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Epilepsy is a prevalent and serious neurological condition which impacts 
millions of people worldwide. Stereoelectroencephalography (sEEG) is used in 
cases of drug resistant epilepsy to aid in surgical resection planning due to its 
high spatial resolution and ability to visualize seizure onset zones. For accurate 
localization of the seizure focus, sEEG studies combine pre-implantation 
magnetic resonance imaging, post-implant computed tomography to visualize 
electrodes, and temporally recorded sEEG electrophysiological data. Many tools 
exist to assist in merging multimodal spatial information; however, few allow 
for an integrated spatiotemporal view of the electrical activity. In the current 
work, we present SEEG4D, an automated tool to merge spatial and temporal 
data into a complete, four-dimensional virtual reality (VR) object with temporal 
electrophysiology that enables the simultaneous viewing of anatomy and seizure 
activity for seizure localization and presurgical planning. We  developed an 
automated, containerized pipeline to segment tissues and electrode contacts. 
Contacts are aligned with electrical activity and then animated based on relative 
power. SEEG4D generates models which can be loaded into VR platforms for 
viewing and planning with the surgical team. Automated contact segmentation 
locations are within 1  mm of trained raters and models generated show 
signal propagation along electrodes. Critically, spatial–temporal information 
communicated through our models in a VR space have potential to enhance 
sEEG pre-surgical planning.
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1 Introduction

Epilepsy is a chronic neurological condition affecting more than 
50 million people worldwide. Epilepsy is characterized by recurrent, 
spontaneous seizures and is defined as two unprovoked seizures 
occurring more than 24 h apart, an unprovoked seizure if the risk of 
recurrence is high, or a diagnosis of an epilepsy syndrome (Fisher 
et al., 2014; Thijs et al., 2019). EEG recordings and physical behaviors 
clearly show how seizures produce strong electrical activity and spread 
throughout other areas of the brain. The exact pathophysiology 
producing the seizures (e.g., neurotransmitters, structural 
abnormalities, environmental factors), occurring at the seizure onset 
zone (SOZ), and how the electrical signals spread throughout the 
brain is not well understood. Identification of the SOZ is critical for 
treatment, particularly for surgical interventions. Imperfect 
identification of the SOZ renders imperfect treatments, which leads to 
continued seizures, additional surgical treatments, and overall 
reduction in quality of life (Andrews et al., 2020; Paulo et al., 2022).

Approximately 30–40% of patients who are diagnosed with 
epilepsy have symptoms which are not fully controlled by currently 
available antiepileptic medications, a condition known as drug-
resistant epilepsy (DRE) (Kalilani et al., 2018). Such patients are at an 
increased risk of serious adverse effects resulting in significant 
degradation of their quality of life or premature death (Mula and 
Cock, 2015). For these patients, an effective treatment is a surgical 
resection of the area in the brain triggering the seizures, the SOZ 
(Ryvlin et al., 2014; Andrews et al., 2020). The goal of resective surgery 
planning is to outline the epileptogenic zone for an accurate surgery 
so that the patient can achieve seizure freedom (Ryvlin et al., 2014; 
Andrews et al., 2020). While the procedure is not risk free, cognition, 
behavior and quality of life can improve after resective surgery and it 
has proven to be an effective procedure (Ryvlin et al., 2014).

Determining the SOZ is often a difficult task because of the lack 
of morphological identifying characteristics distinguishable from 
healthy tissue in standard medical imaging evaluations (Ryvlin et al., 
2014; Minkin et al., 2019). Localizing the SOZ typically involves a 
multi-modal approach combining various imaging modalities, such 
as magnetic resonance imaging (MRI), functional MRI (fMRI), 
computed tomography (CT), positron emission tomography (PET), 
magnetoencephalography (MEG), and electrophysiology using 
electroencephalography (EEG), along with neuropsychological testing 
and Wada testing (van Mierlo et al., 2020; Kakinuma et al., 2022; 
Bearden et  al., 2023). A more invasive process, 
stereoelectroencephalography (sEEG), is used to obtain precise 
recordings from depth electrodes to identify SOZs that are deep in the 
brain or difficult to localize (Gonzalez-Martinez et al., 2014). In sEEG, 
neurosurgeons place electrodes into the brain, penetrating deep into 
the tissue, targeting regions that are suspected of being the SOZ to 
provide highly localized recordings in a 3D space to identify and 
confirm the seizure initiation site (Bartolomei et al., 2017). Electrode 
trajectories are often manually computed, but tools are being 
developed to assist with planning (De Momi et al., 2014).

Currently, epileptologists and neurosurgeons manually review the 
1D sEEG recordings with the 2D multiplanar views of the 3D imaging 
data to localize the SOZ and epileptogenic activity (Hassan et al., 
2020). Their goal is to construct a mental model of the patient’s 
specific anatomy when preparing for resective surgery (Minkin et al., 
2019). This multimodal information is challenging for experts to 

mentally combine and extract actionable data (Lyuksemburg et al., 
2023). Better mental representations of anatomy can be created from 
directly interacting with the 3D models as opposed to 1D and 2D 
views of the multimodal data (Guillot et al., 2007; Wu et al., 2010; 
Mattus et al., 2022). 3D models have proven useful for navigating 
through patient-specific anatomy in planning epilepsy surgery for 
both the surgeons and for patient education due to the integrated 
visualization of the complex multimodal data (Minkin et al., 2019; 
Phan et al., 2022). VR technologies can enable an interactive view of 
complex 3D models and have been used in other complex resection 
cases where they have demonstrated improvements in the operative 
experience for the surgeon (Quero et al., 2019; Louis et al., 2021). The 
seizure activity from the sEEG recordings creates even more complex 
data that are 4D, with 3 spatial dimensions and changes over time. In 
the current work, we further merge the clinical dataset from a sEEG 
study into a unified model for viewing anatomy and dynamic 
electrophysiological data in a 4D VR presurgical planning platform. 
This tool will enable surgeons to focus their attention and expertise on 
patient-specific details directly relevant to the surgery.

