctuations, otherwise the quality of noisy signals
is too degraded. The two plots on the left column represent the
power spectra of the usual deterministic ODE equations, which
serve as a reference. As expected, they are similar at 4 and 1mV.
The two plots in the middle column represent the power spectra
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of the QSA Markov noise (QSA analysis performed on each
individual Markov simulation). Surprisingly, the result is similar
to that of ODE at 4mV, but dramatically different at 1mV. In
particular, the enhanced diagonal follows harmonic frequencies.
The right column shows the same power spectra as the middle
column, but with the diagonal (harmonic frequencies) removed
(set to zero). The result remains dramatically different from the
ODE at 1mV, which means that both the diagonal and cross-
terms responses represent another quadratic function. Namely,
spontaneous Markov fluctuations modify the neuronal quadratic
function as the stimulus amplitude decreases. It is interesting to
note that harmonic frequencies of the QSA Markov noise are
also enhanced at 4mV, but the matrix is essentially similar to
that of ODE. The enhanced diagonal may be due to the fact
that the modified squared admittance |Ŷm|2 predicts the Markov
fluctuations SIK at a 55mV depolarization, as shown in Figure 8B.
Each squared frequency component generates frequency doubling.
Thus, Markov fluctuations contribute to the harmonic frequencies
in the QSA analysis of each individualMarkov simulation, as well as
at, to a lesser extent, to the interactive frequencies since the Markov
noise cloud is not a smooth curve.

Figure 11 supports this hypothesis as illustrated with the power
spectra of the QSA matrix coefficients of the p2 model for a 5mV
depolarization, comparing two different stimulus amplitudes 4mV
(top) and 1mV (bottom). At this low depolarization level, the
modified squared admittance |Ŷm|2 no longer predicts the Markov
fluctuations SIK, as shown in Figure 8A. In this case, the diagonal
of the QSA Markov noise is smaller and the power spectra of the
QSA matrix coefficients are similar to those of the ODE at 4mV
and 1mV. Nevertheless, the diagonal remains somewhat enhanced
in the QSA Markov noise, likely because Markov fluctuations and
modified squared admittance |Ŷm|2 have a similar appearance.

Figures 12–15 reinforce this interpretation by varying the
surface area of the membrane of the p2 model for a 55mV
depolarization and stimulus amplitude 1mV. The larger the surface
area of the membrane, the lower the noise effect. The smallest areas
AK = 50µm2, AK = 500µm2, AK = 5, 000µm2 show a behavior
similar to Figure 10, that is to say spontaneous Markov fluctuations
modify the neuronal quadratic function. However, the largest area
AK = 50, 000µm2 shows a behavior that partially recovers the
ODE and better without the diagonal. This suggests that increasing
the stimulus amplitude or decreasing the noise amplitude have
similar effects on the quadratic function expressed. However, the
two approaches are not equivalent since the amplitude of the
stimulus tends to be modulated by the inputs of a neuron while the
amplitude of the noise depends on the anatomy of a neuron.

This suggests that responses to neuronal stimuli would be
different for quiet versus noisy neurons. Quiet neurons would
exhibit complex nonlinear frequency responses, whereas the
nonlinear responses of noisy neurons would tend to have additional
frequency components, particularly at harmonic frequencies of
the stimulus. Thus, individual neurons within a neuronal network
would process input stimuli according to background synaptic
activity, which is likely to be the main determinant of neuronal
noise.

4.2 Potential applications

The spectral analysis of spontaneous fluctuations and nonlinear
responses in ion channels, particularly potassium channels,
provides an effective approach for understanding fundamental
mechanisms of neuronal dynamics. Thesemethods, which combine
computational modeling and data analysis, are closely aligned
with the principles of neuroinformatics by enabling the systematic
interpretation of biological signals. This methodology suggests
practical applications in areas relevant to real neuroinformatics
scenarios.

