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Although the anatomical arrangement of brain regions and the functional

structures within them are similar across individuals, the representation of neural

information, such as recorded brain activity, varies among individuals owing

to various factors. Therefore, appropriate conversion and translation of brain

information is essential when decoding neural information using a model trained

using another person’s data or to achieving brain-to-brain communication. We

propose a brain representation transfer method that involves transforming a

data representation obtained from one person’s brain into that obtained from

another person’s brain, without relying on corresponding label information

between the transferred datasets. We defined the requirements to enable

such brain representation transfer and developed an algorithm that distills the

assumption of common similarity structure across the brain datasets into a

rotational and reflectional transformation across low-dimensional hyperspheres

using encoders for non-linear dimensional reduction. We first validated our

proposed method using data from artificial neural networks as substitute neural

activity and examining various experimental factors. We then evaluated the

applicability of our method to real brain activity using functional magnetic

resonance imaging response data acquired from human participants. The

results of these validation experiments showed that our method successfully

performed representation transfer and achieved transformations in some cases

that were similar to those obtained when using corresponding label information.

Additionally, we reconstructed images from individuals’ data without training

personalized decoders by performing brain representation transfer. The results

suggest that our unsupervised transfer method is useful for the reapplication

of existing models personalized to specific participants and datasets to decode

brain information from other individuals. Our findings also serve as a proof of

concept for the methodology, enabling the exchange of the latent properties of

neural information representing individuals’ sensations.
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1 Introduction

Acquiring information from the brain not only contributes
to understanding the neurological mechanisms underlying our
perceptions and cognitive processes but also has the potential to
enable smoother and more enriched communication by directly
transmitting sensations and intentions. Although, humans typically
communicate with others using language and non-verbal cues, such
as facial expressions or gestures, limitations arise when attempting
to express sensations or convey concepts that are beyond the
scope of these modalities. Using neural information that represents
our sensations and ideas offers the possibility of transcending the
limitations of conventional communication.

Various studies have used neural information representing
sensations toward practical applications (e.g., the brain-machine
interface), alongside basic science, to understand the brain itself.
These include the reconstruction of observed artificial experimental
stimuli (Kamitani and Tong, 2005; Miyawaki et al., 2008), natural
images (Wen et al., 2018; Shen et al., 2019a; Shen et al., 2019b;
Ozcelik and VanRullen, 2023), and natural movies (Nishimoto
et al., 2011) using functional magnetic resonance imaging (fMRI),
and the extraction of object categories of observed images from
intracranial local field potentials in patients with epilepsy (Liu
et al., 2009). Additionally, we have successfully reconstructed
images from neural activity recorded from the monkey brain
(Hayashi and Kawata, 2018). Furthermore, methods have been
proposed to directly link one brain to another for the purpose of
communication (Pais-Vieira et al., 2013). Recent human studies
using a non-invasive approach have combined brain activity
recordings using electroencephalography (EEG) with neural
stimulation techniques using transcranial magnetic stimulation and
demonstrated that the decision of one individual based on binary
choices can be transmitted to another individual (Grau et al., 2014;
Jiang et al., 2019). Lee et al. (2017) demonstrated brain-to-brain
transmission of sensorimotor information in humans using EEG
signals and focused ultrasound stimulation.

When using neural information for communication, it is
crucial that the information is appropriately converted and
translated between participants to account for the inter-individual
variation in the representation of neural information. For
example, although the anatomical arrangement of brain areas is
similar across individuals, the exact location and size of specific
structures or regions vary among individuals. Similarly, although
functional structures within a brain area are comparable across
individuals, such as retinotopy in the visual cortex (Fishman,
1997; Wandell et al., 2005), somatotopy in the motor and
somatosensory cortices (Penfield and Boldrey, 1937), and tonotopy
in the auditory cortex (Romani et al., 1982), the arrangement
of individual neurons responsible for a particular function is
not identical across participants. Furthermore, differences in
recording devices, recorded sensory modalities, and various other
conditions/situations among individuals must be accounted for
when applying transformations based on transmitting information.

If paired brain data in response to identical stimuli are
available for two participants, determining a transformation
function between two datasets is relatively straightforward using
machine learning methods, such as canonical correlation analysis,
which extracts the covariation components of paired samples

(Hotelling, 1936; Michalke et al., 2023). In addition, “hyper-
alignment” is widely used to obtain common representational
patterns across participants from paired fMRI data (Haxby et al.,
2020). Modality conversion has also been performed previously
between fMRI data and EEG data using the correspondence of the
two data (Cheng et al., 2021).

However, corresponding label information related to recorded
brain activity may not always be available when transforming brain
representations among numerous participants. If the stimulus
dataset is not standardized, brain activity may be measured using
different stimulus sets, which risks a lack of exact correspondence
of the presented stimuli at the individual-stimuli or category level
among participants. However, these stimuli may still cover some
common topics, contents, and concepts, potentially serving as a
coarse-level correspondence that cannot be explicitly defined. It is
also considered that the standard stimulus dataset for calibrating
the transfer function may change over time. If brain representation
transfer can be conducted without the use of label information,
it will be possible to adapt to changes in the stimulus dataset in
a flexible manner and effectively utilize previously measured data
(e.g., by conducting recalibration without remeasurement).

In this paper, we propose an unsupervised method for brain
representation transfer that can be performed even when there
is no corresponding label information across participants in
advance. This unsupervised transfer method was applied under the
assumption that the similarities and dissimilarities of relationships
in the latent properties of the brain data have certain commonalities
across participants. To support this assumption, it is known that
neurons within specific regions of the visual cortex selectively
respond to certain image features depending on the brain area,
such as orientation selectivity (Hubel and Wiesel, 1962), object
selectivity (Haxby et al., 2001; Carlson et al., 2003; Kriegeskorte
et al., 2008b), color selectivity (Komatsu et al., 1992), and texture
selectivity (Okazawa et al., 2015). Therefore, the relationships
between neural responses obtained from these neural populations
are expected to reflect the similar and dissimilar relationships
among their selective image features, regardless of the participant.
In our proposed method, we applied machine learning techniques
related to dimensionality reduction and unsupervised object
matching, both of which rely on similarity relationships among
data. We then established transformations of inter-individual
neural information representation based on the object-matching
result. To validate our proposed method, we conducted two
experiments: one experiment used data obtained from an artificial
neural network (ANN) as a visual cortex model, and the other
experiment used data derived from actual human brains.