Several toolboxes have been developed to lessen the challenges 
involved with merging multimodal spatial information from sEEG 
studies (Armin Vosoughi et al., 2022). Some of these tools automate 
critical image information steps, such as isolating electrode contacts 
or making predictions about the SOZ or the epileptogenic zones on 
patient specific anatomy. A few examples include sEEG Assistant 
(Narizzano et al., 2017), which is a set of tools built as a 3D Slicer1 
extension (Fedorov et al., 2012), and Epitools (Medina Villalon et al., 
2018), which also uses Freesurfer (Dale et al., 1999) pial surfaces, or 
LeGUI (Davis et al., 2021). Many 2D sEEG visualization tools, such as 
Brainquake (Cai et al., 2021), opt to highlight or enlarge electrode 
contacts to indicate some degree of epileptogenicity while other 
software packages, like MNE-Python, project the data onto brain 
tissue and predict a SOZ in the brain based on the sEEG recordings 
(Gramfort et al., 2013; Cai et al., 2021). Several of the tools note if the 
contact predominately resides in gray matter or white matter, as tissue 
type can impact some of the computations made to analyze activity 
(Arnulfo et al., 2015). Some of the packages listed here require a brain 
atlas or a set of standard naming conventions which is not the case for 
all clinically acquired sEEG data sets. However, most of these tools are 
not maintained and are reliant on outdated dependencies that do not 
work with modern workstations as noted by Armin Vosoughi et al. 
(2022). Software such as EpiNav (CMIC, UCL, London, 
United Kingdom) (Vakharia et al., 2019) or CNSprojects2 are available 
in a limited manner and merge anatomical data with sEEG biomarkers. 
The virtual epileptic patient (Makhalova et al., 2022) based on Virtual 
Brain (Sanz-Leon et  al., 2015) can take sEEG data and generate 
simulations of patients seizures, compute the SOZ and display a glass 
brain model and waveforms of the epileptic data. All these 
visualizations present their models confined to a 2D display requiring 
the surgeon to mentally extrapolate the data to 3D space and merge 
this activity data with the patient’s 3D anatomy for diagnosis and 
surgical planning. These tools do not resolve challenges with taking 
data presented in a 2D format and extrapolating it to generate 3D 

1 https://www.slicer.org

2 https://cnsprojects.nl/products/
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mental representations of the surgical case. SyncAR is an augmented 
reality and virtual reality platform which works with the data from 
surgical devices and uses VR for surgical planning and augmented 
reality to navigate during the resection procedure (Louis et al., 2021). 
SyncAR’s usage highlights a need for temporally dynamic visualization 
tools for sEEG evaluation and resection planning (Louis et al., 2021).

In this work, we propose SEEG4D, an open-source tool which 
presents the pre-implant MRI, post-implant CT, and dynamic sEEG 
data as a 4D dynamic model for use in a virtual reality (VR) presurgical 
planning environment as opposed to the traditional 2D environment. 
By animating the time series data onto the electrode contacts in VR, 
we enable neurosurgeons to view the common components of the 
clinical data but in a platform that integrates spatial information with 
dynamic seizure activity to supplement the traditional resective 
surgery workflow. Users can virtually explore the 3D brain tissue, see 
electrode activation over time, and make surgical plans accordingly. 
3D model use in pre-surgical planning capitalizes on this impact by 
creating improved mental representations of patient-specific anatomy 
through a personalized medicine approach (Wu et al., 2010). Previous 
research has shown that developing 3D VR models of patient anatomy 
has the potential to assist surgeons in presurgical planning and may 
reduce complications (Herfarth et al., 2002; Oldhafer et al., 2009; Chen 
et al., 2010; Quero et al., 2019). Further, situational awareness research 
analyzing expert performance over novice performance indicates 
improved mental models of pre-surgical anatomy are characteristic of 
the expert performer by shifting the mental burden from working 
memory to long term memory (Maan et al., 2012; Sadideen et al., 
2013; Robertson et al., 2024). Additionally, VR has been shown to 
provide information which may alter the surgical approach (Quero 
et al., 2019; Mahajan et al., 2021; Robertson et al., 2024). SEEG4D 
seeks to automatically generate dynamic 4D models to supplement the 
presurgical workflow and enable VR-based presurgical planning. To 
our knowledge, SEEG4D is the first time that animated 3D VR models 
of electrical activity have been automatically generated and used for 
epilepsy pre-surgical planning.

2 Materials and methods

2.1 Software overview

Our software package is split into two components. The first 
component is a Python-based GUI to handle user preferences, inputs, 
and provide status updates. The second component is a Docker 
container to perform the neuroimaging processing steps and generate 
VR-ready models. These components automatically interconnect and 
interact; users of the software need only install Docker and the bare 
minimum requirements to run the Python graphical user interface 
(GUI). Containerization of critical software components enables 
easier use and reproducibility of medical imaging software 
technologies (Matelsky et al., 2018). Key software included in our 
container is: Python 3.8 for FSL 6.0.5.1, Python 3.9 for MNE-Python 
1.6.1 using nibabel 5.2.1 with scikit-image 0.22.0, Python 3.10 for 
Blender 4.0.0 (Python Software Foundation, https://www.python.org/) 
(Blender Foundation, https://www.blender.org/) (Woolrich et  al., 
2009; Gramfort et al., 2013; van der Walt et al., 2014; Brett, 2024). An 
overview of the multimodal image processing pipeline is shown in 
Figure 1.

There are many steps to processing sEEG data and merging the 
electrophysiology information into the patient’s 3D anatomical data. 
These steps are outlined in the flow chart in Figure  1 and briefly 
described here. More details are given in the following sections. The 
pre-implantation MRI is registered to the post-implantation CT which 
serves as the working space for anatomical images. The image 
processing steps, briefly, include: Segmentation of the pre-implantation 
MRI data into gray matter, white matter, cerebrospinal fluid (CSF), 
and any other regions of interest. Next, the electrode locations must 
be extracted, and the different electrode contacts must be merged into 
multi-contact electrodes. The naming of the electrodes is performed 
in the main GUI where the user associates the electrode names from 
the sEEG data and selects the corresponding segmented electrode in 
consultation with the sEEG implantation planning map. This is the 
only processing step which requires manual input as there is not a 
universal naming convention for implanted electrodes. sEEG data 
must be processed to identify the seizure timing and filtered according 
to a powerline noise notch filter combined with a user-selected 
bandpass filter design. By default, SEEG4D uses a frequency band of 
80–250 HZ as this band is commonly used for the detection of high 
frequency oscillations which are correlated with epileptogenic activity 
(Remakanthakurup Sindhu et al., 2020). Electrode activity is then 
converted to an average windowed power. All 3D imaging processes 
and the SEEG processing are handled in the container, along with the 
Blender processes to generate the VR-ready 4D model as output. All 
code and containers are available on https://github.com/
mrfil/SEEG4D.