The development of computational models of neurons provides
a natural platform for applying spectral analysis, offering a way to
connect ion channel dynamics with broader neuronal behavior. For
example, Martin and Pedersen (2024) investigates the critical roles
of HCN andM-type potassium channels inmodeling and analyzing
cAMP-induced mixed-mode oscillations in cortical neurons. Their
use of a Hodgkin–Huxley-type model presents an opportunity to
apply spectral analysis methods to characterize the behavior of
different types of potassium channels in the context of cortical
neurons.

The study by Pettersen et al. (2014) investigates power spectral
densities (PSDs) of the soma potential, soma membrane current,
and the single neuron contribution to the electroencephalogram
(EEG). Their analytical approach, based on linear neuronal cable
theory, explores how power laws may arise from the intrinsic
biophysical properties of single neurons, independent of complex
network interactions. Integrating spectral analysis methods within
this theoretical basis could help clarify the interplay between ion
channel dynamics and macroscopic neuronal activity patterns.
Such integration holds potential for applications requiring accurate
modeling of neuronal behavior, such as in EEG analysis or brain-
computer interfaces.

Traumatic brain injuries and repetitive head impacts can result
in altered neuronal excitability, with potassium channels playing an
important role. Chapman et al. (2023) developed an in silicomodel
of mouse CA1 pyramidal cells to identify ion channels contributing
to hypoexcitability in this context. The model used morphology
from the neuromorpho archive (Hines, 2009) and simulations
performed with the NEURON platform (Ascoli et al., 2007).
Applying spectral analysis methods to such realistic models could
help identify spectral signatures of potassium channel dysfunction.
Such analyses align with the goals of precision medicine and
targeted therapeutic strategies.

Operator learning provides effective tools for modeling
the complex dynamics of neurons. Centofanti et al. (2024)
demonstrated the potential of operator learning, including Deep
Operator Networks (DeepONets), Fourier Neural Operators
(FNOs), and Wavelet Neural Operators (WNOs), to model
the Hodgkin–Huxley system. Using square pulse stimuli, these
methods map input currents to transmembrane potentials,
capturing the dynamics of the Hodgkin–Huxley model. The square
pulse stimuli could be extended to QSA multi-sinusoidal inputs to
more precisely probe subthreshold nonlinear responses, although
this may require some methodological adjustments. Extending
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FIGURE 9

Frequency analysis of the p2 model for a 5mV depolarization. The rate constants have been manually selected to approximate the frequency domain

responses of the n4 model, which can be compared to Figure 4. (A) Linear function. (B) Quadratic function. (C) Markov power spectra (M = 128). (D)

Quadratic power spectra (M = 128).

FIGURE 10

Power spectra of the QSA matrix coe�cients of the p2 model for a 55mV depolarization. (Upper row) Stimulus amplitude 4mV. (Lower row)

Stimulus amplitude 1mV. (Left column) Deterministic ODE equations. (Middle column) QSA analysis performed on each individual Markov

simulation for 16 iterations. (Right column) Identical to the middle column but with the diagonal (harmonic frequencies) removed (set to zero).

Frontiers inNeuroinformatics 23 frontiersin.org

https://doi.org/10.3389/fninf.2024.1472499
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Magnani and Moore 10.3389/fninf.2024.1472499

FIGURE 11

Power spectra of the QSA matrix coe�cients of the p2 model for a 5mV depolarization. (Upper row) Stimulus amplitude 4mV. (Lower row) Stimulus

amplitude 1mV. (Left column) Deterministic ODE equations. (Middle column) QSA analysis performed on each individual Markov simulation for 16

iterations. (Right column) Identical to the middle column but with the diagonal (harmonic frequencies) removed (set to zero).

their approach to a stochastic Markov model appears to be another
challenge. Building on these ideas, spectral analysis methods
could be combined with operator learning approaches to support
applications in neuroscience and AI.

