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hvEEGNet: a novel deep learning
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Introduction: Modeling multi-channel electroencephalographic (EEG) time-
series is a challenging tasks, even for the most recent deep learning
approaches. Particularly, in this work, we targeted our e�orts to the high-
fidelity reconstruction of this type of data, as this is of key relevance for several
applications such as classification, anomaly detection, automatic labeling, and
brain-computer interfaces.

Methods: We analyzed the most recent works finding that high-fidelity
reconstruction is seriously challenged by the complex dynamics of the EEG
signals and the large inter-subject variability. So far, previous works provided
good results in either high-fidelity reconstruction of single-channel signals, or
poor-quality reconstruction of multi-channel datasets. Therefore, in this paper,
we present a novel deep learning model, called hvEEGNet, designed as a
hierarchical variational autoencoder and trained with a new loss function. We
tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9
subjects).

Results: We show that it is able to reconstruct all EEG channels with high-
fidelity, fastly (in a few tens of epochs), and with high consistency across di�erent
subjects. We also investigated the relationship between reconstruction fidelity
and the training duration and, using hvEEGNet as an anomaly detector, we
spotted some data in the benchmark dataset that are corrupted and never
highlighted before.

Discussion: Thus, hvEEGNet could be very useful in several applications where
automatic labeling of large EEG dataset is needed and time-consuming. At the
same time, this work opens new fundamental research questions about (1) the
e�ectiveness of deep learning models training (for EEG data) and (2) the need for
a systematic characterization of the input EEG data to ensure robust modeling.
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1 Introduction

High-fidelity reconstruction of electroencephalography (EEG) data is of key relevance

to many deep learning (DL) tasks for EEG analysis, such as anomaly detection, automatic

labeling, classification, and brain-computer interface control (Kodama et al., 2023; Beraldo

et al., 2022). The most significant open challenges for the DL models are the complex

dynamics of the EEG signals and the large inter-subject variability. So far, these two aspects

have prevented DL to offer a gold-standard for high-accurate reconstruction of multi-

channel EEG data (Lotte et al., 2018). A critical issue for DL methods is the dependency

on the training set, as Gyori et al. (2022) recently pointed out in the domain of magnetic

resonance imaging data: a training dataset of poor quality, as well as a training set
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distributed in a non-representative way might induce biases in the

trained model and, consequently, lead to poor results in the task

the model is expected to perform e.g., classification or anomaly

detection. At the same time, in the neuroscience domain, it is very

common to meet this situation (Pion-Tonachini et al., 2019), as

the complex dynamics of any biological signal and the large inter-

individual variability make it difficult to obtain a clean, large, and

representative training set.

Nonetheless, in this paper, we present a novel deep learning

model, called hvEEGNet, designed as a hierarchical variational

autoencoder (VAE), where the encoder and the decoder modules

have been inspired by the popular EEGNet architecture (Lawhern

et al., 2016). The proposed model was trained by using a novel

loss function based on dynamic time warping (DTW), never used

before for EEG data, but very well-suited for time-series (Bankó

and Abonyi, 2012). We show that the combination of this

specific architecture and the training strategy brings to high-fidelity

reconstruction of multi-channel EEG signals. Interestingly, this is

also consistent across different subjects. To test our model, we use

a benchmark dataset called dataset 2a to have a fair comparison

with previous works. Then, we deepen the investigation of the

model’s training over this particular dataset, and we empirically

observe that there is a relationship between the training time (i.e.,

the number of epochs needed to train the model for each subject)

and the particular distribution of the EEG values in each subject.

We show that 80 epochs are enough to obtain almost perfect

reconstruction for all subjects in the dataset, but for some of them

20 epochs are sufficient. Thus, with this work, we shed light on the

importance of conducting a systematic analysis of the input EEG

data and its variability across different subjects to ensure proper DL

models training, a step never reported by previous works (as far as

the authors know).

In this paper, we provide the following novel contributions:

1. we show that the choice of DTW as the loss function, in place of

the more standard mean square error (MSE), has a key role in

the accurate EEG reconstruction;

2. a simple VAE model cannot properly recover multi-channel

EEG data, while a hierarchical architecture (i.e., hvEEGNet)

provides high-fidelity reconstruction;

3. hvEEGNet is trained very fastly, in a few tens of epochs, despite

the small size of the training dataset;

4. finally, using the trained model (in a within-subject modality),

we discovered some significant instrumental anomalies in the

benchmark dataset (never pointed out before).

2 State of the art

Reconstructing a multi-channel EEG dataset with high-fidelity

is a challenging task, given the typical very low signal-to-noise ratio

characterizing EEG signals (Cisotto, 2021), the fast dynamics of

each signal and its relationship with signals acquired from different

locations of the scalp, and the large inter-subject variability (both

between healthy and patients, but also across different individuals

sharing the same condition). So far, even with the development

of DL techniques, there is no gold-standard model available to

obtain a general-purpose high-fidelity EEG reconstruction. From

the most recent literature, two main trends can be highlighted: on

one side, some recent works proposed DL models to reconstruct

multi-channel EEG, but they can only achieve poor reconstruction

quality. For example, Bethge et al. (2022) proposed EEG2VEC,

i.e., a VAE architecture to encode emotions-related EEG signals

in the VAE latent space. The authors succeeded in reconstructing

the low-frequency components of the original EEG signals but

the higher frequency ones were not properly recovered. Moreover,

the output signals appeared to be largely attenuated (amplitudes

often halved w.r.t. the original ones). According to the authors’

explanation, this was due to the particular design of the decoder

which might have introduced aliasing and artifacts. In one of

the our previous work (Zancanaro et al., 2023a), we also found

similar results. There, we proposed vEEGNet-ver1, a new VAE

architecture designed to extract latent representations of multi-

channel EEG both to classify EEG signals [via feed-forward neural

network (FFNN)] and to reconstruct them. We achieved state-of-

the-art classification performance, but only poor reconstruction:

specifically, we were able to retrieve only a slow frequency

component [related to the initiation of the movement (Bressan

et al., 2021; Ofner et al., 2019)] but we failed to recover higher

frequencies information. On the other side, other works (Al-

Marridi et al., 2018; Dasan and Gnanaraj, 2022; Khan et al.,

2023; Liu et al., 2020) were able to reconstruct EEG signals

with high accuracy but from a single-channel acquisition setup.

They mostly dealt with single-channel reconstruction with the

perspective of compression in wireless portable devices. In Al-

Marridi et al. (2018), the authors implemented a convolutional

autoencoder to compress EEG signals, showing good abilities

to reconstruct single channel EEG signals with a relatively high

compression ratio (up to 98% with distortion of 1.33%). Dasan and

Gnanaraj (2022) proposed a multi-branch denoising autoencoder

to compress EEG signals coming from one only sensor, together

with the Electrocardiogram (ECG) and electromyographic (EMG)

signals coming from other two sensors with the purpose to

ensure continual learning (continuous fine-tuning) and real-time

health monitoring. Each signal modality (EEG, ECG, EMG) was

independently pre-processed, and then the autoencoder provided

a multi-modal latent representation. The results showed a good

trade-off between compression ratio and reconstruction quality

over three public datasets. This work represents an interesting

approach, but it assumes to have complementary information about

the subjects (their muscular and heart activity). Also, this approach

can be adopted in those applications where movement is involved,

but it might be more difficult to apply with pure cognitive tasks

(e.g., imagination of the movement or sleeping). Lastly, it might

also be expected that the use of portable devices bring lower

EEG signal quality (typically capturing lower frequencies), thus

making the final recovery easier. Finally, Khan et al. (2023) used

a shallow autoencoder with a low dimensional latent space (8–

64) to classify single-channel EEG signals of a public dataset into

epileptic vs. healthy classes, achieving 97% accuracy, sensitivity and

specificity over 96%. They also achieved very good reconstruction,

as shown in two representative signals. Unfortunately, the authors

did not report the power spectrum of the original EEG signals, thus

making it difficult to fully ensure a reproducibility of these good
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performance on other, more complex (i.e., with larger bandwidth),