2.2 3D image processing

Image processing is done automatically using pre-existing 
neuroimaging software packages and customized python scripts 
installed inside the Docker container. A brain mask is generated 
using the FSL Brain Extraction Tool (bet) on the pre-implantation 
T1-weighted MRI (Smith, 2002). FSL FAST is used to segment the 
brain into gray, white, cerebrospinal fluid (Zhang et  al., 2001). 
Registration between the CT and brain extracted MRI is performed 
by estimating a rigid body (6 DOF) transformation between the CT 
and MRI image using a mutual information cost function and FSL 
FLIRT (Jenkinson and Smith, 2001; Jenkinson et  al., 2002). 
We apply the estimated registration to the brain mask and tissue 
type maps from MRI to put all MRI information into the CT space, 
with a nearest neighbor interpolation as shown in Figure  2. 
We erode the registered MRI mask three times so that there is little 
to no remaining overlap with the skull on the resulting registered 
mask. All images in the CT space are further resampled into 1 mm 
isotropic space and flipped, if necessary to align imaging space left/
right to the future VR space left/right, to assist in the creation of 3D 
objects. SEEG contacts on the CT images are isolated from the skull 
by first applying the registered brain mask, followed by a threshold 
at the 99.5th percentile to leave only voxels containing metal and 
metal artifacts. Through iterating, we found this chosen threshold 
removes the most noise, skull and scanner artifacts, and reduced 
contact blur (streaking artifact) without deleting contacts. A 
median filter with a sphere kernel of 0.5 mm is applied to the 
thresholded image to reduce contact streaking. Then, the filtered 
image is converted to isotropic space and a 40th percentile 
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FIGURE 1

Overview of the software pipeline outlining input of CT, MRI, and sEEG data (as EDF files) through the GUI to create a VR image of the sEEG activity 
with the chosen bandwidth and window width. Labeling electrodes in the GUI with the sEEG planning map is the only manual step.
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threshold is applied to remove interpolation artifacts. We note that 
our CT data did not have metal artifact reduction enabled in the 
acquisition leading to significant metal artifacts associated with 
the electrodes.

2.3 Electrode contact segmentation and 
aggregation

With the contacts isolated, SEEG4D locates the position of the 
contacts in space using a custom automated algorithm written in 
Python. A representative contact, which is a 3 mm x 3 mm x 3 mm 
isotropic voxel cube, was manually created to act as a template for 
future processing steps. Isolated voxels are treated as outliers 
and removed.

Voxels are classified into contacts by grouping neighboring, 
non-diagonal voxels together recursively until every non-zero voxel 
has been grouped into a contact. We  note that, due to streaking 
artifacts, this may group voxels from separate contacts together. 
Preventing the contacts from acquiring diagonal voxels helps prevent 
contacts which almost touch from clumping together. To further 
isolate contacts, we iteratively apply 1D erosions to electrode contacts 
until they are smaller than or the same size as the representative 
electrode via the following procedure, which is motivated by thinning 
connecting regions between contacts: If the contact is wider along the 
z direction than the representative, an x-directional erosion is applied; 
if the contact is wider along the x direction than the representative, a 
y-directional erosion is applied; if the contact is wider along the y 
direction than the representative, an x-directional erosion is applied. 
Once an electrode has been eroded to be smaller than half the size of 
the representative, it is replaced by the representative contact by 
aligning the midpoint of the representative to the replaced contact. 
Grouping and erosion algorithms run repeatedly on the entire image 
until all contacts have been replaced by the representative. This 
electrode segmentation process is demonstrated in Figure 3.

Electrode contacts can blur together due to scanner artifacts and 
orientation of electrodes in the scanner, so a contact-by-contact 
erosion method is preferred to separate the contacts and preserve 
spatial location of the contacts. Further, this individualized erosion 
approach works even with the difficult arrangements of electrodes that 
are not aligned with a main axis of the image, i.e., diagonal electrodes 
such as in Figure 3. Contact midpoints are saved and used to label 
them and orient them in space.

Collections of contacts to form electrodes are built from the 
midpoints of contacts by computing the outermost electrode contact 
and finding the closest contact and treating the pair as an electrode. 
The next contact within a search distance of 15 mm, and that does not 
deviate more than 20° from the second most recently added contact, 
is added to the electrode. Through iterative testing, we  found 20° 
accounts for some bending along the electrode without merging 
parallel electrodes. This process repeats until all contacts have been 
classified into electrodes such as in Figure 3.

Electrodes are manually labeled using the main GUI, see Figure 4, 
but contact numbering is done automatically. Axial and sagittal MRI 
slices are plotted along with the electrodes in a rotatable, zoomable 
interface. The center of the brain is computed and contacts along an 
electrode are labeled inner-most to out-most (e.g., A1 is electrode A 
contact 1 and is the contact at the end of the electrode) following our 
clinical site’s naming conventions.

2.4 sEEG data processing

Electrical data from the sEEG electrodes is provided to the 
software as EDF files. These files are loaded, through the Docker 
container, into MNE Python for signal processing (Gramfort et al., 
2013). In the main GUI, a dropdown box is populated with the event 
flags in the EDF file where the user can select the flag belonging to the 
electrical activity of interest, such as a particular seizure. In this paper, 
we use events that were clinically marked as seizure start flags. By 
default, the signal is cropped around the chosen event with a 
two-second window on either side, creating a four-second clip in total 
for our 4D visualization. Data is notch filtered to remove power line 
noise and then any bandpass filters chosen are applied. By default, an 
80 Hz-250 Hz windowed finite impulse response filter is used as this 
filter band is commonly used to identify high-frequency oscillations 
for SOZ localization (Remakanthakurup Sindhu et al., 2020).

