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Elderly and individuals with disabilities can greatly benefit from human activity

recognition (HAR) systems, which have recently advanced significantly due to

the integration of the Internet of Things (IoT) and artificial intelligence (AI). The

blending of IoT and AI methodologies into HAR systems has the potential to

enable these populations to lead more autonomous and comfortable lives.

HAR systems are equipped with various sensors, including motion capture

sensors, microcontrollers, and transceivers, which supply data to assorted

AI and machine learning (ML) algorithms for subsequent analyses. Despite

the substantial advantages of this integration, current frameworks encounter

significant challenges related to computational overhead, which arises from the

complexity of AI and ML algorithms. This article introduces a novel ensemble

of gated recurrent networks (GRN) and deep extreme feedforward neural

networks (DEFNN), with hyperparameters optimized through the artificial

water drop optimization (AWDO) algorithm. This framework leverages GRN

for e�ective feature extraction, subsequently utilized by DEFNN for accurately

classifying HAR data. Additionally, AWDO is employed within DEFNN to

adjust hyperparameters, thereby mitigating computational overhead and

enhancing detection e�ciency. Extensive experiments were conducted to

verify the proposed methodology using real-time datasets gathered from IoT

testbeds, which employ NodeMCU units interfaced with Wi-Fi transceivers.

The framework’s e�ciency was assessed using several metrics: accuracy at

99.5%, precision at 98%, recall at 97%, specificity at 98%, and F1-score of

98.2%. These results then were benchmarked against other contemporary deep

learning (DL)-based HAR systems. The experimental outcomes indicate

that our model achieves near-perfect accuracy, surpassing alternative
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learning-based HAR systems. Moreover, our model demonstrates reduced

computational demands compared to preceding algorithms, suggesting that

the proposed framework may o�er superior e�cacy and compatibility for

deployment in HAR systems designed for elderly or individuals with disabilities.

KEYWORDS

human activity recognition, Internet of Things, artificial intelligence, gated recurrent

networks, deep extreme feedforward neural networks, artificial water drop optimization

1 Introduction

In a recent survey, the World Health Organization (WHO)

highlighted that approximately 650 million individuals of active

age globally live with disabilities (Chen et al., 2020). There

exists an urgent need for adequate facilities to accommodate

these individuals effectively. The deployment of human activity

recognition (HAR) systems has seen a rapid increase across

various fields, including healthcare, Smart home technology,

and crime behavior identification (Chen et al., 2020). These

systems are implemented with the dual objectives of enhancing

the quality of life and fostering individuals’ independence

(Yao et al., 2021; Kushwaha et al., 2021). Additionally, HAR

technologies are increasingly utilized to support the elderly

and individuals with disabilities in monitoring their physical

performance post-treatment, aiming to elevate their living

standards significantly.

HAR serves as a critical intermediary between human-centric

activities and detection mechanisms. Presently, the incorporation

of artificial intelligence (AI) algorithms with the Internet of

Things (IoT) is employed to forge effective HAR systems to assist

the elderly or individuals with disabilities (Lester et al., 2005;

Nasir et al., 2021). The marked preference for deep learning

(DL) over ML has propelled HAR systems into a realm of

enhanced performance. Notably, convolutional neural networks

(CNNs) (Nweke et al., 2018; Ramasamy Ramamurthy and Roy,

2018), recurrent neural networks (RNN) (Ranasinghe et al.,

2013, 2016), and long short-term memory (LSTM) networks are

instrumental in the advancement of HAR systems (Alharbi et al.,

2021).

Furthermore, research interest in hybrid DL approaches is

growing, focusing on the development of sophisticated HAR

systems for individuals with disabilities (Saleh and Hamoud,

2021; Moon et al., 2020; Munoz-Organero and Ruiz-Blazquez,

2017). Despite the high accuracy of these models in identification

tasks, their intricate preprocessing and framework design can

introduce significant complexity and latency, particularly critical

in emergency scenarios (Jiang and Yin, 2015; Laput and

Harrison, 2019). Thus, the design methodology for HAR systems

must maintain a judicious balance between performance and

complexity, ensuring the deployment of systems with manageable

computational demands (Ha and Choi, 2016).