EEG data. In Liu et al. (2020), an autoencoder was trained within

a larger deep learning architecture with the goal of compressing

and reconstructing the EEG data. Particularly, its input is given

by the output of a convolutional neural networks (CNN), used

as feature extractor. The CNN and the autoencoder were trained

together. Then, the optimized features were fed to a FFNN that

operated a classification (with separate training). They tested their

model on the very popular DEAP (Koelstra et al., 2012) and

SEED (Zheng and Lu, 2015) public emotions-related EEG datasets,

reaching satisfactory results (accuracy around 90% in both arousal

and valence categories for DEAP, and over 96% for the three

classes of SEED). However, the authors did not provide results

about the quality of the reconstruction of the autoencoder. It can

be said that most literature is focused on using DL techniques

to solve application-tailored classification problems. However, a

systematic investigation to extract more general conclusions on the

reconstruction effectiveness of those models is still lacking.

Similar considerations hold true about the application of DL

for the detection of anomalies in EEG, a natural related application

of high-fidelity reconstruction. The vast majority of the studies at

the state-of-the-art have targeted the automatic identification of

pathological events (e.g., seizures) w.r.t. certified, artifact-free, and

healthy EEG signals. In this task, autoencoders have been largely

and successfully employed, as they offer the inherent possibility

to be used as anomaly detectors (Pang et al., 2021), provided that

they can learn from good quality training data. As an example,

Emami et al. (2019) showed that a model based on an autoencoder

and a threshold labeling system can detect epileptic seizures with

100% accuracy in about 92% cases (22 subjects over 24 of a private

dataset). Ortiz et al. (2020) reached similar outstanding results

(accuracy of 96%, sensitivity of 86%, specificity of 100%, area

under the curve (AUC) of 92%) using a cascaded system with an

autoencoder trained to reconstruct the time-series of some hand-

crafted features to enhance the spatial differences in the brain

activity of patients suffering from dyslexia and healthy controls [a

support vector machine (SVM) later classifies the two classes].

Nevertheless, there is no well-established definition of

normality for EEG signals, as much as it is fairly difficult to

have a certified, large, and artifact-free dataset (even in the case

of healthy subjects) (Gabardi et al., 2023). Therefore, it would

be more realistic to train an autoencoder model on a mixture

of clean and noisy data, in line with some other literature (not

necessarily addressing biological data). For instance, in Zhou and

Paffenroth (2017), the authors proposed a robust autoencoder,

i.e., a combination of a robust PCA (RPCA) and an autoencoder,

where the autoencoder was used for data projection in the

(reduced) principal components space (in place of the usual linear

projection). Unfortunately, there is a limited literature on this kind

of autoencoders, as confirmed by a recent survey (Al-amri et al.,

2021). In Xing et al. (2020), the authors proposed a combination

of an evolving spiking neural network and a Boltzmann machine

to identify anomalies in a multimedia data stream. The proposed

training algorithm was able to localize and ignore any random

noise that could corrupt the training data. Wambura et al. (2020)

suggested to jointly use a CNN and a long-short term memory

(LSTM) to forecast future trends and reconstruct past trends of

different types of data stream. They were able to accurately predict

time-series related to three real-world scenarios, i.e., web traffic in

Wikipedia, price trends of the avocado fruit, and temperature series

in a city. In Dong and Japkowicz (2018), a model composed by

an ensemble of autoencoders was employed to identify anomalies

in data streams. The authors claimed that the training algorithm

made the presence of noisy samples in the training data not

statistically significant, thus ensuring model’s robustness to noise.

In Qiu et al. (2019), an architecture made by the sequence of a

CNN, an LSTM, a FFNN, and a softmax layer was proposed to

identify anomalies. Interestingly, a VAE was preliminarily used

to over-sample the dataset, before training the classifier (i.e.,

the FFNN with the softmax layer). The model was tested on the

AIOps-KPI public dataset (Li et al., 2022), achieving an accuracy of

77% (KP1), 75% (KP2), 83% (KP3), and 75% (KP4). Nevertheless,

to the best of our knowledge, this kind of approaches has never

been applied to EEG data, yet.

Thus, some fundamental open challenges emerge from the

state of the art (SOTA) review to be solved, including (1) the

high reconstruction errors or the generation of traces that are

not faithful to the original signals, (2) the lack of focus on the

reconstruction task (in favor of classification or anomaly detection)

even if the architecture has this possibility, and (3) no rigorous

investigation on the impact of the input quality and distribution on

the training of DLmodels. Thus, in this paper we shed light on these

important challenges in relation to high-fidelity reconstruction of

multi-channel EEG data.

3 Materials and methods

In this section, we present the basic modules as well as

the overall architecture of our proposed model, hvEEGNet. Also,

to support our design choices, we introduce another model,

namely vEEGNet-ver3, which shares the same new loss function

with hvEEGNet, but a different (simpler, i.e., not hierarchical)

architecture. Furthermore, we describe the metrics and the

methodologies we employed to evaluate our models.

3.1 Variational autoencoder

The common overall architecture of our both models is the

VAE.

Unlike traditional autoencoders, i.e., producing a deterministic

encoding for each input, VAE is able to learn a probabilistic

mapping between the input data and a latent space, which is

additionally learned as a structured latent representation (Kingma

and Welling, 2013, 2019). Given the observed data x and assuming

z to be the latent variables, with a proper training, a VAE

learns the variational distribution qφ(z|x) as well as the generative

distribution pθ (x|z), using a pair of (deep) neural networks (acting

as the encoder and the decoder), parameterized by φ and θ ,

respectively (Blei et al., 2017). The training loss function, denoted

as LVAE, accounts for the sum of two different contributions: the

Kullback-Leibler divergence between the variational distribution

qφ(z|x) and the posterior distribution pθ (x|z), denoted as LKL,
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and the reconstruction error, denoted as LR, which forces the

decoded samples to approximate the initial inputs. Thus, the loss

function adopted for the VAE is

LVAE = LKL + LR = −KL[qφ(z|x)||p(z)]+ Eq(logpθ (x|z)) (1)

Assuming normal distribution as a prior for the sample

distribution in the latent space, it is possible to rewrite Equation 1

as follows

LVAE = −
1

2

d
∑

i=1

(σ 2
i + µ2

i − 1− log(σ 2
i ))+ Eq(logpθ (x|z)) (2)

where µi and σ 2
i are the predicted mean and variance values of the

corresponding i-th latent component of z.

In this work, we adopted this basic architecture to propose

vEEGNet version 3 (vEEGNet-ver3). The details characterizing this

specific model are reported in Section 3.3.

3.2 Hierarchical VAE

A hierarchical VAE (Vahdat and Kautz, 2021) is the evolution of

a standard VAE enriched by a hierarchical latent space, i.e., multiple

layers implementing a latent space each. In fact, standard VAEs

suffer from the lack of accuracy in details reconstruction, given

by the trade-off between the reconstruction loss and the Kullback-

Leibler divergence contributions, thus generating the tendency to

generate slightly approximated data (e.g., blurred images), only.