2.5 VR model generation

Now that the SEEG contacts have been automatically segmented, 
named, and labeled with corresponding electrical data, SEEG4D 
generates VR models using Blender’s Python scripting capabilities. 
SEEG contacts, gray matter, white matter, and cerebral spinal fluid are 
each converted to object files using Scikit-Image’s implementation of 

FIGURE 2

Results of image processing and registration as seen in three different views from the same patients’ MRI (grayscale) to their processed CT (gold) 
showing alignment of the two image spaces.
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the Lewiner Marching Cubes algorithm (Lewiner et al., 2003; van der 
Walt et al., 2014). Our sampling rate in the EDF files is approximately 
1KHz, and we chose to make 24 ms wide long frames. Meaning that 
each second of the animation contains 24 ms of data. This turns a 
4-s-long EDF clip into a 167-s-long animation. We compute the power 
over our sliding window by:

 

P
N

x nx
n

N
= = [ ]( )

=
∑1 10

1

2

2

Where N is our sliding window length (N = 24). Min-max scaling 
is applied to the power data, across all electrodes by subtracting the 

minimum power and dividing by the range of power across all 
windows and contacts.

Electrode contacts are animated by evenly scaling their size at the 
frame being animated, where the maximum size is 6 cm, to make the 
difference in power between electrodes more apparent. Visually larger 
contacts have proportionally more power at that frame than smaller 
contacts. A timeline was manually created using blender to indicate 
time along the animation. This timeline includes markers for every 
second of the electrical data and a red marker indicating the marked 
seizure start. Once all contacts have been animated, and the brain 
segmentations and timeline have been loaded into the Blender model, 
the model is saved as both an FBX file and a GLTF 2.0 file which can 
be loaded into VR.

FIGURE 3

Step by step example of electrode contact segmentation and representative replacement. The top row is a cropped coronal slice while the bottom 
row is a cropped axial slice. (A) Base CT image, note that the ends of two electrodes have blended on the imaging and there is streaking artifact 
connecting two contacts. (B) Post masking, filtered, and thresholded electrode contact mask overlaid in blue. (C) Electrode contact mask after first 
pass of erosion in red, note that the ends of the electrodes have separated. (D) Second pass of erosion in dark blue. Contacts connected by streaking 
artifact have separated. (E) Final pass of the algorithm in pink. All contacts have been replaced by the representative contact by now.

FIGURE 4

Labeling interface on the main GUI (left) with the sEEG planning map and naming scheme (right). Blue regions on the sEEG planning map indicate 
cavities.
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Our SEEG4D creates the 4D FBX model and converts other 
supplementary documents into pdf versions for loading into the VR 
software, including the electrode surgical map and the electrode 
recording data graphs. Visualizing the data and model requires a VR 
platform for viewing and interacting with the generated assets. Many 
options exist for this. In this study, we imported the data into Enduvo,3 
as shown in Figure 5, and Blender, as shown in Figure 6.

2.6 Test patient data

To test the capabilities of SEEG4D and the automated electrode 
location labeling, data from 3 temporal lobe epilepsy patients 
undergoing clinical epilepsy monitoring at the OSF Saint Francis 
Medical Center, Peoria, Illinois, were run through our software in a 

3 https://enduvo.com/

fully automated processing, except for the manual selection of the 
electrode names in the GUI based on the sEEG planning map. DIXI 
sEEG electrodes (DIXI Medical) 0.8 mm in diameter and 2 mm apart 
were sampled at 1 KHz during monitoring. Deindentifiedatient data 
was acquired through OSF HealthCare under an IRB approved by 
University of Illinois College of Medicine at Peoria IRB.

To test the accuracy of our automated electrode-contact labeling 
process, we had two trained anatomists with a combined 5 years of 
segmentation experience label the electrode contacts manually. Our 
trained manual raters used 3D Slicer to mark the location of the 
electrode contacts from all electrodes from the 1 mm isotropic CT 
image to identify the recording locations (Fedorov et al., 2012). In the 
event a rater marked a position in between voxels, their marker was 
rounded to the nearest voxel. This manually labeled electrode contact 
center was compared to the corresponding automated electrode 
contact’s center and to the positions from the other rater.

3 Results

SEEG4D processed 3 cases on a machine running Ubuntu 22.04.4 
LTS with 96 GB of memory, an Intel® Xeon® Gold 6,254 CPU @ 
3.10GHz x 72, and three NVIDIA Quadro RTX 8000. Brain extraction 
and electrode segmentation took approximately 50 min per patient. 
Processing the sEEG data took approximately 5 s per patient while 
animating the data with Blender took approximately 30 s leading to a 
total runtime of under an hour per patient.

3.1 Electrode segmentation validation

After processing our 3 cases, SEEG4D identified 271 contacts in 
total. From visual inspection, we found that the contacts had good 
concurrence with the ground truth CT data. The average distance 
between these automatically identified coordinates and the manually 
labeled coordinates was variable per case, but as shown in Table 1 the 
electrode localization algorithm was generally closer to the raters than 
the raters were to each other indicating good concurrence with the 
ground truth position. As an example, for case SEEG1, our algorithm 
was an average of 0.85 mm away with a standard deviation of 0.68 mm 
from rater 1’s midpoints and an average of 0.71 ± 0.74 mm from rater 
2’s midpoints while the raters were an average of 0.94 ± 0.52 mm from 
one another. We note that 94.8 and 85.2% of the contacts automatically 
identified were within 1 voxel of rater 1 and rater 2, respectively. 
Additionally, 89.7% of the raters’ contacts were within 1 voxel of each 
other. We define a contact that the algorithm ‘missed’ as a contact 
residing in brain tissue that was not labeled by the software. Notably, 
contacts in the skull or outside the head are not counted as ‘missed’. 
Shown in Table 2, for SEEG1, there were 2 missed contacts of 116 
(1.7%); for SEEG2, there were 3 missed contacts of 91 (3.3%), and for 
SEEG3 there were 0 missed contacts of 71 (0%). Of these 5 missed 
contacts, all were within 5 voxels of the edge of the cortex and were 
either masked out or eroded during imaging preprocessing. Table 2 
also shows that 82, 93, and 80% of segmented contacts were within 1 
voxel for cases SEEG1, SEEG2, and SEEG3. Segmented contacts that 
were more than 2 voxels away were due to blurring and streaking on 
the contacts from the CT causing the contacts to appear larger, and 
when erosions were applied it offset the midpoint of the contact.