In response to these issues, this article introduces a pioneering

ensemble of GRN and deep extreme feedforward neural networks

(DEFNN) amalgamated with artificial water drop optimization

(AWDO) to optimize assistance performance while curbing

complexity. This study aims to develop intelligent HAR systems

for individuals with disabilities, facilitating autonomous data

collection and activity classification by harmonizing IoT and DL

technologies (Shen et al., 2018; Mekruksavanich and Jitpattanakul,

2021). The principal offerings of this study are delineated

as follows:

1. The deployment of gated recurrent neural networks (RNNs)

coupled with dense feedforward networks to realize

HAR systems that are both computationally efficient and

highly effective.

2. Adopting the artificial water drop algorithm to fine-tune the

hyperparameters within the training network, thus optimizing

learning durations and diminishing computational burdens.

This nature-inspired algorithm is posited as a novel alternative

to conventional optimizers in learning frameworks.

3. The establishment of real-time IoT test beds, as delineated

within this article, for robust data acquisition that encapsulates

a spectrum of human activities.

4. The formulation of diverse evaluation metrics, the results of

which are benchmarked against extant DL-based HAR systems.

The subsequent structure of the document is as follows: Section

2 elucidates interrelated articles from various scholars. Section

3 explicates the proposed approach. Section 4 is dedicated to

showcasing the experimental outcomes and comparative analysis.

Finally, Section 5 furnishes conclusions and outlines prospects for

the future research.

2 Related works

Recent research contributions to HAR unveil significant

advances in employing machine learning and deep learning

paradigms to enhance the standard of living for individuals,

especially those with disabilities. This includes the development

of a deep transfer learning-based HAR device designed to

aid individuals with disabilities, emphasizing the role of data

preprocessing in improving recognition accuracy (Fotouhi et al.,

2022; Zhang et al., 2021). Despite its merits in enhancing accuracy,

the model is critiqued for its lengthy training periods, which may

limit its real-time application (Mihoub, 2021; Sangeetha et al.,

2023).

This study presents a sensor-driven HAR method that employs

a deep learning framework incorporating a novel inverted attention

mechanism grounded in transformer architecture, aimed at fine-

tuning the learning process (Achirei et al., 2022). While this

method is notable for its improved learning rates and enhanced

attention module calibration, it is also equally plagued by
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TABLE 1 Limitations of previous work and performance metrics.

References Proposed method Limitation Performance metrics

Huang et al. (2006) Extreme learning machine (ELM) in

single hidden layer feedforward neural

networks (SLFNs)

Time complexity Precision, 89.5%; Recall, 89.5%;

Accuracy, 89.5%

Wang et al. (2015) Parallel online sequential Analysis of the large data Precision, 88%; Recall, 87%; Accuracy,

90%

Xin et al. (2021) Artificial raindrop algorithm Inapplicable process Accuracy, 95%

Choudhury and Soni (2023) CNN–LSTM Raw-sensor data is

challenging

Detection rate, 93.5%

Jiao and Zhang (2023) CNN HAR is low quality and cost Accuracy, 99.4% and 99.0%

Arzani et al. (2021) Probabilistic graphical models (PGMs) Recognition is the diversity Accuracy, 92.4%

Dahal and Moulik (2024) Multilayer stacking Complexity predicts Accuracy, 96.4%

Yin et al. (2024) LSTM General rationales Accuracy, 98.4%

Sharma et al. (2024) CNN Contrastive loss Accuracy, 99.5%

Zhu and Sheng (2012) Dynamic Bayesian Network (DBN) Complex daily activities Detection rate, 99.8%

Helmi et al. (2021) Gradient-based optimizer (GBO)–gray

wolf optimizer (GWO)–support vector

machine (SVM)

Potentially high

computational cost

Accuracy-98%, precision- 98.12%

Wang et al. (2024) Multilayer perceptron (MLP)-like

architecture

Generalization to diverse

activity types

Accuracy, 98.61% on wireless sensor

data mining (WISDM) data and 90.41%

on OPPORTUNITY data

Zhang et al. (2023) Attention-based bidirectional long

short-term memory (BiLSTM)

Higher algorithmic

complexity

Accuracy, 98.37%; F1-score, 98.42%

Jaén-Vargas et al. (2022) CNN–LSTM Fixed frequency, only three

activities

Accuracy, 998.8%; F1-score, 82.80%

FIGURE 1

Proposed framework for intelligent HAR system using IoT and deep learning algorithm.
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prolonged training durations, echoing the concerns raised by

Karayaneva et al. (2023).