Hierarchical VAEs attempt to solve this problem by using multiple

latent spaces, where each of them is trained to encode different

levels of detail in the input data. Assuming a model with L latent

spaces, its loss function can be written as

LHVAE = LKL + LR (3)

where

LKL = −KL[qφ(z1|x)||p(z1)]−
L

∑

l=2

KL[qφ(zl|x, z<l)||p(zl|z<l)],

(4)

with qφ(zl|, z<l) =
∏l−1

i=1 qφ(zl|x, z<i) as the approximate posterior

up to the (l − 1) level and the conditional in each prior p(zl|z<l)

and approximate posterior qφ(zl|x, z<i) is represented as a factorial

normal distribution. The notation is taken from the original

paper (Vahdat and Kautz, 2021). Particularly, the symbol z<i means

that the random variable is conditioned by the output of all latent

spaces from 1 to i.

In this work, we adopted this basic architecture to propose

hierarchical vEEGNet (hvEEGNet). The details characterizing this

specific model are reported in Section 3.5.

3.3 vEEGNet-ver3

Figure 1 represents the schematic architecture of this simple

VAE model. As any conventional VAE, it consists of an encoder,

a latent space, and a decoder.

However, inspired by the work of Lawhern et al. (2016), we

designed the encoder as the popular EEGNet architecture, i.e.,

with the three processing blocks: in the first block, a horizontal

convolution (that imitates the conventional temporal filtering) is

followed by a batch normalization. In the second block, a vertical

convolution, acting as a spatial filter, is applied. This operation

is then followed by an activation and an average pooling step.

The third, and last, block performs a separable convolution with a

horizontal kernel, followed by an activation and an average pooling

step. We always used, as in Lawhern et al. (2016), the exponential

linear unit (ELU) activation function. At the output of the third

block, the obtained D × C × T tensor is further transformed by

means of a sampling layer which applies a convolution with a

1 × 1 kernel, thus doubling its depth size, resulting in a 2D ×

C × T tensor. Finally, the latter is projected onto the latent space

(i.e., of dimension N = D · C · T). In line with other previous

works (Zancanaro et al., 2023a; Kingma and Welling, 2013), the

first N elements of the depth map were intended as the marginal

means (µ) and the secondN elements as themarginal log-variances

(σ ) of the Gaussian distribution represented in the latent space.

Then, to reconstruct the EEG data, the latent space z0 is sampled

using the reparameterization trick, as follows:

z0 = µ + σ ·N(0, 1),

where N(0, 1) is standard multivariate Gaussian noise (with

dimension N = D · C · T).

Finally, in the projection onto the latent space, we apply a 1× 1

convolution to the output of the encoder, thus obtaining a depth

map whose first half is taken as the mean and the second half as the

log-variance of the distribution of the latent space.

To note, this architecture is very similar to other previous

architectures proposed by the authors in Zancanaro et al. (2023a)

and in Zancanaro et al. (2023b). However, it introduces a very

significant novelty that leads this new model to perform much

better than the older ones. The reconstruction error LR of the VAE

loss function expressed by Equation 1 was here quantified by the

DTW similarity score (Sakoe and Chiba, 1978), i.e., replacing the

more standard MSE. DTW leads to a more suitable measure of the

similarity between two time-series (Bankó and Abonyi, 2012), thus

allowing the model better learn to reconstruct EEG data. In fact,

DTW is known to be more robust to non-linear transformations of

time-series (Huang and Jansen, 1985), thus capturing the similarity

between two time-series even in presence of time shrinkage or

dilatation, i.e., warpings. This cannot be achieved by MSE, which

is highly sensitive to noise, i.e., the error computed by MSE rapidly

increases when small modifications are applied to time-series.

3.4 DTW and normalized DTW

In brief, given two time-series a(i) and b(j), where i, j =

1, 2, ...,T (i.e., for simplicity, we consider two series with the same

length), DTW is a time-series alignment algorithm that extensively

searches for the best match between them, by following a five-step

procedure:

1. The cost matrixW is initialized, with each row i associated with

the corresponding amplitude value of the first time-series a(T −
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FIGURE 1

Schematic architecture of our model called vEEGNet-ver3. The encoder block is formed by three blue diamonds representing three di�erent
processing layers: i.e., Te stands for temporal convolution, Sp stands for spatial convolution, and SC stands for separable convolution. The decoder
block includes three green diamonds representing the same operations, in the reverse order and using the transpose convolution (T ). z0 represents
the latent space.

FIGURE 2

Schematic architecture of our model called hvEEGNet. The encoder block is formed by the same three processing layers (i.e., blue diamonds) as in
vEEGNet-ver3 (Figure 1). The decoder block includes three green diamonds representing the same operations, in the reverse order and using the
transpose convolution (T ). z1, z2, and z3 represent the latent spaces obtained at the three di�erent processing levels.

i + 1), while each column j associated with the corresponding

amplitude value of the second time-series b(j).

2. Starting from positionW(0, 0), the value of each matrix element

is computed as W(i, j) = |a(i) − b(j)| + min[W(i − 1, j −

1),W(i, j − 1),W(i − 1, j)], if i, j > 0, otherwise W(i, j) =

|a(i)− b(j)|.

3. The optimal warping path is identified as theminimum cost path

in W, starting from the element W(1,T), i.e., the upper right

corner, ending to the elementW(T, 1).

4. the array d is formed by taking the values of W included in

the optimal warping path. Note that d might have a different

(i.e., typically longer) length compared to the two original time-

series, as a single element of one series could be associated with

multiple elements of the other.

5. Finally, the normalized DTW score is computed as

score =

∑K
k=1 d(k)

K
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where K is the length of the array d. To note, normalization

was not applied during the models’ training (to keep

this contribution in the range of the other loss function

contributions).Whereas, during the performance evaluation, we

used the normalized score. Nevertheless, this difference did not

induce criticisms, as all segments share the same length.

3.5 hvEEGNet

As we observed sub-optimal reconstruction results with

vEEGNet-ver3 and in line with other literature on computer

vision (Vahdat and Kautz, 2021), we developed a new architecture,

called hvEEGNet, to overcome the issues of vEEGNet-ver3. The

most relevant change in hvEEGNet w.r.t. vEEGNet-ver3 is its

hierarchical architecture with three different latent spaces, namely

z1, z2, and z3, with z1 being the deepest one. Each of them is located

at the output of each main block of the encoder, i.e., after the

temporal convolution (Te) block (z3), after the spatial convolution

(Sp) block (z2), and after the separable convolution (SC) block

(z1). The input to the decoder’s Sp block is now given by the

linear combination (i.e., the sum) of the SC block’s output and the

sampled data from z2. Similarly, the input to the decoder’s Te block

is obtained by the sum of the Sp block’s output and the sampled data

from z3. Incidentally, but significantly, it is worth noting that we

kept here using the DTW algorithm to compute the reconstruction

loss LR (with reference to Equation 5). The main structure of the

model is depicted in Figure 2.

Tables 1 and 2 report the details of both vEEGNet-ver3 and

hvEEGNet architectures.

3.6 Outlier identification

As our architectures implement completely self-supervised

models, we have the opportunity to use them as anomaly detectors.