2 Materials and methods

The main purpose of this study was to propose an
algorithm for brain representation transfer without corresponding
label information, with the aim of effectively transmitting
information represented in the brain between participants. Our
basic assumption for achieving this transmission is that the similar
and dissimilar relationships in the latent properties of the data are
common among participants.

In this section, we first outline the requirements for the brain
representation transfer algorithm and introduce the implemented
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algorithms. We then describe the conditions of two validation
experiments for the proposed algorithms, including the datasets,
model parameters, and evaluation methods.

2.1 Algorithm requirements for brain
representation transfer

We identified three requirements that the unsupervised brain
representation transfer algorithm should satisfy, especially for
the purpose of transmitting individual sensations. Firstly, neural
activity data recorded by electrophysiological and/or neuroimaging
techniques contain individual differences or modality-specific
features that are irrelevant to the transfer. Additionally, the
data are affected by measurement noise, motion artifacts, and
inherent fluctuations in brain activity. These issues can typically be
overcome through dimensionality reduction because neuronal data
include redundant information across dimensions in terms of the
common latent property we aim to extract. Therefore, we defined
requirement (i) the algorithm for brain representation transfer
should include a robust dimensionality reduction function that
preserves similarity and dissimilarity structures while remaining
effective against various types of noise and individual differences.
Secondly, in cases where there is no direct correspondence
between individual samples in two datasets, the concept of “cycle
consistency” becomes crucial in translation tasks. This concept
ensures that the translation process between the domains of two
datasets is reversible when performed in both directions. In the
field of computer vision, this constraint is considered effective for
learning a transfer function in an image-to-image transfer task
(Zhu et al., 2017); the learned mapping becomes more robust and
ensures that the generated outputs are coherent and relevant to
the original inputs. This concept is also key constraint in brain
representation transfer tasks, where the transformation process is
considered bidirectional for communication purposes. Therefore,
we defined requirement (ii) the algorithm for brain representation
transfer comprises a reversible transformation that satisfies cycle
consistency. Thirdly, we envisioned that our proposed method
would be used for decoding transmitted neural information and
communication. Thus, we defined requirement (iii) the brain
representation transfer algorithm should be compatible with
machine learning techniques that have been applied to the decoding
of neural information. Specifically, we assumed that the transfer
algorithm could be implemented as a multi-layered neural network,
which is known to be an effective model for information processing
in the visual cortex and is widely used for generating images from
neural activity data.

We developed the brain representation transfer method
by combining several algorithms that satisfy the above three
requirements: an algorithm for embedding individual neural
information using personalized encoders that preserve the
similarity structure of the latent property at the individual level,
and an algorithm for transforming neural information between
participants by utilizing the commonalities in the similarity
structure of the latent properties across participants.

We initially considered using instance learning (Wu et al.,
2018) as a learning rule for the algorithm that satisfies requirements
(i) and (iii). Instance learning is a variant of contrastive

learning (Oord et al., 2018; Chen et al., 2020; Wang and
Isola, 2020) that preserves similarity and dissimilarity structures.
Contrastive learning is a machine learning technique that
embeds similar data (i.e., positive samples) near each other and
dissimilar data (i.e., negative samples) far apart in latent space
(a hypersphere is typically used as the embedding space). In
instance learning, positive samples are identical data obtained
through data augmentation, whereas negative samples are other
training data excluding the positive samples. Therefore, it is
possible to perform dimensionality reduction while preserving
the similarity and dissimilarity structures by embedding data
into a lower-dimensional space through instance learning. Unlike
other unsupervised algorithms, such as t-distributed stochastic
neighbor embedding (t-SNE; Maaten and Hinton, 2008) and multi-
dimensional scaling (Kruskal, 1964a, 1964b), the instance learning
framework can flexibly embed novel data that have not been
used during the training phase. By exploiting these advantages,
we demonstrate the robustness of instance learning against noise
in the experiments in Section “3.1 Noise robustness through data
augmentation during instance learning.”

Next, we focused on the rotational and reflection (i.e., mirror-
flip) transformation, which is a reversible transformation, to satisfy
requirement (ii) of the transfer algorithm. If the data satisfy our
assumption, it is expected that the latent variables embedded
by instance learning will also exhibit common similar and
dissimilar relationships across participants. In addition, because
we embedded the data into a hypersphere using instance learning,
we can expect the arrangement of the embedded data to exhibit
rotational and reflective symmetry between participants. Therefore,
we used a rotation and reflection matrix (i.e. an orthogonal
matrix) as the transformation for embedded data, among various
reversible transformations, such as both linear and non-linear
transformations. However, determining the orthogonal matrix
requires correspondence of embedded data between participants,
and we assumed the scenario in which such correspondence
information is not explicitly available. To address this problem,
we adopted kernelized sorting (Quadrianto et al., 2010), which
is an unsupervised object-matching algorithm based on the
similarity-dissimilarity structure of the data. Metric-preserving
transformations, also known as isometries, of the hypersphere are
given by orthogonal transformations. Therefore, the requirements
for brain representation transfer led to an algorithm that distills
the assumption of the commonality in similarity structure
across participants into an isometric transformation across
low-dimensional hyperspheres, using encoders for non-linear
dimensional reduction implemented as a neural network. The
isometric property used in the transformation would be useful for
transferring brain representation not only between two participants
but also across multiple participants.

2.2 Algorithm implementation for
representation transfer

By combining several algorithms, including those selected
in the previous section, we implemented a method for brain
representation transfer that comprised three major computational
steps:
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(A) Embedding brain information into hyperspheres using
encoders individually trained by the instance learning rule

(B) Aligning embedded brain information using an orthogonal
matrix obtained through unsupervised object matching

(C) Fine-tuning encoders for improving the accuracy of the
representation transfer

Figure 1 shows an overview of the architecture and
computational steps of our transfer method implemented for
the validation experiments. The inputs of individual encoders
were neural information: in the validation experiments, the inputs
consisted of either the intermediate-layer outputs of ANNs or
the data derived from the fMRI responses in human participants.
The neural information was embedded as latent variables on a
hypersphere by individual encoders composed of two non-linear
fully connected (FC) layers trained with the instance learning
rule (computational step A). By determining the correspondence
of latent variables using kernelized sorting, we estimated the
orthogonal (rotation + reflection) matrix for aligning embedded
brain information (computational step B). Finally, one of the
encoders was fine-tuned by aligning the data distributions on
the two hyperspheres (computational step C). This architecture
enabled the exchange of latent variables, which are conceptual
brain data that represent the sensations of individuals.