LSTM networks are used to assess information sourced from

IoT devices in smart homes, enabling real-timeHAR. The approach

is notable for its ability to predict subsequent activities accurately,

yet it is marred by significant computational complexities, which

could hinder its scalability and broader application (Alotaibi et al.,

2023).

A three-dimensional (3D) ResNet with a multistage fusion

technique is proposed that demonstrate a sophisticated approach to

HAR that achieves high training efficiency and accuracy. However,

its practical application is limited due to its dependence on specific

data types and the challenges it faces in real-time environments

(Pramanik et al., 2023).

An RNN-based HAR system for smart homes employs

various strategies to comprehensively analyze the feature space.

Despite identifying an effective categorization method, the system’s

effectiveness is constrained by its limited capability to process large

datasets, indicating a gap in its adaptability (Uddin and Soylu,

2021) in recognizing human activities through feature analysis

and a deep neural network (DNN) classifier. Their focus on

body behaviors and comprehensive data recognition is promising.

However, the slow processing speed is a significant limitation,

potentially affecting the user experience and the timeliness of the

HAR output (Duhayyim, 2023).

While these above studies push the boundaries in terms of

technology use and application areas, they all have common

drawbacks, such as high computational costs, raising questions

about their feasibility in resource-constrained scenarios (Roy and

Cheung, 2018).

Finally, Roy and Cheung (2018) explored a multimodal

HAR system that employs LSTM and neural structured learning

(NSL) with wearable sensors, notable for its robust modeling

of time-sequential data. By utilizing non-linear generalized

discriminant analysis for feature extraction, HAR system can

simulate various human activities, offering improvements in

accuracy and processing speed; however, further investigation is

required on the scalability of this system and its effectiveness with

large datasets (Priyanga et al., 2021).

2.1 Limitations

• Recognition accuracy and lack of complexity are the

prime limitations of IoT-based HAR technology;

however, it is gaining significant attention due to its

low cost.

• DNN exhibits slow processing speed, which stands as a

significant limitation, potentially affecting the HAR output’s

user experience and timeliness.

• One-dimensional convolutional neural network model (1D-

CNN) and DNN face challenges in retaining relevant

historical information, leading to the well-known vanishing

gradient problem.

• The LSTM network models undermine the network’s ability

to learn from long sequences, affecting the reliability of the

results in real-time systems.

TABLE 2 The hardware specifications required for an e�cient data

collection unit.

S. No. Hardware
used

Specifications Application

01 Node MCU Main system on

chip unit (SOC)

Used for processing

the input data

02 MCP3008 10-bit ADC with 8

input channels

Converting the

analog sensors to

digital values

03 ADXL435 Three-axis

accelerometers

Calculates the

subject’s activity

with consideration

of human activity

04 BMG250 Three-axis

gyroscopes are used

FIGURE 2

Sensors and microcontrollers used for experimentation.

2.2 Research gap

• The prime drawback of these technologies remain to be

integrating sensors in the home environment for continuous

monitoring (see Table 1). For example, an apartment can have

many residents, where monitoring their individual activities

become more challenging.

• Vision-based activity recognition: It is challenging to detect

activity when live recordings are streamed through cameras

for vision-based activity recognition.

• Different classification algorithms are precise, and time-

consuming, and yield better results. It is known that

low computational complexity algorithms perform worse in

terms of accuracy as compared to algorithms with high

computational complexity.

3 Proposed model

In this study, we introduce a novel hybrid deep learning-

based HAR system intended to identify activities for individuals

with disabilities, aiming to enhance their quality of life. The

suggested methodology, as depicted in Figure 1, comprises four

primary stages: (i) IoT unit, (ii) preparation of information,

Frontiers inNeuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2024.1454583
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Deeptha et al. 10.3389/fninf.2024.1454583

TABLE 3 Detailing of the properties associated with the information

secured in the cloud.

S. No. Attributes obtained Description

01 Subject ID Depicts the

information of the

subjects

02 Sensors X1, Y1, and Z1 Sensors obtained

from the

accelerometers

03 Sensors X2, Y2, and Z2 Sensors obtained

from Gyroscopes

04 Activity label, L L has been labeled

from 0 to 4

(iii) attribute extraction using proposed GRN units, and

(iv) activity recognition.