In line with the vast majority of related work (as introduced

in Section 2), in the present study, we define as an outlier any

sample (i.e., EEG segment) that is very poorly reconstructed. This,

in turn, is verified by large values of the DTW similarity score

between the reconstructed EEG sample and the original one. To

identify such samples, we decided to use the k-nearest neighbors

(kNN) algorithm (Cover and Hart, 1967). kNN is an unsupervised

machine learning (ML) algorithm that computes the distance

between every sample and its k-th nearest neighbor (with k properly

chosen). All samples in the dataset are sorted w.r.t. increasing

values of such distance. Those points whose distance (from their

k-th nearest neighbor) exceeds a user-defined threshold are labeled

as outliers.

In the second part of this study, we used hvEEGNet model

to identify the outliers. Before applying kNN, we performed two

pre-processing steps: we computed the DTW similarity score for

the EEG segment (i.e., channel- and repetition-wise). To note, by

definition (see Equation 5), the score is normalized by the number

of time points in the series (even though all time-series have fixed

length in this work). For each training run, we built the following

matrix E:

E(t) =















e11(t) e12(t) · · · e1C(t)

e21(t)
. . . · · ·

...
...

...
. . .

...

eR1(t) · · · · · · eRC(t)















(5)

with t = 1, 2, ...,T, given T the number of training runs, r =

1, 2, ...,R, with R the number of segments (i.e., task repetitions),

and c = 1, 2, ...,C, with C the number of EEG channels. Then,

erc(t) represents the normalized DTW value obtained from the

reconstruction of the r-th segment at the c-th channel after training

the hvEEGNet model in the t-th training run. Finally, the matrices

E(t), with t = 1, 2, ...,T are averaged to obtain E, and then kNN

is applied. Also note that kNN took every sample of the dataset as

defined by a C-dimensional EEG segment (i.e., one row in matrix

E). This allowed us to identify two types of outliers: (1) repetitions

where all (or, the majority of the) channels were affected by some

mild to severe problem, or (2) repetitions where only one (or, a few)

channel was highly anomalous. Both are very common situations

that might occur during neuroscience experiments (Teplan et al.,

2002).

3.7 Implementation

We employed PyTorch to implement and to design and train

our models.

To implement the newly proposed loss function, i.e., including

the DTW computation, we exploited the soft-DTW loss function
CUDA time-efficient implementation (available at: https://

github.com/Maghoumi/pytorch-softdtw-cuda) (Maghoumi, 2020;

Maghoumi et al., 2021). In fact, the original DTW algorithm is
quite time-consuming and employs a minimum function that

is non-differentiable. Then, in Cuturi and Blondel (2017), a
modification of the original algorithm was proposed to specifically
be used in DL models, i.e., to be differentiable, thus suitable as a

loss function. Then, CUDA was employed to make it time-efficient,

too. Also, it is worth noting that DTW works with 1D time-series.

However, our models aimed to reconstruct multi-channel EEG

time-series. Then, during training, we computed the channel-wise

DTW similarity score between the original and the reconstructed

EEG segment. Then, in the loss function, we added the contribution

coming from the sum of all channel-wise DTW scores.

The models were trained using the free cloud service

offered by Google Colab, based on Nvidia Tesla T4 GPU. The

hyperparameters were set as follows: batch size to 30, learning

rate to 0.01, the number of epochs to 80, an exponential learning

rate scheduler with γ set to 0.999. Twenty training runs for each

subject, were performed, in order to better evaluate the stability

of the models training and the error trend along the epochs. The

total number of parameters of the vEEGNet-ver3 is 4, 992 and the

state dictionary (i.e., including all parameter weights) is 40 kB-

weight. The total number of parameters of the hvEEGNet model is

8,224, with 5, 456 of them to define the encoder, and the remaining

2, 768 for the decoder. Note that the higher number of parameters

in the decoder is due to the sampling layers that operate on the
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TABLE 1 Parameters’ values of the vEEGNet-ver3’s and hvEEGNet’s encoder, respectively.

vEEGNet-ver3 hvEEGNet

Parameters name Kernel In. dep. Out. dep. Notes Kernel In. dep. Out. dep. Notes

First block
(temporal filter)

Convolution 2d (1, 128) 1 8 Depth-wise
convolution

(1, 128) 1 8 Depth-wise convolution

Batch norm 2d – – – Default parameters – – – Default parameters

Second block
(spatial filter)

Convolution 2d (1, 22) 8 16 Depth-wise
convolution

(1, 22) 8 16 Depth-wise convolution

Batch Norm 2d – – – Default parameters – – – Default parameters

Activation - - – – ELU – – – ELU

Average pooling (1, 4) – – – – – – No pooling used

Dropout – – – p = 0.5 – – – p = 0.5

Third block
(separable
convolutoin)

Convolution 2d (1, 32) 16 16 Depth-wise
convolution

(1, 32) 16 16 Depth-wise convolution

Convolution 2d (1, 1) 16 16 Pointwise
convolution

(1, 1) 16 16 Pointwise convolution

Batch norm 2d Default parameters Default parameters

Activation – – – ELU – – – ELU

Average pooling (1, 8) – – – (1, 10) – – –

Dropout – – – p = 0.5 – – – p = 0.5

Sample layer Convolution 2d (1,1) 16 32 Pointwise
convolution

(1, 1) 16 32 Pointwise convolution

In. dep., input depth; out. dep., output depth.
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TABLE 2 Parameters’ values of the vEEGNet-ver3’s and hvEEGNet’s decoder, respectively.

vEEGNet-ver3 hvEEGNet

Parameters name Kernel In. dep. Out. dep. Notes Kernel In. dep. Out. Dep. Notes

Third block
(separable
convolutoin)

Dropout – – – p = 0.5 – - - – p = 0.5

Upsample (1, 8) – – – (1, 10) – - –

Activation – – – ELU – – – ELU

Batch Norm 2d Default parameters Default parameters

Transpose
Convolution 2d

(1, 1) 16 16 Pointwise
convolution

(1, 1) 16 16 Pointwise
convolution

Transpose
Convolution 2d

(1, 32) 16 16 Depth-wise
convolution

(1, 32) 16 16 Depth-wise
convolution

Second block
(spatial filter)

Dropout – – – p = 0.5 – – - - p = 0.5

Upsample (1, 4) – - - – – – – No pooling used

Activation – – – ELU – – – ELU

Batch Norm 2d – – – Default parameters – – – Default parameters

Transpose
Convolution 2d

(1, 22) 8 16 Depth-wise
convolution

(1, 22) 8 16 Depth-wise
convolution

First block
(temporal filter)

Batch Norm 2d – – – Default parameters – – – Default parameters

Transpose
Convolution 2d

(1, 128) 1 8 Depth-wise
convolution

(1, 128) 1 8 Depth-wise
convolution

In. dep., input depth; out. dep., output depth.
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FIGURE 3

Two representative EEG segments from the Dataset 2a from S3 (time range limited from 2 to 4 s, frequency range limited to 50Hz). (Left) Time
domain representation. (Right) Frequency domain representation.

three different latent spaces. The state dictionary of the parameter

weights is about 56 kB.

Finally, for the kNN algorithm for outliers detection (see

Section 3.6), we employed the well-known knee method in the

implementation given by the kneed python package (Satopaa et al.,

2011) to find the threshold distance to actually mark some samples

as outliers.

To foster an open science approach to scientific research, we

made our code available on GitHub (at: https://github.com/jesus-

333/Variational-Autoencoder-for-EEG-analysis).