FIGURE 5

A clinician interacting with the 4D SEEG4D generated model in 
virtual reality. Electrodes are shown in gold and their size indicates 
relative power, whereas electrodes with a higher power are larger. A 
timeline appears underneath the brain to indicate the currently 
viewed timing relative to the marked seizure event (red line).
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4 Discussion

We have developed a tool, SEEG4D, which merges pre-implant 
MRI, post-implant CT, and SEEG data to create a 3D model of an 
sEEG case with time series data mapped onto the contacts. This 
enables the automated creation of digital assets for use in a 4D VR 
surgical planning process to enable the clinical care team to localize 
the SOZ and plan surgical interventions.

4.1 Visualization analysis

Presurgical planning for resection of SOZ is a highly complex 
process involving multi-modal 2D and 1D (SEEG) medical data. When 
one considers that interpretation of this complex patient-specific data by 
one medical expert is then communicated to a different surgical expert 
to resect a specific SOZ in the brain, there is tremendous opportunity to 
improve the precision of shared mental models of the pathology.

This project was initiated to improve knowledge transfer of 
patient-specific, complex, multimodal information on the location and 

pathology of the SOZ from epileptologist to neurosurgeon. To achieve 
translational impact, automated tools were developed along with 
stereoscopic time-sequential 3D digital models. These were necessary 
to allow integration into a clinical workflow where time constraints 
prevent manual efforts of 4D model creation. We have successfully 
deployed our software package, enabled by the containerization of the 
algorithms, in the clinical environment for research purposes and ran 
cases for this study on the clinic computational hardware.

Preliminary qualitative feedback revealed that the clinical sEEG 
expert sees tremendous potential of SEEG4D to expedite review of the 
standard of care data by helping to merge multimodal information 
about a seizure to provide an improved understanding of the patient’s 
electrophysiological data. Our surgical expert indicated significant 
potential of SEEG4D to improve communication of the 3D location 
of the SOZ from epileptologist to surgeon. Our experts, combined, see 
this tool as a new framework for forming mental models to allow for 
more efficient yet robust discussion for each patient.

SEEG4D allows users to automatically animate the electrical data 
at electrode contacts over time. Since the timescale is slowed down, 
we see clear visual onset and propagation of signals between electrode 

FIGURE 6

4D signal propagation along an electrode at time points varying by 5  ms during a seizure. Contacts along this electrode become larger in sequence. 
Timepoints were extracted from Blender.

TABLE 1 Quantitative analysis of electrode localization algorithm showing the average distance and the standard deviation between the raters and 
algorithm per patient case as well as the distance between each rater.

Average distance per contact (mm)

SEEG1 SEEG2 SEEG3

Rater 1 Rater 2 Rater 1 Rater 2 Rater 1 Rater 2

0.85 ± 0.68 0.71 ± 0.74 0.76 ± 0.60 1.0 ± 0.57 0.61 ± 0.62 1.0 ± 0.71

Raters distance from each other (mm)

SEEG1 SEEG2 SEEG3

0.94 ± 0.52 0.93 ± 0.40 0.98 ± 0.49

The top table is the difference between the automated algorithm and each of the 2 manual raters. The bottom table is the differences between the 2 manual raters.

TABLE 2 Voxel distance of algorithmically determined contact midpoints to averaged rater-labeled midpoints.

Voxel distance of algorithm to rater average

Distance SEEG1 SEEG2 SEEG3

N < = 1 Voxel 92 82 57

1 < N < = 2 Voxels 17 6 14

2 < N < = 3 Voxels 3 0 0

Missed 2 3 0

Number of contacts (N) 112 88 71

82, 93, and 80% of segmented contacts were within 1 voxel for cases SEEG1, SEEG2, and SEEG3, respectively. five contacts were missed by the algorithm in total, all of which were within 5 
voxels of the edge of the brain.
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contacts during a seizure, as shown in Figure  6 and 
Supplementary Video S1. This can facilitate understanding of 
propagation of the seizure and localization of SOZ. Incorporation of 
additional data into the visualization is straightforward, such as 
including white matter fiber pathways identified through diffusion 
tensor imaging to examine the relationship between the electrical 
signal propagation and tractography. Further work is required to 
understand the impact of increasing visual complexity of the 
visualized model on improving understanding of the patient case.

One of the limitations with SEEG4D is that it requires T1-weighted 
non-contrast MRI data. Additionally, our CT scanner was configured 
in a way which caused a substantial amount of metal artifacts at 
acquisition, leading to the automatic processing steps requiring higher 
thresholds and more aggressive erosion schemes. All cases processed 
for this study used DIXI electrodes and our tool is optimized based on 
these electrodes. It will be necessary to test SEEG4D against data from 
other clinical sites to ensure that these optimizations do not degrade 
cases that have little streaking or use other electrode manufacturers. 
Additionally, our clinical data did not use a standard naming 
convention for electrodes, so the software does not support loading of 
an atlas-based automatic naming scheme for electrodes.

While our clinicians have expressed qualitative feedback indicating 
that this tool would lead to a significant reduction in the time it takes 
to determine and understand a SOZ, quantitative analysis of this impact 
will be provided in a future study. To demonstrate quantitative impact 
on the clinical workflow, we will evaluate the efficacy of this model and 
quantify the reduction in mental load during the pre-surgical planning 
period for new cases. Additionally, the inclusion of source localization 
using automated SOZ localization algorithms to show the SOZ in the 
VR space could provide useful information to the clinical team.