2.2.1 Embedding brain information into
hyperspheres using encoders individually trained
by instance learning rule

We selected an n-dimensional hypersphere as the embedding
space. We set n-dimension as 32-dimension for this experiment.
The encoder comprised two layers: a non-linear FC layer with
batch normalization and a rectified linear unit (ReLU) as an
activation function; and an FC layer with L2 normalization.
We set the dimensions of each layer in the encoder to be
logarithmically spaced for the input, intermediate, and output
layers. We trained the encoder using instance learning loss with a
hyperparameter τ, which adjusts the repulsion between the positive
and negative samples.

As a data augmentation, we added Gaussian noise to each
dimension of input data, varying the noise with each input
and iteration. Gaussian noise was generated by drawing multi-
dimensional random numbers from a normal distribution with
zero mean and standard deviations (SDs) of kσ·σ, where kσ is a
noise gain parameter and σ is the SD of each dimension of the
training dataset.

To determine the hyperparameters, we performed a grid search
for the repulsion parameter τ and the noise gain parameter kσ

(results of the grid search are available in the Supplementary
materials). We determined the selected hyperparameter values to
satisfy the following two conditions: First, the optimal parameters
must maximize the skewness of the pairwise cosine similarity
distribution of the training data embedded in a hypersphere.
Second, the embedded data must become linearly independent
within the range of machine precision when subjected to singular
value decomposition. Empirically, we observed that varying the
hyperparameter τ led to diverse distributions, where data points
were either gathered at a single point on the hypersphere, dispersed
uniformly, or formed clustered structures among similar data. It
is more advantageous for the embedded data to have a clustered

structure than to be uniformly dispersed when detecting distinctive
data points in subsequent computational steps. Therefore, we
used skewness as an index of cluster cohesiveness. Additionally,
we found that setting τ and kσ too large resulted in linear
dependence among the latent variables, which indicated that
the embedding space was not fully exploited, and the latent
variables could be represented in a lower-dimensional space. Given
these considerations, we determined the optimal values of the
hyperparameters τ and kσ using the skewness of the distribution
and the linear independence of the embedded data as criteria.

2.2.2 Aligning embedded brain information using
an orthogonal matrix obtained through
unsupervised object matching

The issue of finding corresponding points between datasets
without using label information is known as the object-matching
problem (Yamada and Sugiyama, 2011). Specifically, seeking one-
to-one correspondence with a specific objective function is referred
to as the quadratic assignment problem (Loiola et al., 2007). We
used kernelized sorting (Quadrianto et al., 2010), which addresses
the quadratic assignment problem by leveraging the similarity and
dissimilarity relationships within the data. The kernelized sorting
algorithm iteratively adjusts the order of samples in one dataset
to align with those in another, with the aim of maximizing the
value of the Hilbert–Schmidt Independence Criterion (HSIC). The
objective function that the kernelized sorting aims to maximize is
given by the following formula:

HSIC
(
π,K, L

)
= trace

(
KπTLπ

)
. (1)

Here, K and L are the pairwise distance matrices with zero mean,
which are calculated from data points within the datasets for
participants A and B, respectively. Additionally, π represents a
permutation matrix, and the HSIC value is calculated by permuting
the order of the data points by π. Because of the possibility of
encountering local optima, we performed multiple random shuffles
of the initial order and selected the permutation with the highest
HSIC value. As indicated in the above formula, HSIC evaluates
the degree of correspondence between data samples based on the
similar and dissimilar relationships within the dataset.

To apply kernelized sorting to the actual data, the number of
data samples must match between the two datasets. Furthermore,
given that searching through all of the training data are
computationally expensive and impractical because there are n!
different assignments for n samples, we reduced the computational
cost of searching for corresponding points by selecting data
according to cohesion. When the hyperparameters are set in a
specific range during instance learning, the clusters form among
similar embedded data points after instance learning. To extract
these clusters, we calculated pairwise cosine distances between
data points in the hypersphere and counted the number of
neighbors with distances below a specific threshold for each data
point. We considered data with many neighbors as representative
points for clusters.

We determined the orthogonal matrix R that best aligned the
matched representative points obtained through kernelized sorting:
let matrices P and Q be vertically stacked representative points as
row vectors for participants A and B, respectively. The orthogonal
matrix R for transforming the representation from participant B to
participant A can be obtained as R = UVT using singular value
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FIGURE 1

Overview of the architecture and computational steps for brain representation transfer. The latent variables were neural information embedded on
the hypersphere using encoders individually trained by the instance learning rule. Representation transfer between latent variables was achieved by
rotating and reflecting the embedded brain information on the hyperspheres. For improving the accuracy of the representation transfer, we
performed fine-tuning of the encoder. Specific details of the three major computational steps A, B, and C are provided in the main text.

decomposition QTP = U6VT , where U and V are orthogonal
matrices, and 6 is a square diagonal matrix with singular values
on the diagonal. We performed kernelized sorting and obtained the
orthogonal matrix R for each participant pair.

2.2.3 Fine-tuning encoders for improving the
accuracy of the representation transfer

Although an orthogonal matrix enables overall alignment of the
two datasets embedded on the surface of the hyperspheres, there
is a possibility of persisting incomplete errors due to individual
differences. To reduce such errors and improve the accuracy of
brain representation transfer, we fine-tuned the encoder by aligning
the data distributions on the two hyperspheres using maximum
mean discrepancy (MMD) loss. Specifically, we kept one encoder
(the FC layer network for participant A) fixed and additionally
trained the other encoder (the FC layer network for participant B)
using MMD loss to align its data distribution on the hypersphere
with that of the fixed encoder.