3.8 Performance evaluation

In this work, we evaluated our models in a within-subject

scenario (Zancanaro et al., 2021), only. Cross-subject evaluations,

even though possible, are left for future developments as they

deserve an entire new campaign of experiments and analyses.

The evaluation was carried on based on two different

approaches: first, visual inspection of the reconstructed data

in both the time and frequency domains (with the most

convenient frequency range selected figure by figure); second,

the quantification of the average reconstruction quality using the

normalized DTW similarity score, as defined in Equation 5.

For visual inspection, we compared in a single plot the time

domain representations of the original EEG segment and its

corresponding reconstructed one. Also, we computed the Welch’s

spectrogram (Welch, 1967) (in the implementation provided by

the Python Scipy package, available at: https://docs.scipy.org/

doc/scipy/reference/generated/scipy.signal.welch.html) with the

following parameters: Hann’s window of 500 time points with 250

time points overlap between consecutive segments.

Then, to train and test our models (both vEEGNet-ver3 and

hvEEGNet), we inherited the same split proposed by Blankertz et al.

(2007): for every subject, 50% data were used for the training and

the remaining 50% (i.e., a later experimental session) for the test.

Furthermore, we applied cross-validation using 90% of the training

data for the actual models’ training and 10% for the validation.With

the aim of investigating the training behavior of our models w.r.t.

the particular input dataset, we repeated 20 training runs for each

subject (i.e., each run started from a different random seed, thus

ensuring a different training/validation split in the overall training

set). This allowed us to provide a more robust evaluation of the

training curve along the training epochs. We reported the models’

performance in terms of descriptive statistics (mean and standard

deviation across multiple training runs) of the reconstruction error

along the training epochs (i.e., in other words, the training time).

To note, in some rare cases where the loss function’s gradient could

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2024.1459970
https://github.com/jesus-333/Variational-Autoencoder-for-EEG-analysis
https://github.com/jesus-333/Variational-Autoencoder-for-EEG-analysis
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Cisotto et al. 10.3389/fninf.2024.1459970

not be minimized, we excluded those training runs from our final

evaluation and training visualization.

Finally, the reconstruction ability of our models, after proper

training (i.e., 80 epochs), was evaluated on the test set, too, by

means of the same normalized DTW similarity score.

4 Results and discussion

4.1 Dataset

Dataset 2a of BCI Competition IV (Blankertz et al., 2007)

was downloaded using the MOABB tool (Jayaram and Barachant,

2018) and it is composed by the 22-channel EEG recordings of

nine subjects while they repeatedly performed four different motor

imagery (MI) tasks: imagination of the movement of the right

hand, left hand, feet or tongue. Each repetition consists of about 2 s

fixation cross task, where a white cross appeared on a black screen

and the subject needed to fix it and relax (as much as possible).

Then, a 1.25 s cue allowed the subject to start imagining the

required movement. The cue was displayed as an arrow pointing

either left, right, up, or down, to indicate the corresponding task

to perform, i.e., either left hand, right hand, tongue, or feet MI. MI

was maintained until the fixation cross disappeared from the screen

(for 3 s). A random inter-trial interval of a few seconds was applied

(to avoid subjects habituation and expectation). Then, several

repetitions of each type of MI were required to be performed. The

order to repeat the different MI tasks was randomized to avoid

habituation. The timeline of the experimental paradigm can be

found in the original work by Blankertz et al. (2007).

A total number of 576 trials (or, repetitions) was collected

from each individual subject. The EEG data were recorded with

a sampling frequency of 250Hz and the authors filtered the data

with a 0.5 − 100Hz band-pass filter and a notch filter at 50Hz

(accordingly to the experimental records associated with the public

dataset). We kept these settings as they were, to be in line with

the literature (Lawhern et al., 2016) and to be consistent with our

previous studies (Zancanaro et al., 2021, 2023a,b).

As explained in Section 3.8, we adopted the pre-defined 50/50

training/test split on the dataset and thus, for each subject, we

obtained 260 EEG segments for the training set, 28 for the

validation set, and 288 for the test set. To note, the dataset was

perfectly balanced in terms of stratification of the different subjects

in all splits.

We performed segmentation and, for each MI repetition, we

extracted a 4 s (22-channel) EEG segment. The piece of EEG was

selected in the most active MI part of the repetition, i.e., from 2

to 6 s, in order to isolate the most apparent brain behavior related

to the MI process. Figure 3 shows an example of two raw EEG

signals, represented both in the time domain and in the frequency

domain (with the frequency range limited to 50 Hz for visualization

purposes). To note, to improve visualization in the time domain,

the signals are shown in the limited time range from 2 to 4 s.

However, in the frequency domain, the entire 4 s segment was used

to compute the power spectrum (viaWelchmethod, as described in

Section 3.8). Then, a total of 1, 000 time points are included in each

EEG segment.

4.2 Reconstruction performance

In this section we show the performance of vEEGNet-ver3 and

hvEEGNet, and we discuss to what extent the new loss function

(with the DTW contribution) and the hierarchical architecture

influenced the reconstruction performance.

First, we visually inspect the output from our two models.

Figure 4 shows a representative example of one EEG segment as

reconstructed by vEEGNet-ver3 and hvEEGNet, respectively, in

both the time and the frequency domain (with the frequency range

extended to 80 Hz for visualization purposes).

As it can be observed, hvEEGNet is much better in

reconstructing the EEG segment, and this can be very clearly

appreciated in both domains. However, it is worth mentioning

that vEEGNet-ver3 brought a large improvement w.r.t. its previous

versions [i.e., vEEGNet-1 (Zancanaro et al., 2023a) and vEEGNet-

2 (Zancanaro et al., 2023b)] as well as to other recently proposed

architectures in the literature (Bethge et al., 2022). In fact, from

our previous work (Zancanaro et al., 2023a), we noticed that

the model trained with a reconstruction error based on MSE

was capable of reconstructing slow components, only, while now

with vEEGNet-ver3 the reconstructed signal has a much broader

spectrum, with higher frequency components. Therefore, we can

conclude that our choice to train the models using a loss function

where the reconstruction error is quantified by the DTW made

a significant improvement. Nevertheless, we can also infer that

the hierarchical architecture has a relevant influence in the ability

of the model to reconstruct the signal with high-fidelity, as one

might expect from the literature on VAEs as applied to reduce

blurry effects in the reconstructed images (Vahdat and Kautz,

2021). To confirm these promising results, an extensive study on

the generalization ability of hvEEGNet on other public datasets

(e.g., Zhou et al., 2016) is ongoing, with preliminary encouraging

outcomes (not reported for space constraints).

To more systematically compare the results from the two

architectures, we filled Table 3 with all subject-wise performance of

both models, after training (i.e., at the 80-th epoch) and in the test

phase. Here, the mean values represent the average across channels

and repetitions of the normalized DTW similarity score between

every original EEG segment and its corresponding reconstructed

one. Whereas, the standard deviation values were computed as

the standard deviation of all mean values obtained by averaging

across repetitions, only. The grand-average and the grand-standard

deviation (i.e., the last two rows of the Table 3) are themean and the

standard deviation, respectively, taken across (the mean values of)

all nine subjects. As we can observe, hvEEGNet largely outperforms

vEEGNet-ver3 in all subjects, both during training and during test.

It is worth noting that the data coming from two individuals, i.e.,

S2 and S5, resulted as particularly difficult to be reconstructed for

both architectures. Later, we will deepen the investigation of these

two cases providing a reasonable explanation for this problem.