5 Conclusion

We developed SEEG4D, a tool for automatically visualizing SEEG 
data with 4D virtual reality models for presurgical planning for 
epilepsy resection surgery. SEEG4D improves presurgical planning in 
epilepsy resection cases by automatically merging multimodal 
imaging data from MRI, CT, and sEEG recordings to produce dynamic 
4D VR visualizations of seizure onset and propagation to facilitate the 
formation of an accurate mental model of the case. Our automated 
sEEG electrode contact detector was demonstrated to be accurate to 
within 1 mm of our ground truth raters. Models generated from 
SEEG4D provide an advantage over traditional sEEG models due to 
their interactive, 4D spatiotemporal nature. Our interactive models 
show signal propagation along electrodes and through local networks 
to additional recording sites. With this automated tool, epilepsy care 
teams may realize the potential of integrating dynamic sEEG data with 
VR for enhanced presurgical planning and the formation of shared 
mental models.
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Supplementary Videos are provided to help demonstrate the rich 
information that is present in the 4D models and VR environment for 

an epilepsy case. It is challenging to convey the breadth of information 
present in a 4D model using a 2D print format. Without being able to 
interact with the models and play the animations, sense of time, depth, 
and texture are impeded. To help alleviate this, we have included 
Supplementary Videos of the models and user interactions with them. 
In addition, our code and sample data are available on our GitHub at 
https://github.com/mrfil/SEEG4D, DOI: 10.5281/zenodo.12741316.

References
Andrews, J. P., Ammanuel, S., Kleen, J., Khambhati, A. N., Knowlton, R., and 

Chang, E. F. (2020). Early seizure spread and epilepsy surgery: a systematic review. 
Epilepsia 61, 2163–2172. doi: 10.1111/epi.16668

Armin Vosoughi, D. B., Kheder, A., Bonilha, L., Dickey, A., Drane, D., Gutman, D., 
et al. (2022). Toolboxes for SEEG electrode localization and visualization. Nashville: 
American Epilepsy Society.

Arnulfo, G., Hirvonen, J., Nobili, L., Palva, S., and Palva, J. M. (2015). Phase and 
amplitude correlations in resting-state activity in human stereotactical EEG recordings. 
NeuroImage 112, 114–127. doi: 10.1016/j.neuroimage.2015.02.031

Bartolomei, F., Lagarde, S., Wendling, F., McGonigal, A., Jirsa, V., Guye, M., et al. 
(2017). Defining epileptogenic networks: contribution of SEEG and signal analysis. 
Epilepsia 58, 1131–1147. doi: 10.1111/epi.13791

Bearden, D. J., Ehrenberg, A., Selawski, R., Ono, K. E., Drane, D. L., Pedersen, N. P., 
et al. (2023). Four-way Wada: SEEG-based mapping with electrical stimulation, high 
frequency activity, and phase amplitude coupling to complement traditional Wada and 
functional MRI prior to epilepsy surgery. Epilepsy Res. 192:107129. doi: 10.1016/j.
eplepsyres.2023.107129

Brett, M. (2024). nipy/nibabel: 5.2.1. Genève: Zenodo.

Cai, F., Wang, K., Zhao, T., Wang, H., Zhou, W., and Hong, B. (2021). BrainQuake: an 
open-source Python toolbox for the Stereoelectroencephalography spatiotemporal 
analysis. Front. Neuroinform. 15:773890. doi: 10.3389/fninf.2021.773890

Chen, G., Li, X. C., Wu, G. Q., Wang, Y., Fang, B., Xiong, X. F., et al. (2010). The use 
of virtual reality for the functional simulation of hepatic tumors (case control study). 
Int. J. Surg. 8, 72–78. doi: 10.1016/j.ijsu.2009.11.005

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis. I. 
Segmentation and surface reconstruction. NeuroImage 9, 179–194. doi: 10.1006/
nimg.1998.0395

Davis, T. S., Caston, R. M., Philip, B., Charlebois, C. M., Anderson, D. N., Weaver, K. E., 
et al. (2021). LeGUI: a Fast and accurate graphical user Interface for automated detection 
and anatomical localization of intracranial electrodes. Front. Neurosci. 15:769872. doi: 
10.3389/fnins.2021.769872

De Momi, E., Caborni, C., Cardinale, F., Casaceli, G., Castana, L., Cossu, M., et al. 
(2014). Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG). 
Int. J. Comput. Assist. Radiol. Surg. 9, 1087–1097. doi: 10.1007/s11548-014-1004-1

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., 
et al. (2012). 3D slicer as an image computing platform for the quantitative imaging 
network. Magn. Reson. Imaging 30, 1323–1341. doi: 10.1016/j.mri.2012.05.001

Fisher, R. S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J. H., Elger, C. E., et al. 
(2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 
475–482. doi: 10.1111/epi.12550

Gonzalez-Martinez, J., Mullin, J., Vadera, S., Bulacio, J., Hughes, G., Jones, S., et al. 
(2014). Stereotactic placement of depth electrodes in medically intractable epilepsy. J. 
Neurosurg. 120, 639–644. doi: 10.3171/2013.11.JNS13635

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., 
et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7:267. doi: 
10.3389/fnins.2013.00267

Guillot, A., Champely, S., Batier, C., Thiriet, P., and Collet, C. (2007). Relationship 
between spatial abilities, mental rotation and functional anatomy learning. Adv. Health 
Sci. Educ. Theory Pract. 12, 491–507. doi: 10.1007/s10459-006-9021-7

Hassan, A. R., Subasi, A., and Zhang, Y. (2020). Epilepsy seizure detection using 
complete ensemble empirical mode decomposition with adaptive noise. Knowl.-Based 
Syst. 191:105333. doi: 10.1016/j.knosys.2019.105333

Herfarth, C., Lamadé, W., Fischer, L., Chiu, P., Cardenas, C., Thorn, M., et al. (2002). 
The effect of virtual reality and training on liver operation planning. Swiss Surg. 8, 67–73. 
doi: 10.1024/1023-9332.8.2.67

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved optimization 
for the robust and accurate linear registration and motion correction of brain images. 
NeuroImage 17, 825–841. doi: 10.1006/nimg.2002.1132