3.1 IoT-based data collection process

We enlisted ∼50 volunteers with body weights varying

from 30 to 65 kg. IoT gadgets powered by batteries collected

data of their body movements. Table 2 delineates the sensors,

microcontrollers, and cloud technologies utilized for the data

collection. The data collection was facilitated by ADXL435 three-

axis accelerometers (Figure 2) and BMG250 three-axis gyroscopes

connected to NodeMCU via MCP3008 (10-bit analog to digital

converters [ADC]). MicroPython programming enabled data

transmission to the cloud. Lithium–ion battery (Li-ion) battery

series, which are replaceable upon power depletion, powered

the boards.

For about 2.5 months, we amassed a notable 945,903

samples capturing various activities such as eating, walking,

and lying, which were vital in assessing ’ physical activity

levels and detecting falls of individuals with disabilities. Each

subject performed four distinct activities for 2min at a 15-

Hz sampling rate, generating 50 data points per second.

Sensor data were stored in the cloud, structured within data

frames, as outlined in Table 3, and then downloaded for

subsequent processing. Figures 3, 4 depict the data distribution

over time.

3.2 Data preprocessing

This phase involved organizing data for training and

testing the module. Datasets, initially in the form of flat

files, were transformed into Python 3.12 programming

by eliminating the zero-row values and filtering out

noise by comparing them with the original sensor

readings. Data distribution was balanced to prevent class

imbalance issues.

We employed a 5-s sliding window with 50% overlap,

segmenting data for deep learning model input. The collected data

was partitioned into training, validation, and evaluation set in a

FIGURE 3

Data samples obtained from hand movements (accelerometers)

utilizing IoT experimentation environments.

FIGURE 4

Data samples gathered for manual movements (accelerometers)

utilizing IoT experimentation platforms.

70:20:10 proportion, facilitating model training, hyperparameter

tuning, and final assessment.

3.3 Feature extraction using gated
recurrent neural networks

This section elucidates the GRN’s role in feature extraction,

beginning with an overview of RNN.

3.3.1 Recurrent neural networks—An overview
In RNN, the hidden layer of every node is connected to the

hidden layers of subsequent nodes in the interconnection. This

architecture allows the nodes within the same hidden layer to be

interconnected, facilitating the network’s ability to perform time

series and extensive data analysis by leveraging its capacity to

remember and encode historical data swiftly. RNNs are adept at

forming direct graph structures from node sequences, enabling the

analysis of dynamic behaviors and sequence synchronization.
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FIGURE 5

(A) LSTM structure; (B) GRN unit.

The internal memory (state) of the RNN plays a crucial role in

processing input sequences, using past information to predict the

future outcomes. However, in practical applications where there

is a vital gap between the past and the future data, RNNs face

challenges in retaining relevant historical information, leading to

the well-known vanishing gradient problem. This issue undermines

the network’s ability to learn from long sequences, affecting the

reliability of the results in real-time systems.

To address this limitation and enhance RNNs’ performance,

LSTM networks were brought into existence.

3.3.2 Long short-term memory—An overview
The LTSM networks are used for sequential processing

problems, which are able to capture optimal temporal dependencies

for a longer term. A typical LSTM network is presented in Figure 5.

The model discussed in this article proposes an innovative

technique in addressing the given problem and considers a hybrid

model that consists of an LSTM and an optimizer known as

“whale.” An LSTM is depicted in Figure 5, which consists mainly of

input gates, output gates, cell inputs, and forget gates. Let us assume

that xt is the input and “ht” is the output layer; thus, the previous

corresponding output is “ht−1.” Let us also assume that the state of

the input cell is “Ct” and the corresponding output state of the cell

is “Gt .” We also consider a previous state of “Gt” is “Gt−1,” jt , Tf ,

and T0 are assumed as the gates state. Gt and ht are computed by

using the following equations:

I.G : jt = θ
(

Gi
l . Ot + Gi

h.et−1 + si
)

(1)

F.G : Tf = θ(G
f

l
.Ot + G

f

h
.et−1 + sf ) (2)

O.G : T0 = θ (G0
l .Ot + G0

h.et−1 + s0) (3)

C.I : T̃C = tanh(GC
l .Ot + GC

h .et−1 + sC) (4)

where G0
l
, G

f

l
, and Gi

l
,GC

l
depicts the weight matrices among input

gates and output layers and Gi
h
, G

f

h
, G0

h
, and GC

h
indicates the

weight conditions originated between hidden and input layers. The

“si, sf , s0, and sC are the bias vectors, and tanh is considered to be

a hyperbolic function”. The cell output state is computed as

TC = kt × T̃C + Tf × Tt−1 (5)

et = T0 × tanh(TC) (6)

The ultimate result score is achieved through the

aforementioned equation.