Computer vision literature has already shown that the

hierarchical architecture made the VAE models able to generate

more detailed images, i.e., more effective in learning and generating

high frequency components (Razavi et al., 2019; Prost et al.,

2022). Here, the use of more than one latent space seemed to

have similarly allowed hvEEGNet to better learn the underlying
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FIGURE 4

Comparison of the reconstruction performance in the time and frequency domain (in the test phase) in a representative subject (S3), task repetition
[no.1, corresponding to LH MI], channel (C3). Time range was limited from 2 to 3 s, frequency range extended to 80Hz. (A) Reconstruction of
vEEGNet-ver3. (B) Reconstruction with hvEEGNet. (C) Frequency domain vEEGNet-ver3. (D) Frequency domain hvEEGNet.

distribution of the data, and consequently greatly improved the

reconstruction performance. This is also confirmed by Figure 5,

where it is possible to see how the contributions of the three

different latent spaces influenced the reconstruction performance

of the model.

As it can be observed, the deepest latent space (z1) can quite

follow the original signal, has a similar dynamics (check also the

power spectrum in Figure 5), but suffers from some time shifts

and amplitude mismatches. Still, this result is better than the

vEEGNet-ver3 output, even though sampling from z1 in hvEEGNet

could have similarities with sampling from z0 in vEEGNet-ver3

(e.g., much faster components can be recovered from z1, but not

from z0). Then, sampling frommore superficial (i.e., detailed) latent

spaces produces an increasingly better reconstruction quality: when

sampling from z2 (including the effect from the deepest latent

space z1), amplitude mismatches are less frequent compared to the

previous case, and the power spectrum is very similar to the original

one. Finally, when sampling from z3, the reconstruction is almost

perfect, with minimal amplitude incongruences and time shifts.

However, we found cases where hvEEGNet dramatically failed

in reconstructing the original EEG data. Also, there were cases in

which the same number of training epochs was not enough for
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TABLE 3 Average (± standard deviation) reconstruction error for vEEGNet-ver3 and hvEEGNet, as expressed in terms of normalized DTW similarity score.

vEEGNet-ver3 hvEEGNet

Subject id. Train Test Train Test

1 18.41± 6.26 22.99± 22.52 1.16± 0.36 2.3± 1.84

2 18.06± 8.88 128.05± 162.16 1.7± 0.81 60.81± 65.84

3 48.34± 14.19 41.35± 34.16 1.87± 0.62 4.96± 5.81

4 18.1± 21.66 18.01± 12.51 3.59± 7.44 1.51± 1.13

5 17.38± 15.16 49.09± 9.92 1.01± 0.45 15.67± 3.95

6 32.92± 13.28 29.01± 12.49 1.76± 0.72 1.87± 0.61

7 13.49± 3.67 12.37± 2.85 1.02± 0.28 0.9± 0.33

8 42.13± 21.19 48.5± 12.36 4.07± 1.61 5.46± 1.65

9 36.45± 21.33 33.87± 8.12 2.01± 1.23 1.91± 0.57

AVG 27.25 42.58 2.02 10.6

STD 13.96 30.79 1.5 9.08

Average and standard deviation were taken across repetitions.

the hvEEGNet model to reconstruct a particular subject. These two

issues are discussed in the following, with additional investigations.

4.3 Training behavior vs. training set:
investigations on hvEEGNet

hvEEGNet should be trained until the DTW is small enough

to guarantee optimal reconstruction. We performed several (about

20) training runs with 80 epochs each, to evaluate the statistical

behavior of the model’s training in different subjects. We also

computed the average normalized DTW similarity score and its

standard deviation across multiple runs and could show, for each

subject, separately, the number of epochs at which that average

is low enough and the standard deviation stabilizes, at the same

time. Figure 6 displays the average (and standard deviation) DTW-

based error for an increasing number of epochs for each subject

during training. We observe that the DTW-based error clearly

decreases as the number of epochs increases, as expected. Then,

for all subjects, 80 epochs are enough to obtain high-fidelity

reconstruction. However, we also clearly noted that the time (no.

epochs) needed to reach that point highly varies from subject to

subject. For example, S3 reaches an optimal model very rapidly,

in about 15 epochs: we can see that the training of an hvEEGNet

model starts with an average DTW error of 38 and a large standard

deviation of 12, then it fastly decreases in its mean and variability,

reaching a stable average of 5 and a very small standard deviation

in 15 epochs. A completely different case is represented by S9: here,

the average beginning error is smaller than the S3’s one, but the

standard deviation is much larger. Also, it takes much more - on

average - to the model to adapt to this subject and reach a stable

and optimal model (at about 60 epochs).

Therefore, we have just empirically proved that there is a

relationship between the training time (i.e., the number of epochs

needed to reach an optimal model) and the distribution of the input

training set that cannot be overlooked (Gyori et al., 2022).

Another relevant case to discuss is the dramatic fail of the

hvEEGNet model in reconstructing some—rare—specific EEG

segments.We found four anomalous training runs where themodel

failed, i.e., two for S4, one for S5, and another for S8. We further

analyzed all segments in these three subjects and discovered that

the model failure was due to problems of saturation that happened

during the acquisition step of the EEG data (those segments had

not been removed from the public available dataset). This, in turn,

led the DTW score to assume extremely high values, i.e., the model

to significantly fail the reconstruction. Figure 7 shows one example

of EEG segment for each subject (S4, S5, and S8) where signal

saturation was identified during the hvEEGNet model training. No

matter where saturation occurs, i.e., soon or later in the segment, its

effect on the model training is to dramatically increase the DTW-

based error. These events, in turn, are responsible for that sudden

increase of the standard deviation, as it can be noticed at epochs 25

and 40 for S4, at epoch 45 for S5, and at epoch 20 for S8. On the

other hand, we also checked that the vast majority of the other S4,

S5, and S8’s segments led to DTW score values in a range similar

to the other subjects. Thus, we decided to exclude those training

runs where the hvEEGNet model suffered from the disruptive effect

of acquisition saturation problems, namely unsuccessful training

runs. For this reason, for S4, S5, and S8, Figure 6 shows the

model training behavior along the epochs both with and without

the unsuccessful training runs (gray and black line, respectively).

Nonetheless, we cannot assess that saturation during acquisition is

the only possible cause of training inaccuracy for the hvEEGNet

model.

In fact, we can provide further insights that there is a

correspondence between the training behavior and the quality

of the input training set, thus highlighting the importance to

preliminary evaluate the quality and the distribution of the input

dataset. Besides, we also remind that the vast majority of the

related work used this benchmark dataset as it is, as the input to

a wide variety of DL models with no questions on the quality and

distribution of the input data (Schirrmeister et al., 2017; Lawhern
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FIGURE 5

Reconstruction as obtained at di�erent points of the hierarchy both in time and frequency domains for one representative subject (S3), task
repetition (no.1, corresponding to left hand MI), and channel (C3), i.e., the same as in Figure 4. The first three rows represent time domain
reconstructions, the last row reports power spectra in the three di�erent points of the hierarchy. (A) Time domain reconstruction at the output of z1.
(B) Time domain reconstruction at the output of z2 (including information from z1). (C) Time domain reconstruction at the output of z3 (including
information from z2 and z1). (D) Output from z1. (E) Output from z2. (F) Output from z3.
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FIGURE 6

Reconstruction error (within-subject, across-EEG channels). Box markers show the average across multiple training runs, bars represent the standard
deviation. Black is used to show results obtained with all training runs, while gray is when unsuccessful training runs (a few for three subjects out of
nine, only) were removed from the analysis. Note that, for the sake of a better visualization, y-axes might have di�erent ranges.

et al., 2016; Sakhavi et al., 2018; Li et al., 2019; Riyad et al., 2021;

Zancanaro et al., 2021). All of them have shown a large variability

in the classification results (i.e., classification of the different MI

tasks), but there is no study—as far as the authors know—reporting

a systematic investigation of the relationship between the models

training and the characteristics of the input data.