2.3 Validation experiment conditions
using ANNs

2.3.1 Datasets
We generated datasets for brain representation transfer using

intermediate-layer outputs of the ANNs as a substitute for
neural activities of visual cortex. Some studies have demonstrated
the similarity of information representation between the brain
and ANNs based on the analysis utilizing the representational
dissimilarity matrix (RDM). For example, studies have compared
representation similarities between hierarchically organized brain
regions in the human visual cortex and intermediate layers of
an ANN (Kriegeskorte et al., 2008a; Hiramatsu et al., 2011;
Cichy et al., 2016). In addition, similarities between optimal
stimuli that evoke responses in neural cells and optimal stimuli
that activate convolutional kernels in ANNs have been reported
(Connolly et al., 2012). Therefore, we first conducted validation
experiments of brain representation transfer using data acquired
from ANNs, which allowed us to control various experimental
factors.

We used ResNet20 (He et al., 2016), which was trained to
classify images from the CIFAR-10 dataset (Krizhevsky, 2009)

into 10 classes, using an unofficial implementation available
at https://github.com/chenyaofo/pytorch-cifar-models. We
randomly divided the 50,000 CIFAR-10 training images into two
sets. We then independently trained the ResNet20 models on each
set to create a condition in which no intermediate-layer output data
in response to common images was available as training datasets
to achieve representation transfer between two ANNs. We set the
learning rate to 0.01, the batch size to 512 samples, the number
of epochs to 5,000, and the number of negative samples for each
positive sample to 4,096. To validate the proposed transfer method
for multiple ANN pairs, we repeated this training process with
nine different random seeds to split the CIFAR-10 training images
into two sets. In addition to the training datasets, we acquired
the intermediate-layer outputs from the paired trained ResNet20
models in response to the same set of 10,000 images as test datasets
for the purpose of evaluation.

We randomly sampled the intermediate-layer outputs to
duplicate the scenario whereby only partial data of a brain region
was available through actual neural recordings. ResNet20 consists
of approximately five blocks composed sequentially from the
input side: one convolutional layer, three residual blocks, and
one FC layer. In this study, we obtained the 8,192-dimensional
output data from the second residual block in response to
CIFAR-10 images. We then prepared the datasets by randomly
sampling the output into 4,096 (50%), 2,048 (25%), and 1,024
(12.5%) dimensions. The same set of artificial neurons randomly
selected from the intermediate layer was used to obtain both the
training and test data.

2.3.2 Model parameters
For the validation experiments of the brain representation

transfer for ANNs, we projected each randomly sampled dataset
onto a hypersphere in a 32-dimensional space using an encoder
trained with the instance learning rule. The dimensions of the
FC layers in the encoder were logarithmically spaced according
to the dimensions of the datasets: 4,096 to 362 to 32 dimensions,
2,048 to 256 to 32 dimensions, and 1,024 to 181 to 32 dimensions,
respectively. Based on the grid search results performed in
advance (details in the Supplementary materials), we set the
parameters (τ, kσ) for the instance learning to (0.8, 1.5) for 4,096
dimensions, (0.5, 1.5) for 2,048 dimensions, and (0.8, 0.75) for 1,024
dimensions, respectively.
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We selected the top 1,600 representative data points from
the embedded latent variables from the data of each ANN for
kernelized sorting. The threshold for the cosine distance of training
data pairs, which was used to count the number of neighbors
and identify representative points for clusters, was set to 0.2. To
prevent the selection of similar representative points, we selected
only data with a cosine distance of a minimum of 0.2 from the
already-selected representative points. We performed kernelized
sorting 26,000 times for each ANN pair to obtain an orthogonal
matrix with a plausible permutation that maximized the HSIC
(Equation 1).

2.3.3 Evaluation of noise tolerance obtained
through instance learning

To investigate the noise tolerance obtained through instance
learning, we examined the fluctuations in latent variables derived
from input noise. First, we trained two encoders using instance
learning: one with and one without the use of Gaussian
perturbation as data augmentation (note: EN and E0 are the
projection of the encoders trained with and without Gaussian
perturbation, respectively). Next, we obtained the latent variables
for each encoder and calculated the cosine distance between the
latent variables before and after noise was added to the test data.
Let x̃i be ith test data xi with Gaussian noise ε, x̃i = xi + ε; let ỹi
and yi be the embedded latent variables of x̃i and xi by the encoder,
respectively. Therefore, the cosine distance di between the latent
variables before and after adding noise can be written as:

di
(
yi, ỹi

)
= 1− yi·ỹi

||yi||||ỹi||
,

where yi = E (xi) , ỹi = E (x̃i) ,E ∈ {E0,EN}. (2)

If the encoder is robust to input noise, di will be close to zero.
We embedded a 4,096-dimensional ANN dataset, obtained from
ResNet20 as a model of the visual cortex, into latent variables on
a hypersphere. We generated 50 different x̃i with varying noise
patterns and calculated di for all test data.

2.3.4 Quantitative evaluation of representation
transfer

If the proposed method of brain representation transfer is
successful, the brain information transferred from an independent
ANN (or participant) should match that we obtained ourselves.
To quantitatively evaluate our method, we calculated the cosine
similarities between the embedded latent variables from the test
data of two ANNs with corresponding index labels. We defined
the averaged cosine similarity for test data as the “alignment score,”
which was calculated using the following formula:

alignment score =
∑

i
yi·Rŷi
||yi||||Rŷi||

,

where yi = EA (xi) , ŷi = EB (xi) . (3)

In this formula, where, yi and ŷi are ith latent variables encoded
with ith input data, xi and x̂i, derived from ANN A and B,
respectively. R denotes the orthogonal matrix obtained for the
ANN pair, which transforms the brain representation from ANN
B to ANN A. Because the orthogonal matrix R is reversible, the

alignment scores calculated in the latent space for ANN A and
ANN B are identical. Furthermore, to obtain the upper bound
for each transfer task, we calculated the alignment score using the
orthogonal matrix determined from the correspondence of the test
data. The defined evaluation method was also applied to the data
obtained from participants. The alignment scores are presented in
arbitrary units.

2.3.5 Image category discrimination of the latent
variables

To quantitatively assess whether conceptual information can
be transmitted across ANNs, we conducted image category
discrimination in latent space. The CIFAR-10 dataset has 10
types of category labels assigned to images. The ResNet20 Layer2
outputs used for inter-ANN representation transfer exhibited
similar outputs for the same category; moreover, the latent variables
in the embedded hypersphere formed a clustered structure based on
categories. We assigned the estimated category of test data based
on the mode of the category labels among its 20-nearest neighbors
from the training data in latent space.