Jenkinson, M., and Smith, S. (2001). A global optimisation method for robust affine 
registration of brain images. Med. Image Anal. 5, 143–156. doi: 10.1016/
s1361-8415(01)00036-6

Kakinuma, K., Osawa, S. I., Hosokawa, H., Oyafuso, M., Ota, S., Kobayashi, E., et al. 
(2022). Determination of language areas in patients with epilepsy using the super-
selective Wada test. IBRO Neurosci. Rep. 13, 156–163. doi: 10.1016/j.ibneur.2022.08.002

Kalilani, L., Sun, X., Pelgrims, B., Noack-Rink, M., and Villanueva, V. (2018). The 
epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 
59, 2179–2193. doi: 10.1111/epi.14596

Lewiner, T., Lopes, H., Vieira, A. W., and Tavares, G. (2003). Efficient implementation 
of marching Cubes' cases with topological guarantees. J. Graph. Tool. 8, 1–15. doi: 
10.1080/10867651.2003.10487582

Louis, R. G., Steinberg, G. K., Duma, C., Britz, G., Mehta, V., Pace, J., et al. (2021). 
Early experience with virtual and synchronized augmented reality platform for 
preoperative planning and intraoperative navigation: a case series. Oper. Neurosurg. 
(Hagerstown) 21, 189–196. doi: 10.1093/ons/opab188

Lyuksemburg, V., Abou-Hanna, J., Marshall, J. S., Bramlet, M. T., Waltz, A. L., Pieta 
Keller, S. M., et al. (2023). Virtual reality for preoperative planning in complex surgical 
oncology: a single-center experience. J. Surg. Res. 291, 546–556. doi: 10.1016/j.
jss.2023.07.001

Maan, Z. N., Maan, I. N., Darzi, A. W., and Aggarwal, R. (2012). Systematic review of 
predictors of surgical performance. Br. J. Surg. 99, 1610–1621. doi: 10.1002/bjs.8893

Mahajan, U. V., Sunshine, K. S., Herring, E. Z., Labak, C. M., Wright, J. M., and 
Smith, G. (2021). Virtual reality in presurgical patient education: a scoping review and 
recommended trial design guidelines. Am. J. Surg. 222, 704–705. doi: 10.1016/j.
amjsurg.2021.03.022

Makhalova, J., Medina Villalon, S., Wang, H., Giusiano, B., Woodman, M., Bénar, C., 
et al. (2022). Virtual epileptic patient brain modeling: relationships with seizure onset 
and surgical outcome. Epilepsia 63, 1942–1955. doi: 10.1111/epi.17310

Matelsky, J., Kiar, G., Johnson, E., Rivera, C., Toma, M., and Gray-Roncal, W. (2018). 
Container-based clinical solutions for portable and reproducible image analysis. J. Digit. 
Imaging 31, 315–320. doi: 10.1007/s10278-018-0089-4

Mattus, M. S., Ralph, T. B., Keller, S. M. P., Waltz, A. L., and Bramlet, M. T. (2022). 
Creation of patient-specific silicone cardiac models with applications in pre-surgical 
plans and hands-on training. J. Vis. Exp. 10:180. doi: 10.3791/62805

Medina Villalon, S., Paz, R., Roehri, N., Lagarde, S., Pizzo, F., Colombet, B., 
et al. (2018). EpiTools, a software suite for presurgical brain mapping in epilepsy: 
intracerebral EEG. J. Neurosci. Methods 303, 7–15. doi: 10.1016/j.jneumeth.2018. 
03.018

Minkin, K., Gabrovski, K., Sirakov, S., Penkov, M., Todorov, Y., Karakostov, V., et al. 
(2019). Three-dimensional neuronavigation in SEEG-guided epilepsy surgery. Acta 
Neurochir. 161, 917–923. doi: 10.1007/s00701-019-03874-9

Mula, M., and Cock, H. R. (2015). More than seizures: improving the lives of people 
with refractory epilepsy. Eur. J. Neurol. 22, 24–30. doi: 10.1111/ene.12603

Narizzano, M., Arnulfo, G., Ricci, S., Toselli, B., Tisdall, M., Canessa, A., et al. (2017). 
SEEG assistant: a 3DSlicer extension to support epilepsy surgery. BMC Bioinform. 
18:124. doi: 10.1186/s12859-017-1545-8

Oldhafer, K. J., Stavrou, G. A., Prause, G., Peitgen, H. O., Lueth, T. C., and Weber, S. 
(2009). How to operate a liver tumor you cannot see. Langenbeck's Arch. Surg. 394, 
489–494. doi: 10.1007/s00423-009-0469-9

Paulo, D. L., Wills, K. E., Johnson, G. W., Gonzalez, H. F. J., Rolston, J. D., Naftel, R. P., 
et al. (2022). SEEG functional connectivity measures to identify epileptogenic zones: 
stability, medication influence, and recording condition. Neurology 98, e2060–e2072. 
doi: 10.1212/WNL.0000000000200386

Phan, T. N., Prakash, K. J., Elliott, R. J. S., Pasupuleti, A., Gaillard, W. D., Keating, R. F., 
et al. (2022). Virtual reality-based 3-dimensional localization of stereotactic EEG (SEEG) 
depth electrodes and related brain anatomy in pediatric epilepsy surgery. Childs Nerv. 
Syst. 38, 537–546. doi: 10.1007/s00381-021-05403-5

Quero, G., Lapergola, A., Soler, L., Shahbaz, M., Hostettler, A., Collins, T., et al. (2019). 
Virtual and augmented reality in oncologic liver surgery. Surg. Oncol. Clin. N. Am. 28, 
31–44. doi: 10.1016/j.soc.2018.08.002