The principles of quantum mechanics provide innovative
tools for understanding and modeling neuronal dynamics. The
quantized Hodgkin–Huxley model proposed by Gonzalez-Raya
et al. (2019) associates potassium conductance with a memristor
driven by sinusoidal currents. Extending this method with QSA
multi-sinusoidal driving could broaden its scope by probing
nonlinear interactions across multiple frequencies. Additionally,
Bradley et al. (2020) describe the use of quantum states to represent
classical probability distributions over sets of sequences. Their use
of a density operator to encode probabilistic information offers a
potential approach to compare stochastic spontaneous fluctuations
to nonlinear responses encoded in the QSA matrix, which is
Hermitian. Together, these concepts offer promising directions for
exploring quantum-inspired models of neuronal dynamics.

4.3 Comparing the p2 model with existing
approaches

The p2 model is constructed as a variant of the n4 five-state
Markov chain with two independent rate constants, formulated as a
three-state Markov chain and generalized to four independent rate
constants. In this way, the p2 model avoids explicit exponentiation,
yet it can represent the minimal degree of nonlinearity n2 as well

as models without exponentiation. Moreover, the rate constants of
the p2 model can be tuned to preserve the key dynamical features
of the n4 model, as evaluated through spectral analysis methods.

The relevance of decreasing the degree of exponentiation
to n2 for potassium permeability is exemplified by the work of
Frankenhaeuser and Huxley (1964) in their study of myelinated
nerve fibers. This adaptation, motivated by experimental
observations and computational simplicity, preserved the essential
dynamical behaviors. Similarly, the p2 model generalizes this
approach by providing a flexible three-state Markov representation
with independent rate constants.

The master equation of the p2 model given in Equation 8
is consistent with established methods in the literature. For
example, Güler (2015) describes a similar master equation
in the context of the minimal diffusion formulation of
Markov chain ensembles and its application to ion channel
clusters. This connection highlights the relevance of such
master equations in modeling ion channel dynamics and their
stochastic behaviors.

Another example illustrating a similarity with the p2 model
formulation is provided by Schmandt and Galán (2012), who
developed the stochastic-shielding approximation of Markov
chains to efficiently simulate random ion-channel gating. They
describe a three-state Markov chain and use variables Nk(t) and
Nij(t), representing the number of elements in state k and the
number transitioning from state i to j, respectively, similar to
the variables described in the above section on stochastic Markov
simulations.
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FIGURE 12

Power spectra of the QSA matrix coe�cients of the p2 model for a membrane surface area AK = 50µm2, a 55mV depolarization and a stimulus

amplitude 1mV. (Top left) Deterministic ODE equations. (Top right) A single trace (blue curve) from Markov simulations in time domain (s, pA) with

linear (green curve) and quadratic (red curve) analyses. (Bottom left) QSA analysis performed on each individual Markov simulation for 16 iterations.

(Bottom right) Identical to the bottom left but with the diagonal (harmonic frequencies) removed (set to zero).

FIGURE 13

Power spectra of the QSA matrix coe�cients of the p2 model for a membrane surface area AK = 500µm2, a 55mV depolarization and a stimulus

amplitude 1mV. The plots were generated using the same presentation as in Figure 12.
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FIGURE 14

Power spectra of the QSA matrix coe�cients of the p2 model for a membrane surface area AK = 5, 000µm2, a 55mV depolarization and a stimulus

amplitude 1mV. The plots were generated using the same presentation as in Figure 12.

FIGURE 15

Power spectra of the QSA matrix coe�cients of the p2 model for a membrane surface area AK = 50, 000µm2, a 55mV depolarization and a stimulus

amplitude 1mV. The plots were generated using the same presentation as in Figure 12.
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An insightful study is provided by Güler (2013), which
investigates the impact of introducing noise into rate constants
in Hodgkin–Huxley models. This approach modifies the standard
rate constants α and β with stochastic terms, while the p2 model
applies fixed multiplicative adjustments to these rates. This work
could inspire a potential extension of the p2 model to incorporate
stochastic variability in the rate constants.