In the verification experiments, we conducted both intra-
and inter-ANN image category discrimination. For intra-ANN
discrimination, we calculated the accuracy of image category
discrimination according to the nearest neighbors of the test
and train latent variables from the same ANN. For inter-ANN
discrimination, accuracy was calculated using the test latent
variables transferred from another ANN and the train latent
variables of one ANN.

2.3.6 Image reconstruction from latent variables
To qualitatively assess whether conceptual information can be

transmitted across ANNs, we reconstructed the input images from
the latent variables and applied a super-resolution technique to
the reconstructed images using a diffusion model (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Kingma et al., 2021). The structure of
the decoder was similar to that of the encoder and comprised two
FC layers with batch normalization and ReLU activation, followed
by three deconvolution layers (see Supplementary materials for
further details). We trained the decoder until the mean squared
error (pixel loss) between the input images and reconstructed
images became sufficiently small, while fixing the weights of the
ResNet20 model and encoder. In addition, we applied Gaussian
noise to the inputs of the FC layers for data augmentation after
random sampling, similar to the procedure used to train the
encoder. The decoder was trained using the image set that was
used to train the aforementioned single ANN. The test images used
for evaluation in the main experiment were not included in this
training set.

The diffusion model for super-resolution refinement of the
reconstructed images used an unofficial PyTorch implementation
of image super-resolution via repeated refinement (SR3) (Saharia
et al., 2023).1 We trained the model to conditionally generate
32 × 32-pixel images from reconstructed images of the same size,
based on a script provided for FFHQ images (Karras et al., 2018),
which were originally designed for conditional generation with

1 https://github.com/janspiry/image-super-resolution-via-iterative-
refinement
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super-resolution from 16 × 16 to 128 × 128 (see Supplementary
materials for further details). The diffusion model was trained using
the same image set as the decoder, and again test images were not
included.

2.4 Validation experiment conditions
using data from human participants

2.4.1 Datasets
As another verification experiment of our proposed method,

we used datasets of blood oxygen level-dependent (BOLD) signals
evoked by watching movies acquired using fMRI. Specifically,
we used BOLD response patterns associated with concepts of
multiple words, as reported previously (Nishida et al., 2020;
Matsumoto et al., 2023). Henceforth, we will refer to such brain
activity associated with the concepts of words in humans as “brain
word representation.” Data were acquired from seven healthy
participants using the calculation method developed by Nishida
et al. (2020).

The method for calculating brain word representations was as
follows. First, we used a pre-trained word2vec model (Mikolov
et al., 2013) to convert scene descriptions for each second of the
movie into semantic vectors within the word2vec vector space.
We then determined a weight matrix of a regression model for
each participant, which estimated the BOLD signal of each voxel
from the semantic vectors of the scenes. We accounted for a delay
of 2, 4, and 6 s following the scene presentation for the BOLD
signal evoked by the movie scenes. Finally, we obtained participant-
specific brain word representations by calculating the product of
the weight matrix and word vectors among frequently occurring
words (limited to nouns, verbs, and adjectives) in the Japanese
Wikipedia. Words and training data for the word2vec model were
obtained from the Japanese Wikipedia corpus, dumped on 11
January 2016.

We randomly divided the brain word representations of the
30,000 most frequently occurring words in the Japanese Wikipedia
into training data (25,000 words) and test data (5,000 words).
Because we selected the 1,400 voxels with the highest predictive
performance of the BOLD signal during weight matrix estimation,
the brain word representations resulted in 4,200 dimensions
(for the three delays for each voxel). The label information
corresponding to the brain word representation was consistent
across participants. However, corresponding label information was
used only for the performance evaluation of the transfer task and
subsequent confirmation of the representational similarities based
on RDMs: the training process of brain representation transfer was
conducted without label information.

The calculation methods for the alignment score and
quantitative evaluation metric for the proposed method using
test data were the same as those used for inter-ANN brain
representation transfer.

2.4.2 Model parameters
For the validation of brain representation transfer of human

fMRI responses, we projected the participant-specific 4,200-
dimensional brain word representation dataset onto a hypersphere
in the 32-dimensional space. We set the dimensions of the FC layers

in the encoder to be logarithmically spaced: 4,200 to 367 to 32
dimensions. Based on the grid search results, we set the parameters
(τ, kσ) for each participant in instance learning, where the skewness
of the pairwise cosine similarity distribution of the latent variables
was maximized to ensure that the latent variables were linearly
independent. The value of τ ranged from 0.4 to 0.6, and that of kσ

ranged from 1.5 to 2.5. Similar to the validation experiment using
ANNs, we set the number of representative data points of clusters
to 1,600 for kernelized sorting and the threshold for choosing
the representative points to 0.1 in cosine distance measure. We
performed kernelized sorting 1,000 times for each participant pair
to obtain the orthogonal matrix with a plausible permutation that
maximized the HSIC.

2.4.3 Quantitative evaluation of representation
transfer

Similar to the validation experiments using ANNs, we
calculated the alignment score to evaluate the performance of
representation transfer (see Section “2.3.4 Quantitative evaluation
of representation transfer”). Furthermore, to investigate the
relationship between alignment performance and the commonality
of representation similarities in datasets across participants, we
analyzed the correlation between the alignment score and the
correlation coefficient of the RDMs between the two datasets.

We calculated the RDMs of the test datasets in two ways: (1) the
RDM defined as the pairwise Euclidian distance of the brain word
representation datasets in a 4,200-dimensional Euclidian space; and
(2) the RDM defined as the pairwise cosine distance of the latent
variables of the test datasets embedded by the trained encoder. The
calculation of the RDM, however, requires the corresponding labels
between the two datasets.

As an index to evaluate the commonality of representation
similarities in datasets across participants without the use of
preassigned correspondence labels, we defined a normalized HSIC
value given by the following formula:

normalized HSIC
(
π,K, L

)
=

trace
(
KπTLπ

)√
trace

(
KTK

)√
trace

(
LTL

) .(4)

Here, π, K, and L are defined in Section “2.3.2 Model parameters.”
We used this normalized version of HSIC because the range of
the HSIC value depends on K and L, which makes it difficult
to compare between different participant pairs. We derived this
formula based on the analogy between covariance and correlation.
We calculated the correlation coefficient between the alignment
scores and the highest normalized HSIC values obtained from
kernelized sorting for multiple participant pairs. HSIC and
normalized HSIC values are presented in arbitrary units.

