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Editorial on the Research Topic

Neuromodulation using spatiotemporally complex patterns

Standard high-frequency deep brain stimulation (DBS) is an established therapy

for the treatment of Parkinson’s disease (PD) (Lozano et al., 2019). However, there

is still a significant clinical need for further improvement, as DBS may cause side

effects and its therapeutic effects may be limited, in particular, regarding axial symptoms

(Baizabal-Carvallo and Jankovic, 2016; Lozano et al., 2019). The articles in this Research

Topic highlight that stimulation with spatiotemporal patterns may engage the nervous

system in fundamentally different ways than can be achieved with conventional single-

frequency stimulation.

Theta burst stimulation (TBS) was initially developed for transcranial magnetic

stimulation, especially to induce long-lasting modulation of motor networks (Huang et al.,

2005). Later, this stimulus pattern was also applied to DBS. In a randomized, double-

blind, clinical short-term trial, Horn et al. (2020) compared two types of TBS unilaterally

delivered to the STN with standard unilateral DBS. Their results demonstrated safety and

efficacy in this acute (20-30min) setting, but no long-lasting aftereffects. Sáenz-Farret et al.

(2021) studied safety and efficacy of chronically applied bilateral low intra-burst frequency

TBS [as introduced by Horn et al. (2020)] in eight PD and one essential tremor patient. In

seven patients TBS had to be discontinued due to side effects. Gülke et al. performed an

analogous short-term study to test bilateral STN TBS under the same acute conditions and

retrospectively combined their data with the data by Horn et al. (2020). Both unilateral and

bilateral STN TBS reduced motor scores, where bilateral TBS did not lead to significant

additive benefit. Note that the parameters for TBS used in these studies were not all the

same which may explain the differences in results. In particular, Sáenz-Farret et al. (2021)

utilized a lower intra-burst frequency and twice the inter-burst period as that used in

Gülke et al..

Coordinated Reset (CR) stimulation is a patterned multi-site stimulation

technique that was computationally developed to specifically counteract abnormal

neuronal synchrony by demand-controlled delivery of stimuli that cause robust

desynchronization, thereby overcoming limitations of phase-dependent stimulation

(Tass, 2003). Using spike-timing dependent plasticity (STDP) (Markram et al., 1997)
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in a variety of neuronal network models, CR stimulation turned

out to induce cumulative and long-lasting desynchronizing effects,

by inducing an unlearning of abnormal synaptic connectivity

(Tass and Majtanik, 2006; Hauptmann and Tass, 2009). These

computationally predicted, cumulative and weeks-long stimulus

after-effects, very different compared to what was known from

standard DBS, were verified in MPTP Parkinsonian monkeys (Tass

et al., 2012; Wang et al., 2016, 2022; Bore et al., 2022) and human

PD patients (Adamchic et al., 2014). Bosley et al. study the impact

of CR-DBS delivered to the STN specifically on impaired gait in

MPTP Parkinsonian monkeys. Their results show that CR-DBS can

improve Parkinsonian gait. Kromer et al. present a computational

model of the STN-GPe circuit and investigate how connectivity

changes affect evoked responses and, hence, can be used to probe

functional channels in the basal ganglia by means of a suggested

two-site stimulation protocol. These results may lead to calibration

techniques for CR-DBS enabled by implantable pulse generators

that are able to sense.

In their review article, Najera et al. summarize alternative DBS

stimulation approaches and their potential clinical applications. By

the same token, in a review article, Cota et al. discuss standard

and alternative brain stimulation techniques, including non-

periodic stimulation. Different plasticity as well as compensatory

mechanisms appear to play crucial roles in Parkinson’s disease

(Blandini et al., 2000; van Nuenen et al., 2012; Madadi Asl et al.,

2022). Accordingly, in an opinion article, Asp et al. stress the

importance of neuroplasticity as a key target for the development

of novel stimulation techniques.

Adaptive deep brain stimulation (aDBS) has a long history,

dating back to the 1980s (Krauss et al., 2021). One goal of aDBS

is to reduce side effects by reducing stimulation current. In a

computational study, Bahadori-Jahromi et al. compare standard

DBS with aDBS with amplitude modulation in a cortico-BG-

thalamic network. In their model, aDBS outperformed standard

DBS with respect to reduction of beta band oscillations, restoring

fidelity of thalamic throughput and overall stimulation current.

As shown computationally, properly timed multi-channel

and multi-site stimulation can significantly reshape connectivity,

thereby inducing long-lasting activity changes (Khaledi-Nasab

et al., 2022; Kromer and Tass, 2022; Madadi Asl et al., 2023).

Depending on the condition, restoring function may require to up-

or down-regulate specific connections within and/or between brain

areas and corresponding patterns of synchrony. In an N-of-1 case

report study, Omae et al. use amplitude-modulated transcranial

alternating current stimulation (AM-tACS) (Witkowski et al., 2016;

Negahbani et al., 2018) to enhance low beta phase synchrony

between Broca’s area and the right homotopic area with the

intend to improve language function in a patient with chronic

post-stroke aphasia. Favorable electrophysiological outcomes and

clinical benefits indicate that this approach deserves further

clinical testing.

In mouse models of Alzheimer’s disease, entrainment by

gamma (40Hz) rhythmic light flicker enabled to attenuate

pathological processes associated with Alzheimer’s disease

(Iaccarino et al., 2016; Adaikkan et al., 2019). To computationally

study the electrophysiology of gamma flicker entrainment,

Wang et al. propose a neural network model for thalamocortical

oscillations (TCOs) and computationally studied the impact

of light flicker stimulation with different parameters in

dependence on different thalamocortical oscillatory states.

They revealed state-dependent stimulus responses that may inform

future experiments.

EEG plays an important role in monitoring treatment effects

and providing feedback for closed-loop stimulation techniques.

Motivated by deep learning and stack generalization theory, Zhang

et al. propose a novel method for the recognition of epileptic

EEG signals: deep extreme learning machine (DELM) which

consists of several independent, hierarchically aligned extreme

learning machine (ELM) modules. They compared DELM with

ELM alone, by applying it to the publicly available EEG data set

from the Department of Epileptology at Bonn University, Germany

(Andrzejak et al., 2001). In this comparison DELM outperformed

ELM regarding accuracy and computing time.

Modern neuromodulation devices, increasingly capable of

complex stimulation patterns, and modern tools for data analysis

may pave the way for leveraging the potential of novel patterned

and multichannel stimulation approaches for clinical use.
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