4.4 Experimental considerations

The simulations and theoretical analyses presented in this
article involve two key aspects for experimental validation: the
deterministic QSA method and stochastic Markov models, both of
which provide complementary insights into neuronal dynamics.

The QSA method was specifically designed to support both
model-based and experimental measurements. In particular, the
multi-sinusoidal stimuli are carefully generated to avoid frequency
overlap at first and second orders, enabling a direct evaluation of
the QSA matrix from input-output data. In this article, the QSA
method has been extended by averaging multiple measurements
to improve the accuracy of the power spectra. However, each
individual measurement remains the response to a stimulus
without overlap, ensuring that this extension does not alter the
original experimental protocol. Consequently, the spectral analyses
of linear and quadratic responses described in the above sections
could potentially be applied to experimental measurements.
Importantly, the QSA method has already been validated using
experimental data from whole-cell patch-clamp recordings of
prepositus hypoglossi nucleus neurons (Magnani and Moore,
2011; Magnani et al., 2013) and medial entorhinal cortex neurons
(Magnani et al., 2014). Furthermore, these validated data were
compared with conductance-based models of the corresponding
neurons, emphasizing the relevance of the method for bridging
experimental and theoretical approaches.

The validation of stochastic Markov models, such as the n4 and
p2 models, for describing ion channel kinetics presents a significant
experimental challenge, as it inherently involves solving an inverse
channel–fitting problem (Cannon and D’Alessandro, 2006). From
a biophysical perspective, Markov models are considered more
flexible than the Hodgkin–Huxley model because they incorporate
discrete states that better capture the complexity of voltage-gated
ion channels. For example, Andreozzi et al. (2019) compared
Hodgkin–Huxley and Markov models for a sodium channel
(NaV1.5) with experimental data, indicating limitations of the
Hodgkin–Huxley model and providing simplified Markov models
as effective tools to approximate the complexity of ion channel
kinetics.

The n4 exponentiation in the Hodgkin–Huxley model is
commonly interpreted as describing a potassium ion channel
composed of four independent gates. If each gate is open with
probability n, the channel as a whole is open with probability
n4. However, gating independence is merely an assumption. This
nuance is addressed by Mannuzzu and Isacoff (2000), who show
that the late gating steps of Shaker potassium channels involve
cooperative interactions between subunits. Consistently, the p2
model does not rely on the concept of independent gates. Instead,

it relies on independent rate constants. This approach allows the p2
model to represent behaviors such as n2, as well as variants without
explicit exponentiation. Moreover, this article has demonstrated
that the p2 and n4 models can produce similar neuronal responses,
suggesting that the underlying kinetic schemes are more essential
than gating independence for capturing channel behavior.

The p2 model (or an extension) could potentially be further
adapted to approximate experimental data as demonstrated here
theoretically to approximate the n4 model. Power spectra could
be compared to investigate discrepancies between fluctuation and
QSA measurements (linear, quadratic). Earlier work by Fishman
et al. (1983) compared fluctuation power spectra and linear
admittance measurements of sodium current kinetics in squid
axons, demonstrating significant discrepancies between the two
methods and highlighting the nonlinear nature of microscopic
sodium channel kinetics. This approach could shed light on the
dynamics of ion channels and contribute to the validation of
theoretical models.

Molecular dynamics simulations offer a promising approach
to improve Markov models. Catacuzzeno et al. (2024) proposed
an innovative method to build Markov models of ion channel
permeation from molecular dynamics simulations. Combining
these simulations with spectral analysis methods and the p2
model remains a complex challenge but holds potential to achieve
a more accurate representation of ion channel behavior under
physiological conditions.

4.5 Implications for neuromorphic systems

Neuromorphic systems represent an innovative approach in
neuroinformatics, based on biologically inspired principles to
mimic dynamic processes of neuronal systems. By leveraging non-
von Neumann architectures, they enable efficient modeling of
complex neuronal functions. The potential of these systems has
been demonstrated in various contexts: Sun et al. (2020) explored
hippocampal dynamics using scalable digital neuromorphic
models; Yang et al. (2021a) developed BiCoSS, a platform
integrating multigranular spiking networks for advanced cognitive
tasks; Yang et al. (2021b) applied neuromorphic principles to
cerebellar motor learning. These studies collectively highlight the
ability of neuromorphic systems to bridge biological relevance with
computational efficiency, contributing to a deeper understanding
of neuronal mechanisms.