3 Results

3.1 Noise robustness through data
augmentation during instance learning

Neural activity data typically contain fluctuations in the
recorded system and noise from measurement instruments.
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FIGURE 2

Comparison of noise robustness between encoders trained with
Gaussian noise (blue) and the one trained without noise (red). Each
distribution represents the cosine distances between latent
variables before and after noise was added to the test data.

Therefore, ensuring the proper embedding of obtained data into
latent variables, regardless of these fluctuations and noise, while
preserving the inherent similarity structure, is critical for achieving
successful brain representation transfer in downstream processing.
We investigated the differences in noise resilience obtained through
instance learning with and without the addition of Gaussian noise
as data augmentation using ANN datasets (synthetic datasets
prepared in Section “2.3.1 Datasets”).

Figure 2 shows the distributions of the cosine distances
between latent variables before and after adding Gaussian noise
to the test data (Equation 2) in both encoders trained with and
without noise. If the encoder is sufficiently robust to noise, the
distribution of cosine distances will converge to zero. In Figure 2,
the encoder trained with Gaussian noise as data augmentation
(depicted in blue) had a distribution near zero, which indicated
reduced variability in the latent space against noise perturbation
to the test data. In contrast, the encoder trained without noise
(depicted in red) exhibited a distribution further away from zero,
which suggested greater variability in the latent space owing
to the influence of input noise. Therefore, data augmentation
with Gaussian noise during instance learning enhances the noise
robustness of the encoder.

3.2 Inter-ANN representation transfer

We conducted brain representation transfer using the
intermediate-layer outputs of ANNs as activity of artificial
neurons, which allowed us to control various experimental factors.
Figure 3A shows the alignment scores (Equation 3), which are
the averaged cosine similarities between the latent variables of the
test data, for brain representation transfer under three conditions:
using encoders before fine-tuning, using encoders after fine-tuning
with MMD loss (the proposed method), and using transformation
obtained with the correspondence information of test data (serving
as the upper bounds of this transfer task). Each panel represents
the results of the datasets obtained by randomly sampling ANN

outputs into 4,096 dimensions (50% of the total), 2,048 dimensions
(25%), and 1,024 dimensions (12.5%). Each gray line in the panels
represents one ANN pair, and the black lines represent the averaged
alignment scores for each condition. These results suggest that our
proposed method, in which no correspondence labels across ANNs
are available, achieves alignment scores close to those obtained
when using correspondence labels. Surprisingly, the proposed
method achieved this performance even with embeddings from a
limited 1,024-dimensional data (i.e., 12.5% of the total data).

We conducted statistical analyses to determine whether the
alignment score could be improved by fine-tuning the encoder
during the third computational step of the proposed algorithm
during inter-ANN representation transfer. Figure 3B shows the
results of the one-sided paired t-tests for each ANN pair on the
inter-ANN cosine similarities of the latent variables in response
to test data (10,000 samples), before and after fine-tuning. ANN
pairs trained with nine different random seeds and three different
rates of output sampling result in 27 pairs for comparison. The blue
dots indicate pairs in which the alignment score was significantly
improved following fine-tuning of the encoder, whereas the red
squares signify pairs that showed no significant improvement
(degree of freedom = 9999, p< 0.025, Bonferroni corrected). These
results suggest that the alignment scores of ANN pairs with high
alignment scores can be improved through fine-tuning the encoder
using MMD loss.

Some ANN pairs had low alignment scores that did not
reach the upper bound. Figure 3C illustrates the relationship
between the alignment scores and the HSIC values for each
kernelized sorting result in an example ANN pair. There was
a positive correlation (r = 0.44) between the alignment scores
and the HSIC values, which confirmed that the HSIC serves as
a satisfactory criterion for unsupervised object matching using
kernelized sorting. However, the highest HSIC value did not
consistently result in a high alignment score, which indicated that
the results of the unsupervised object matching for ANN data were
prone to local optima rather than global optima. This trend was also
observed in other ANN pairs (Supplementary Figure 3).

As an alternative evaluation metric for brain representation
transfer, we conducted a 10-category discrimination of the latent
variables using the category labels assigned to images. For
the baseline, the averaged accuracy for the discrimination task
within the ANN (i.e., without brain representation transfer)
was 63.21% (SD = 0.62%), 62.15% (SD = 0.61%), and 60.38%
(SD = 0.59%), for the 4,096-dimensional, 2,048-dimensional, and
1,024-dimensional datasets, respectively. In contrast, the averaged
accuracy for the discrimination task with inter-ANN transfer
was 60.38% (SD = 0.83%), 59.07% (SD = 0.69%), and 55.11%
(SD = 0.71%) for the 4,096-dimensional, 2,048-dimensional, and
1,024-dimensional datasets, respectively. These results suggest
that the proposed method can consistently transfer category
information between ANNs.

To demonstrate that our proposed algorithm is compatible
with machine learning techniques and satisfies requirement (iii),
we conducted image reconstruction from the latent space and
performed super-resolution refinement using a diffusion model.
We pre-trained the decoder for one of nine ANNs and the diffusion
model using a 4,096-dimensional dataset obtained using randomly
sampled outputs of the intermediate layer of ResNet20. Figure 4
shows the original images inputted into the ANN (top row),
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FIGURE 3

(A) Alignment scores for each dataset under three conditions. Each panel represents the results for the datasets obtained by randomly sampling
artificial neural network (ANN) outputs into 4,096 dimensions (50% of the total), 2,048 dimensions (25%), and 1,024 dimensions (12.5%), respectively.
Each gray line in the panels represents one ANN pair, and the black lines represent the averaged alignment scores for each condition. (B) The results
of the one-sided paired t-tests before and after fine-tuning. Blue dots indicate pairs that showed a significant improvement in alignment score after
fine-tuning the encoder, and the red squares represent pairs that showed no significant improvement (p < 0.025, Bonferroni corrected). (C) An
example of the relationship between the alignment scores and Hilbert–Schmidt Independence Criterion (HSIC) values for each kernelized sorting
result.

reconstructed images from the latent variables of the ANN without
representation transfer (middle row), and the reconstructed images
with inter-ANN representation transfer (bottom row). When the
middle and bottom rows of Figure 4 were compared, we observed
that the reconstructed images were qualitatively similar. This
indicates that a decoding model personalized to one ANN can also
accurately decode latent information from another ANN using our
proposed representation transfer method.