In the following, we investigate the performance of the

hvEEGNet model, when sufficiently trained (i.e., for a number of

epochs that varies from subject to subject), and we explore its ability

to identify anomalies as well as reconstructing clean EEG segments.

4.4 hvEEGNet as anomaly detector

Once the hvEEGNet model is properly trained, we can look into

its ability to identify outliers. To be conservative, for all subjects,

we searched for outliers in the test set with the hvEEGNet model

trained for 80 epochs. As described in Section 3.6, we employed

the kNN algorithm on the matrix E given by all values obtained

by averaging the normalized DTW scores across the training runs

for each pair task repetition-channel (subject-wise). Here, E is

a 288 × 22 matrix. Then, we applied kNN over E to find out
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FIGURE 7

Example of saturated trials in the training set leading to very high DTW values. Left panels: time domain representation. Right panels: frequency
domain representation. (A) S4, segment no. 180, ch. C3, time domain. (B) S4, segment no. 180, ch. C3, frequency domain. (C) S5, segment no. 221,
ch. Cz, time domain. (D) S5, segment no. 221, ch. Cz, frequency domain. (E) S8, segment no. 82, ch. CP4, time domain. (F) S8, segment no. 82, ch.
CP4, frequency domain.

any possible outliers. We implemented the algorithm using the

scikit-learn Python package (Pedregosa et al., 2011), with default

settings and the number of nearest neighbors (k) equal to 15. We

empirically found that 15 was a good trade-off between the stability

of the results and the expected proximity among all samples in the

dataset. Also, note that each sample of this matrix is characterized

by 22 dimensions, and the kNN algorithm worked in such high-

dimensional space to find proximity among points as well as

outliers.

Figure 8 shows three representative examples of EEG segments

that were marked as outliers by our extensively trained model.

By visually inspecting them (in both time and frequency domain)
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FIGURE 8

Three representative examples of EEG segments (belonging to the test set) marked as outlier by the hvEEGNet model extensively trained. Left panels:
time domain representation. Right panels: frequency domain representation. (A) S2, segment no. 1, ch. FC3, time domain. (B) S2, segment no. 1, ch.
FC3, frequency domain. (C) S4, segment no. 146, ch. C5, time domain. (D) S4, segment no. 146, ch. C5, frequency domain. (E) S9, segment no. 251,
ch. C1, time domain. (F) S9, segment no. 251, ch. C1, frequency domain.

and based on previous expertise (Cisotto et al., 2015) as well as

well-established literature (Durka et al., 2003; Gao et al., 2010),

we can easily confirm that those segments have a frequency

characterization similar to a muscular artifact or eye blink activity.

However, Figure 6 has shown that the hvEEGNet model can

reach very low average errors (with very small standard deviations)

in a number of epochs typically lower than 80. Moreover, this time

highly depends on the specific subject to analyze. To systematically

investigate the relationship between the training effectiveness and

the outliers identification ability w.r.t. individual subjects, we

plotted Figure 9, where the global average error of the whole

training set, the number of detected outliers, and the average
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FIGURE 9

Relationship between training e�ectiveness and outliers identification ability w.r.t. individual subjects. Each panel reports the number of outliers (red
line), the average error exclusively due to the outliers (dark green line), and the global average error of the whole training set (black line) for each
subject (specified on the left y-axis), at each 5-epoch step during training.

error exclusively due to the outliers are reported for every subject,

separately, at each 5-epoch step during training.

In all panels of Figure 9, i.e., for every subject, we can easily

distinguish two phases in the training behavior: in the first part

of the training, as expected, the average reconstruction error

is progressively reduced (black line). This typically corresponds

to a few outliers (red line) significantly contributing to the

global average error (dark green line). In the second phase, i.e.,

after the model has reached a stable performance (in terms

of average reconstruction error), the number of outliers starts

to vary with the average global error and the outliers average

error remaining quite small. This can be intuitively explained by

the fact that the EEG segments are generally well-reconstructed

and small variations on the error are enough to make the

corresponding EEG segment to be considered an outlier by the

kNN algorithm.

Therefore, we decided to deepen the investigation on the

transition point to check if a subject-independent characterization

of the training behavior can be obtained, and to verify the

opportunity to stop the training at that point. First, we empirically

defined the transition point as the number of epochs where the

global average error showed the maximal slope (an elbow point),

with low standard deviation, and the number of identified outliers

was about to suddenly increase. For example, for S1 the transition

point was identified at 30 epochs, while for S9 at 40 epochs. To note,

the earliest transition point was found in S3 and S5 at 20 epochs,

while the latest transition point was found in S4 at 45 epochs.

Second, we re-evaluated the performance of our hvEEGNet model

on the test set with the training stopped at the transition point.

Table 4 reports the average (and standard deviation) reconstruction

error at the subject-specific transition point. We can observe that

the reconstruction performance are similar to the performance

obtained for an extensively trained model (see Table 3 for the

comparison). Thus, we can conclude that our hvEEGNet model

could reach very high-fidelity reconstruction in a short time, lower

than 30 minutes (approx. time needed to train the model for 50

epochs, as reported in Section 4.5).

Usually, as already discussed in Section 2, when using

autoencoder architectures to identify outliers, the model is trained

on normal data (Ortiz et al., 2020) and anomalies result from
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TABLE 4 Average (± standard deviation) reconstruction error for

hvEEGNet in the test set, with the model training stopped at the

subject-dependent transition point.

Reconstruction error

Subject
id.

Transition point
[epoch no.]

Train Test

1 30 3.0± 0.81 4.68± 3.55

2 45 1.73± 0.82 60.01± 65.89

3 20 2.79± 0.79 3.58± 1.53

4 45 2.18± 1.76 2.19± 1.71

5 20 5.97± 2.5 36.29± 6.44

6 25 2.01± 0.95 3.37± 1.02

7 30 1.86± 0.68 1.42± 0.43

8 30 5.06± 1.92 6.49± 1.82

9 40 4.51± 6.1 3.58± 0.8

the model’s largest errors (Pang et al., 2021). Anyway, in more

ecological acquisition scenarios (Muharemi et al., 2019) and,

frequently, when the human is in-the-loop (Straetmans et al., 2022),

anomaly detectors can be successfully trained on a mixture of clean

and noisy data, too (Al-amri et al., 2021). Anyway, for EEG data,

normality cannot be easily defined and it is quite challenging to

ensure a dataset to be anomaly-free. For example, this public dataset

was supposed to be fully normal, including a group of 9 healthy

subjects, acquired via a research-grade EEG equipment, thus

providing high data quality. Therefore, one might have expected

to be able to build a robust anomaly detector based on this dataset.