The inherent complexity of neuronal systems, particularly
the nonlinear dynamics of voltage-gated ion channels, poses
significant challenges for neuromorphic systems, which must
balance biological realism with computational efficiency. Neuronal
processing is not limited to high-level brain functions but also
encompasses computations at the level of individual neurons and
voltage-gated ion channels, as characterized in this article through
spectral methods such as linear impedance, quadratic interactions
(QSA matrix), and microscopic noise (power spectra), which
means that simplifying while preserving key aspects of neuronal
computations in neuromorphic systems is a delicate task. For
example, Sun et al. (2020) used the Izhikevich model (Izhikevich,
2003) in their neuromorphic implementation of hippocampal
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networks, achieving computational efficiency while simplifying the
underlying biophysical complexity of ion channels. As pointed out
in Yang et al. (2018), the Izhikevich model, while computationally
efficient, does not fully capture the full range of ionic conductance
dynamics, which may limit its use in studies requiring high
biological accuracy. However, platforms such as BiCoSS (Yang
et al., 2021a) demonstrate how neuromorphic systems can enhance
biological representation and offer flexibility to address such
challenges.

Biological neurons have highly specific properties, which
present another significant challenge for neuromorphic systems
to replicate their dynamics. As explained by Idoux et al.
(2008), the prepositus hypoglossi nucleus (PHN) contains distinct
neuronal populations, such as type B and type D neurons,
which differ in properties like action potential shape and
oscillatory behavior, highlighting the diversity within a single
brain region. These neurons also exhibit varying electrotonic
lengths: type B neurons are more compact, allowing distal
dendritic inputs to significantly influence somatic activity,
whereas type D neurons have extended electrotonic lengths,
emphasizing the computational role of dendrites. Furthermore,
the persistent sodium conductance (gNaP), present in all PHN
neurons, modulates activity differently depending on its somatic
or dendritic localization, further illustrating the finely tuned
specificity of neuronal mechanisms. Emulating multicompartment
neurons with dendritic computations is essential for advancing
the biological realism of neuromorphic systems, as highlighted
by Yang et al. (2019). The platform BiCoSS (Yang et al., 2021a)
supports multi-level, multigranule computing, including both
point neuron and compartmental neuron. Furthermore, Beaubois
et al. (2024) explored multicompartment Hodgkin–Huxley models
in neuromorphic applications to better capture the complex
morphological and functional properties of neurons.

Addressing the duality between membrane potential activity
(continuous, analog) and spiking activity (discrete, event-driven)
remains a significant challenge for neuromorphic systems, as
these processes are intrinsically linked yet distinct in neuronal
computation. Several methods have been developed to explore this
duality. For example, Ris et al. (2001) showed that neurons in
the medial vestibular nucleus exhibit resonance in the modulation
of spike discharge, where spiking activity is closely tied to
underlying membrane potential dynamics. Moreover, Recio-
Spinoso et al. (2005) demonstrated that second-order Wiener
kernels applied to spiking activity in auditory nerve fibers capture
nonlinear interactions and temporal dynamics that first-order
analyses cannot, providing deeper insights into the relationship
between input sound stimuli and neuronal output. In another
approach, Magnani et al. (2014) used quadratic sinusoidal analysis
(QSA) in neurons of the medial entorhinal cortex to study
how subthreshold nonlinearities influence spiking responses,
highlighting the intricate link between membrane potential
dynamics and suprathreshold activity. Additionally, Inoue et al.
(2021) proposed a data-driven method to estimate latent variables
and parameters of the Izhikevich neuron model using only spike-
train data, employing the replica exchange particle-Gibbs with
ancestor sampling (REPGAS) method. These methods are useful
tools for understanding the interplay between subthreshold and

suprathreshold dynamics and could provide insights for enhancing
the biological realism of neuromorphic systems, as explored in Sun
et al. (2020) and Yang et al. (2021a,b).