3.3 Inter-participant representation
transfer

In this experiment, we used the brain word representations
derived from the fMRI responses of human participants instead of
ANN model data to conduct brain representation transfer using our
proposed algorithm. Figure 5A shows the comparison between the
alignment scores obtained using our method and the upper bound
of this transfer task derived from the correspondence information
of the test data. Each dot represents each participant pair. The

alignment scores of our proposed method approached the upper
bound, even without the use of corresponding labels for several
pairs of participants. Conversely, although the alignment scores
could exceed 0.4 when correspondence information was available,
we also observed that the alignment scores using our method were
near zero for some participant pairs.

We statistically examined whether fine-tuning the encoder
using MMD loss during the third computational step of the
proposed algorithm improved alignment scores to facilitate the
overall matching of latent variables. First, we performed a two-
way analysis of variance of the inter-participant cosine similarities
of the latent variables in response to test data (5,000 samples) for
21 participant pairs with five replications of instance learning. The
statistical factors were before and after encoder fine-tuning and the
21 participant pairs. We revealed significant main effects for both
factors (Main effect of participant pair: F = 26762.35, degree of
freedom = 20, p < 0.001. Main effect of fine-tuning: F = 587.96,
degree of freedom = 1, p < 0.001). We then performed one-sided
paired t-tests for each participant pair for the inter-participant
cosine similarities of the latent variables in response to test data

Frontiers in Neuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2024.1470845
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-18-1470845 November 25, 2024 Time: 17:19 # 10

Nakamura et al. 10.3389/fninf.2024.1470845

FIGURE 4

Test and reconstructed images from the latent variables. The results for different examples are shown in two panels. In each panel, the top row of
tiled images represents the test images inputted into the artificial neural networks (ANNs). The middle row represents the reconstructed images from
the latent variables without representation transfer and shows the baseline performance of the decoding model. The bottom row represents the
reconstructed images with inter-ANN representation transfer.

FIGURE 5

(A) Comparison of alignment scores between the proposed method and the upper bound of this transfer task derived from the correspondence
information of the test data. Each dot represents each participant pair. (B) The results of the one-sided paired t-test before and after fine-tuning.
Blue dots represent pairs that showed significant improvement in alignment score after fine-tuning the encoder, whereas red squares represent pairs
that showed no significant improvement (p < 0.025, Bonferroni corrected).

(5,000 samples), with before and after fine-tuning as factors. The
results of the one-sided paired t-tests are shown in Figure 5B. 21
participant pairs with five replications of instance learning result
in 105 pairs for comparisons. The blue dots represent pairs that
showed significant improvement in alignment score after fine-
tuning the encoder, whereas the red squares represent pairs that
showed no significant improvement (degree of freedom = 4999,
p < 0.025, Bonferroni corrected). These findings suggest that fine-
tuning the encoder resulted in a significant improvement in the
alignment scores of participant pairs with high alignment scores.

The performance of the proposed representation transfer
method showed large variation across participant pairs in the
previous analysis. To examine the factors contributing to this
variability in transfer performance, we assessed the representational
similarity between participants using their corresponding labels.

We found that participant pairs with low alignment scores
also exhibited low representational similarity, as assessed by the
correlation coefficients between RDMs. When we used RDMs
derived from the pairwise Euclidean distances of the brain word
representations, the correlation coefficients between alignment
scores and RDM similarities for all participant pairs was 0.725
(Supplementary Figure 8A). Similarly, when using RDMs derived
from pairwise cosine distances of latent variables, the correlation
coefficient was 0.774 (Supplementary Figure 8B). We observed
high correlations in both cases, which indicated that our proposed
method was effective as long as the data satisfied the basic
assumption of commonality in representational similarity across
participants. Moreover, our results suggest that if representational
similarities between participants can be predicted in advance using
an unsupervised method, alignment scores can also be predicted.
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FIGURE 6

The relationship between alignment scores and normalized HSIC
values obtained from plausible matching through kernelized
sorting. Each dot represents one participant pair. The correlation
coefficient between the alignment scores and normalized HSIC
values was 0.837.

Figure 6 shows the relationship between the alignment scores
and normalized HSIC values (Equation 4) obtained from the
plausible matching through kernelized sorting, and the correlation
coefficient was 0.837. It is noteworthy that the HSIC could
be calculated by a certain permutation using kernelized sorting
without the use of preassigned corresponding labels. This result
indicates that a normalized HSIC optimized by kernelized
sorting allows unsupervised prediction of alignment scores and
representational similarities among participants.

4 Discussion

We proposed a method for brain representation transfer,
whereby data representation obtained from one person’s brain
can be transformed to another, without the use of corresponding
label information between the two datasets. The proposed method
operates under the assumption that the similar and dissimilar
relationships in the latent properties of the data are common across
participants. To validate our proposed method, we conducted two
experiments: in one experiment, we used the intermediate-layer
outputs of ANNs in response to various images as a substitute for
neural activity in the visual cortex, and in the second experiment,
we used data derived from fMRI activity of human participants (i.e.,
brain word representation).

The validation experiment using ANNs demonstrated that
our method can successfully perform representation transfer
and achieve high alignment scores; in some cases, these scores
were similar to those obtained when using corresponding labels.
Additionally, quantitative evaluation using image category
discrimination in latent space suggested that conceptual
information can be transmitted across ANNs. Moreover, we
showed that images can be reconstructed from latent variables after
inter-ANN representation transfer with a quality similar to images
reconstructed without performing representation transfer. Our

result demonstrates the possibility that images can be reconstructed
from an individual’s brain data without training personalized
decoders through the use of brain representation transfer.

The validation experiment using human fMRI data revealed
that the alignment score using our method is dependent on
the similarity of data representation between participants. The
alignment score was high—in some cases, it reached its upper
bound—when our algorithm was able to exploit a common
representation structure across participants. However, the
alignment score dropped dramatically when the difference in
data representation between two participants was too large to
extract a common latent property in the absence of preassigned
corresponding label information. We demonstrated that a
normalized HSIC optimized by kernelized sorting is a useful
measure for predicting representational similarity between
participants without the use of corresponding labels. Therefore,
this measure would be valuable for assessing, in advance, whether
our proposed method can successfully perform representation
transfer for a given participant pair.