However, we showed that other kinds of anomaly are present and

have been found by our hvEEGNet model: e.g., artifactual data,

that affect the training set and the test set at different rates, thus

making challenging the design of a traditional anomaly detector on

these data. To support our claim and to deepen the investigation on

those subjects having an out-of-normality distribution (i.e., S2 and

S5, as already mentioned in Section 4.2), we provide Figure 10. It

shows the average power spectra for the training set and the test set,

separately, for three subjects at channel Cz. By inspecting this figure

(and all other power spectra, not reported for space compactness),

we realized how S2 and S5 are the only two individuals whose

test sets were significantly different from all other data of this

dataset. More specifically, we found out that the test set of S2 and

of S5 (but not their training sets) are highly corrupted by noise

and (muscular) artifacts. In fact, it is well-known (Buzsaki and

Draguhn, 2004) that the typical power spectrum of a clean EEG

acquired from a healthy subject follows a 1/f shape, with other

relevant components (contributing as visible peaks) with center-of-

band at about 10 Hz (the α band) and 20 Hz (the β band, generally

less visible). In its upper panels, Figure 10 shows an example of

clean dataset (from S1).Whereas, the lower panels report the power

spectra of S2 and S5. It was decisive to visualize these spectra to

realize that S2 has a normal (average) power spectrum in his/her

training set, while a highly noisy power spectrum in his/her test

set. Furthermore, it could be easily recognized that the large power

contribution in other frequency ranges (e.g., higher than 50 Hz) is

possibly due to muscular activity that was simultaneously recorded

by the EEG electrodes during the test session (Chen et al., 2019).

A similar situation was found for S5: again, all data coming from

the test set were clearly corrupted by the 50 Hz power supply. We

might only guess that, for some reason, the notch filter at 50 Hz

(see Section 4.1) was not actually applied for this subject during the

second recording session, i.e., the test session.

This finally explained why our hvEEGNet model dramatically

failed at reconstructing S2 and S5 in their test sets, while keeping

very satisfactory performance in the training phase. Furthermore,

this might also motivate why the large majority of the related work

classifying (i.e., with DL models, at least) this public dataset always

found the worst results on S2 and S5 (Zancanaro et al., 2023a).

4.5 Computational complexity

Finally, we provide some reference measurements of the time

spent in training and inference by our hvEEGNet model. We

measured a training time, for each subject, of∼5min for 10 epochs,

on hardware freely available on Google Colab. This implies that a

training run of 80 epochs for a single subject approximately takes 40

min. Note that the DTW is computationally heavier thanMSE, thus

increasing the training times. On the other hand, we proved that a

DTW-based loss function leads to a significantly lower number of

epochs needed for the training. Future improvements of our model

might include the approximation of the DTW function itself with a

neural network, as recently proposed by Lerogeron et al. (2023a,b).

Table 5 shows the inference time, i.e., the time the model used

to encode and reconstruct 1, 10, 100, or 288 (all) EEG segments,

respectively, using four different machines, namely CPU 1, GPU 1,

CPU 2, and GPU 2. The details of the four machines are reported

in the table’s description. Results refer to the average (and standard

deviation) time needed to perform 20 training runs.

The present work still suffers from a number of limitations, e.g.,

the investigation of the balance between the different components

of the training loss and their impact of the training course and

quality. Their investigation and solution have been left to further

studies in favor of a few relevant take-home messages that can

be robustly supported by the results available so far. As one of

many possible future perspectives, hvEEGNet will be tested on

different EEG datasets, including different types of anomalies, to

prove its generalizability and the extent to which it can identify

either artifactual or pathological EEG data.

5 Conclusions

Reconstructing a multi-channel EEG dataset with high-fidelity

is a challenging task, given the complex dynamics of the EEG

signals and the large inter-subject variability. Some fundamental

challenges still need to be addressed, as our analysis of the

SOTA revealed. Previous works have shown: (1) either high-

fidelity reconstruction of single-channel EEG signals, or poor-

quality reconstruction of multi-channel datasets, (2) a lack of focus

on the reconstruction task (in favor of classification or anomaly

detection tasks), even if the architectures employed could offer this

possibility, and (3) no systematic investigation on the impact of the
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FIGURE 10

Average power spectra for training set (panels on the left side) and test set (panels on the right side) for three subjects (S1, S2, and S5) at channel Cz.

input data quality and distribution on the training of DL models

(w.r.t. its effectiveness and the introduction of biases).

In this paper, we present a novel DL model, called

hvEEGNet, designed as a hierarchical variational autoencoder

with encoder/decoder modules inspired by the popular EEGNet

architecture, and a new loss function (based on DTW) to effectively

and fastly train the model. We tested hvEEGNet on the benchmark

Dataset 2a - BCI Competition IV, where a 22-channel EEG data were
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TABLE 5 hvEEGNet inference time on four di�erent machines.

Batch size (no. of EEG segments) CPU 1 (s) GPU 1 (ms) CPU 2 (s) GPU 2 (ms)

1 0.13± 0.05 8± 0.9 0.05± 0.003 3.24± 0.26

10 0.83± 0.13 23.3± 17.2 0.33± 0.03 10.45±1.58

100 5.91± 1.45 63.7± 10.3 5.02± 0.49 62.15± 4.95

288 (all) 10.69± 1.87 182.7± 30.1 14.73± 0.44 179.16± 18.22

CPU 1, Intel(R) Core(TM) i7-10750H CPU 2.60GHz (DELL G15 Laptop, 2020); GPU 1, NVIDIA GeForce RTX 2070 (DELL G15 Laptop, 2020); CPU 2, Intel(R) Xeon(R) CPU 2.20GHz (Google

Colab); GPU 2, NVIDIA Tesla T4 (Google Colab). Note that CPUs times are expressed in seconds, while GPUs times in milliseconds.

collected from 9 subjects repeatedly performingmotor imagery.We

proved that the hierarchy is necessary to recovermulti-channel EEG

information (we compared hvEEGnet with vEEGNet-ver3), as well

as our choice of DTW for the training was critical to significantly

improve the reconstruction performance. This model is able to

achieve high-fidelity reconstruction of multi-channel EEG signals

in very short times (a few tens of epochs), compared to models

at the SOTA and despite the small size of the dataset. Moreover,

results are consistent across all subjects and repetitions. Then,

we investigated the relationship between reconstruction fidelity

and the training duration (in number of epochs) across different

subjects, showing that themodel can be trained even faster for some

of them. Finally, using hvEEGNet as anomaly detector, we precisely

spotted some corrupted data in the benchmark dataset (e.g.,

corruption by saturation during the acquisition phase) and never

highlighted before. This, in turn, might explain that particular trend

in the literature that always shows poor results, regardless the DL

model employed, for those subjects in the dataset most impacted

by the corruption. Therefore, hvEEGNet might find an important

application to reduce the time spent by the domain experts to

label clean/artifactual samples in large EEG datasets. This function

of our model might also be useful in Internet-of-Medical-Things

environments (Munari et al., 2023; Anders and Arnrich, 2022),

where time-series data come from portable devices, typically more

prone to artifacts and corruption.

This work opens new fundamental research questions about (1)

the effectiveness and possible biases during training of DL models

applied to EEG, and (2) the need for a systematic approach to

evaluate the quality and the distribution of the input data to enable

the effective training of such models. In the future, hvEEGNet

and the proposed investigation methods could be applied to other

EEG datasets [even including complex pathological conditions

(Watorek et al., 2024)] and to other multi-channel time-series (e.g.,

ECG) to help in the modeling of complex dynamic systems, not

limited to neuroscience. Our current approach as well as future

perspectives intend to adhere to the best scientific methodological

practices of new AI methods applied to the medical domain, in line

with Cabitza and Campagner (2021).
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