Maintaining eye movement stability in response to head or
visual field movements relies on the precise coordination of
neural mechanisms that integrate sensory inputs and sustain
motor commands. Yang et al. (2021b) examined the optokinetic
reflex (OKR) in the context of a neuromorphic cerebellar model,
exploring how their cerebellar-inspired architecture adapts to
retinal slip signals through mechanisms of supervised motor
learning and synaptic plasticity. These mechanisms were applied
in simulations of OKR adaptability to replicate dynamic responses
like gain modulation and temporal synchronization in eye
movement control. Building on biological insights, Magnani
et al. (2013) investigated prepositus hypoglossi nucleus neurons,
essential for maintaining eye position by integrating head
velocity signals, highlighting the role of nonlinear dynamics
driven by persistent sodium conductance (gNaP) and active
dendritic structures for sustaining the effects needed for gaze
stabilization. Furthermore, Koulakov et al. (2002) introduced
a robust model of the neural integrator based on bistable
units, demonstrating how stability in eye position control can
be achieved without fine-tuning of recurrent synaptic weights,
which may be particularly relevant for neuromorphic systems.
These studies show the importance of voltage-gated mechanisms
and individual neuron dynamics in achieving eye movement
stability, which have potential relevance for the design of
neuromorphic systems that aim to replicate complex sensory-
motor coordination.

Grid cells in the medial entorhinal cortex play a central role
in spatial representation and navigation, providing a coordinate-
like system to encode the position of an organism within
its environment. These circuits are of particular relevance for
neuromorphic systems due to their role in modeling spatial and
cognitive functions. Krishna et al. (2021) represents a significant
advancement in the hardware implementation of biologically
inspired spatial navigation systems, presenting a biomimetic
FPGA-based model that combines grid cells and place cells.
However, the model abstracts away the biophysical details of
individual neurons, like voltage-gated ion conductances, which
are crucial for capturing the temporal dynamics of neurons,
such as phase precession and resonance properties. From a
biological perspective, Magnani et al. (2014) investigated the
nonlinear properties of layer II stellate neurons in the rat
medial entorhinal cortex (MEC) using quadratic sinusoidal
analysis (QSA). The study revealed how dendritic filtering shapes
somatic nonlinearities, with responses strongly influenced by
the frequency content of stimuli. Persistent sodium conductance
(gNaP) was identified as a key source of nonlinearity, and
near-threshold linear and nonlinear responses reliably predicted
suprathreshold behavior, including action potential modulation.
These findings emphasize the importance of biologically realistic
modeling to connect single neuron voltage-gated mechanisms
with scalable implementations of spatial navigation circuits. Thus,
multigranular platforms like BiCoSS (Yang et al., 2021a) show
particular promise for integrating such biophysical details into
neuromorphic designs.
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5 Conclusion

In conclusion, neurons clearly have linear and nonlinear
responses to input stimuli. Linear responses are not just mirror
images of the stimulus, they are clearly capable of enhancing certain
frequencies due to linear resonance behavior. The linear response of
resonance for the Hodgkin–Huxley potassium conductance is only
present if the steady state value of n is voltage dependent, namely
dn∞
dV0

> 0, i.e. the resonance is a linear response that depends on
the nonlinear property of the conductance. In general, nonlinear
responses are considerablymore complex, as shown by the presence
of new interactive frequencies in the neuronal response that are not
present in the input signal. The fluctuations present in neurons
are due to voltage-dependent random mechanisms for which
probabilities are controlled both linearly and nonlinearly and, as
suggested above, ongoing synaptic activity can alter the nature
of nonlinear responses (in the sense that QSA matrix can reflect
fluctuations for small stimulus amplitudes).
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