Remakanthakurup Sindhu, K., Staba, R., and Lopour, B. A. (2020). Trends in the use 
of automated algorithms for the detection of high-frequency oscillations associated with 
human epilepsy. Epilepsia 61, 1553–1569. doi: 10.1111/epi.16622

https://doi.org/10.3389/fninf.2024.1465231
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fninf.2024.1465231/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2024.1465231/full#supplementary-material
https://github.com/mrfil/SEEG4D
https://doi.org/10.5281/zenodo.12741316
https://doi.org/10.1111/epi.16668
https://doi.org/10.1016/j.neuroimage.2015.02.031
https://doi.org/10.1111/epi.13791
https://doi.org/10.1016/j.eplepsyres.2023.107129
https://doi.org/10.1016/j.eplepsyres.2023.107129
https://doi.org/10.3389/fninf.2021.773890
https://doi.org/10.1016/j.ijsu.2009.11.005
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.3389/fnins.2021.769872
https://doi.org/10.1007/s11548-014-1004-1
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1111/epi.12550
https://doi.org/10.3171/2013.11.JNS13635
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1007/s10459-006-9021-7
https://doi.org/10.1016/j.knosys.2019.105333
https://doi.org/10.1024/1023-9332.8.2.67
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/s1361-8415(01)00036-6
https://doi.org/10.1016/s1361-8415(01)00036-6
https://doi.org/10.1016/j.ibneur.2022.08.002
https://doi.org/10.1111/epi.14596
https://doi.org/10.1080/10867651.2003.10487582
https://doi.org/10.1093/ons/opab188
https://doi.org/10.1016/j.jss.2023.07.001
https://doi.org/10.1016/j.jss.2023.07.001
https://doi.org/10.1002/bjs.8893
https://doi.org/10.1016/j.amjsurg.2021.03.022
https://doi.org/10.1016/j.amjsurg.2021.03.022
https://doi.org/10.1111/epi.17310
https://doi.org/10.1007/s10278-018-0089-4
https://doi.org/10.3791/62805
https://doi.org/10.1016/j.jneumeth.2018.03.018
https://doi.org/10.1016/j.jneumeth.2018.03.018
https://doi.org/10.1007/s00701-019-03874-9
https://doi.org/10.1111/ene.12603
https://doi.org/10.1186/s12859-017-1545-8
https://doi.org/10.1007/s00423-009-0469-9
https://doi.org/10.1212/WNL.0000000000200386
https://doi.org/10.1007/s00381-021-05403-5
https://doi.org/10.1016/j.soc.2018.08.002
https://doi.org/10.1111/epi.16622


Evans et al. 10.3389/fninf.2024.1465231

Frontiers in Neuroinformatics 11 frontiersin.org

Robertson, D. J., Abramson, Z. R., Davidoff, A. M., and Bramlet, M. T. (2024). Virtual 
reality applications in pediatric surgery. Semin. Pediatr. Surg. 33:151387. doi: 10.1016/j.
sempedsurg.2024.151387

Ryvlin, P., Cross, J. H., and Rheims, S. (2014). Epilepsy surgery in children and adults. 
Lancet Neurol. 13, 1114–1126. doi: 10.1016/S1474-4422(14)70156-5

Sadideen, H., Alvand, A., Saadeddin, M., and Kneebone, R. (2013). Surgical experts: 
born or made? Int. J. Surg. 11, 773–778. doi: 10.1016/j.ijsu.2013.07.001

Sanz-Leon, P., Knock, S. A., Spiegler, A., and Jirsa, V. K. (2015). Mathematical 
framework for large-scale brain network modeling in the virtual brain. NeuroImage 111, 
385–430. doi: 10.1016/j.neuroimage.2015.01.002

Smith, S. M. (2002). Fast robust automated brain extraction. Hum. Brain Mapp. 17, 
143–155. doi: 10.1002/hbm.10062

Thijs, R. D., Surges, R., O'Brien, T. J., and Sander, J. W. (2019). Epilepsy in adults. 
Lancet 393, 689–701. doi: 10.1016/S0140-6736(18)32596-0

Vakharia, V. N., Sparks, R., Miserocchi, A., Vos, S. B., O'Keeffe, A., Rodionov, R., et al. 
(2019). Computer-assisted planning for Stereoelectroencephalography (SEEG). 
Neurotherapeutics 16, 1183–1197. doi: 10.1007/s13311-019-00774-9

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., 
Yager, N., et al. (2014). Scikit-image: image processing in Python. PeerJ 2:e453. doi: 
10.7717/peerj.453

van Mierlo, P., Vorderwulbecke, B. J., Staljanssens, W., Seeck, M., and 
Vulliemoz, S. (2020). Ictal EEG source localization in focal epilepsy: review 
and future perspectives. Clin. Neurophysiol. 131, 2600–2616. doi: 10.1016/j.clinph. 
2020.08.001

Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., 
Behrens, T., et al. (2009). Bayesian analysis of neuroimaging data 
in FSL. NeuroImage 45, S173–S186. doi: 10.1016/j.neuroimage.2008. 
10.055

Wu, B., Klatzky, R. L., and Stetten, G. (2010). Visualizing 3D objects from 2D cross 
sectional images displayed in-situ versus ex-situ. J. Exp. Psychol. Appl. 16, 45–59. doi: 
10.1037/a0018373

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain MR images 
through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57. doi: 10.1109/42. 
906424

https://doi.org/10.3389/fninf.2024.1465231
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1016/j.sempedsurg.2024.151387
https://doi.org/10.1016/j.sempedsurg.2024.151387
https://doi.org/10.1016/S1474-4422(14)70156-5
https://doi.org/10.1016/j.ijsu.2013.07.001
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1016/S0140-6736(18)32596-0
https://doi.org/10.1007/s13311-019-00774-9
https://doi.org/10.7717/peerj.453
https://doi.org/10.1016/j.clinph.2020.08.001
https://doi.org/10.1016/j.clinph.2020.08.001
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1037/a0018373
https://doi.org/10.1109/42.906424
https://doi.org/10.1109/42.906424

	SEEG4D: a tool for 4D visualization of stereoelectroencephalography data
	1 Introduction
	2 Materials and methods
	2.1 Software overview
	2.2 3D image processing
	2.3 Electrode contact segmentation and aggregation
	2.4 sEEG data processing
	2.5 VR model generation
	2.6 Test patient data

	3 Results
	3.1 Electrode segmentation validation

	4 Discussion
	4.1 Visualization analysis

	5 Conclusion

	References