In this study, we performed brain representation transfer
exclusively on datasets related to visual information using artificial
neuronal activity or human brain activity. However, theoretically,
the proposed method would apply not only to visual information
but also to other modalities, such as auditory or somatosensory
information. This is because our method relies on the general
assumption that the similar and dissimilar relationships in
the latent properties of the data exhibit certain commonalities
across participants.

In the validation experiment of inter-ANN representation
transfer, although the alignment scores were close to the upper
bound in some ANN pairs, the other pairs yielded marginal
scores. As described in Section “3 Results”, the ANN datasets
were prone to local optima during the unsupervised object
matching using kernelized sorting. Indeed, the latent variables
were strongly clustered around each category, to the extent that
the image categories of the test data could be predicted by
the k-nearest neighbors algorithm. When conducting kernelized
sorting on data with a sparse distribution, the cost function tends
to fluctuate significantly with minor changes in the plausible
matching, which often results in a tendency to remain trapped in
local optima. In the future, we plan to investigate data structures
and develop embedding techniques for data that are less susceptible
to local optima.

In the validation experiment of inter-participant representation
transfer, we used datasets comprising brain word representations,
which were estimated BOLD signals representing the concepts
of various words, instead of simply employing BOLD signals
evoked by visual stimuli. This is because the raw BOLD signals
exhibited large individual and trial variation, which hindered
the extraction of common similar and dissimilar relationships
across participants for our proposed transfer method. We also
observed low representational similarities, as assessed by the
correlation coefficient between RDMs calculated from the raw
BOLD signal without pre-processing or normalization. The brain
word representations used in this study serve as an example
of preprocessing that ensures representational similarity between
participants for our proposed transfer method. Alternative effective
preprocessing methods that allow representation transfer warrant
further investigation.
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We constructed the entire brain representation transfer
algorithm by combining several algorithms that satisfy the
following three requirements: (i) robust dimensionality reduction,
preserving similarity and dissimilarity structures while managing
various types of noise and individual differences; (ii) reversible
transformation ensuring cycle consistency; and (iii) compatibility
with machine learning techniques used for decoding brain
information. As an algorithm that satisfies requirements (i) and
(iii), we applied instance learning (Wu et al., 2018), which was
originally proposed as a variant of contrastive learning in the
field of computer vision. We demonstrated that adding Gaussian
noise as a data augmentation method during the training phase
contributes to noise resilience in the representation of latent
variables following dimension reduction. Furthermore, we showed
that images can be reconstructed from latent variables using a
decoding model, which satisfied requirement (iii). Additionally, we
applied an orthogonal transformation, as an algorithm that satisfies
requirement (ii), and used kernelized sorting as an unsupervised
object-matching algorithm to estimate the orthogonal matrices.
This implementation exploited the ability of the instance learning
algorithm to embed brain information onto a hypersphere.
However, our implementation of the transfer algorithm can be
further improved with regard to the modules and choice of
algorithms, which we describe below.

We used the instance learning algorithm proposed by
Wu et al. to embed brain information onto a hypersphere.
However, the instance learning algorithm inherently attempts to
uniformly distribute the input data on the hypersphere. This is
disadvantageous for detecting distinctive data points to estimate
the orthogonal matrix. The use of other embedding methods
that maintain similar and dissimilar relationships, including other
contrastive learning methods, may address this issue.

Although we used the kernelized sorting algorithm for
unsupervised object matching, other algorithms could have been
used. For example, there is an optimal transport algorithm based on
Gromov-Wasserstein distance (Mémoli, 2011) that has been used
to determine word correspondence across different languages from
word similarity relationships (Alvarez-Melis and Jaakkola, 2018).
Indeed, recent studies by Takeda et al. (2024) and Takahashi et al.
(2024) have demonstrated that the Gromov-Wasserstein Optimal
Transport method is effective in aligning the brain activity datasets
obtained from different participant groups, as well as datasets from
ANNs. Incorporating potentially superior unsupervised object-
matching algorithms into our method to align representational
spaces across participants for representation transfer is a promising
approach we would like to explore in future work. The kernelized
sorting algorithm used in our study was designed to identify one-
to-one mapping. However, depending on the dataset characteristics
and the selection method of the representative points for object
matching, one-to-one associations between two datasets may not
always exist. Modifying the algorithm to detect many-to-one
associations may offer a better method than kernelized sorting for
finding better correspondence.

There are also alternative methods for selecting representative
points when using kernelized sorting for unsupervised object
matching. For example, hierarchical clustering (Nielsen, 2016)
allows the creation of a tree structure based on the similar
and dissimilar relationships between data; moreover, a clustered
structure grouping similar data can be obtained by setting a
threshold. In addition, if the characteristics of the data are known in

advance, the k-means method may be a suitable approach (Fix and
Hodges, 1989; Cover and Hart, 1967), using the number of clusters
as a parameter.

In order for the decoding model to reconstruct images from
latent variables, we combined two separate models: one was a
naïve decoder for image reconstruction that comprised FC and
deconvolutional layers; the other was a diffusion model for super-
resolution refinement. An alternative decoding model would be to
directly input the latent variables as conditions into the diffusion
process for image generation, such as a latent diffusion model
(Rombach et al., 2022). A recent study has applied this architecture
to the reconstruction of high-detail presentation images from
human fMRI data (Takagi and Nishimoto, 2023).

Although our study was focused on transforming data
representations obtained from one brain to another, advanced
techniques for both the acquisition and manipulation of brain
activity need to be further integrated into our algorithm to achieve
direct brain-to-brain communication to transmit sensations,
intentions, and various other types of information. Neural activity
can be acquired using various recording methods: not only fMRI,
local field potentials, and EEG (as outlined in the introduction) but
also functional near-infrared spectroscopy, electrocorticogram, and
calcium imaging. Furthermore, numerous studies have induced
sensory loss or generated new sensations by forcibly deactivating or
activating individual neurons or localized neural cell populations
using various techniques, such as needle electrodes (Lewis and
Rosenfeld, 2016), transcranial magnetic stimulation (Kammer et al.,
2005), and focused ultrasound (Yoo et al., 2011). Combining
such acquisition and manipulation techniques with our proposed
representation transfer method could potentially achieve direct
communication between brains.
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