3.3.3 Gated recurrent neural network
Figure 5A presents the GRN, which is responsible for long-

term temporal feature extraction. The GRN has two main network

components, LSTM and RNN (Priyanga et al., 2021). The GRN unit

gets input data from the cloud system (Priyanga et al., 2021).

GRN is presented by the equation set below.

ht = (1− xt)
⊙

ht−1 + xt
⊙

ht (7)

h̃t = g(Whxt + Uh(rt
⊙

ht−1)+ bh) (8)

zt = σ (Whxt + Uzht−1 + bz) (9)

rt = σ (Whxt + Urht−1 + br) (10)

The overall GRN characteristic equation is represented by

P = GRU(

n
∑

t=1

[xt,ht,zt, and rt
(

W (t) ,B (t) , η
(

tannh
))

] (11)

In the above equation, xt represents the current state’s input-

feature and yt is the corresponding output. ht represents the current

instants’ module output. The update gate is depicted by Zt , whereas

the reset gate is represented by rt ;W(t) and B(t) are weight and bias

weight, respectively, for the current instant.

3.4 Proposed GRN based class

Figure 5 illustrates the architecture of the proposed GRN

networks integrated with the classification mechanism. The

proposed network comprises an input layer, three GRN layers, and

an output layer. The input layer consists of input sensor values from

the IoT test beds. The three GRN layers are utilized to retrieve the
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FIGURE 6

Artificial water drop optimization algorithm—its procedure.

TABLE 4 Distinct description of the primary raindrop operators.

Name Detailed definition

Rain generation

operation

φGR
(

Pop (t)
)

=

(
∑

Ni = 1
Vapori1(t)

N
,
∑

Ni =

1
Vapori2(t)

N
, . . . ,

∑

Ni = 1
Vapori(t)

N
)

Rain operation φDR
(

Raindrop (t)) = Raindropr2 (t) + 8∗
(

Raindropr3
(t) −Raindropr4 (t)

)

, kǫ {1, 2, . . . ,N} ;8ǫ(−1, 1)

Rain collision

operation

φCR (NewRaindrop (t)∪Pop (t))

Rain flowing

operator

φFR
(

SmallRaindrop (t)
)

=

SmallRaindropi (t) + d(t, λ)

Vapor replacement

operator

φRV {Pop
(

t ∪ SmallRaindrop (t)
)

}

time data for the sequence of sensor data. Each GRN layers are

stacked in order to improve its stability and accuracy.

Each GRN layer has 44 hidden units and utilizes Leaky ReLU

(L-ReLU) to enhance the robustness of the GRN algorithms. The

output layers are constructed with the dense feedforward layers

based on ELM. The intricate operational principles of the Extreme

ELM are expounded upon. The depiction of input attribute maps

within the ELM is symbolized by

S = F
(

G(i), P
)

(12)

where F is the GRN attributes gathered with the dimension P.

The output ELM function is denoted by

Y(i) = S (i) β = S(i) ST(
1

C
SST)−1O (13)

The overall training of ELM is given by

T = α(

N
∑

i=1

(Y (i) , B (i) ,W (i)) (14)

where Y(i) is input feature maps; here the temporal matrices

are represented by the symbol β . Usually, a Moore–Penrose

generalized inverse theorem can be used to solve the temporal

matrix problem. ZT is the inverse. The symbols B and W represent

the weights and bias factors, respectively. Finally, a SoftMax

function is used to calculate the occurrence probability for each

category, which is defined by Equation 15.

Y
′

= Softmax(T) (15)

The forecasted outcome “Y” is employed to predict the

DFU mechanism across established datasets, employing the cross-

entropy function for the computation of the loss function is

articulated through a mathematical expression, which can be

paraphrased as follows:

Loss = (
1

K
)

K
∑

i=1

(Y (i) × log Y
′

+ η ||θ ||2 (16)

where K is the dimensional capsule feature length, η is the

regularization co-efficient and |θ | is the constant.

3.5 Hyperparameter optimization

Hyperparameter optimization is the process of determining the

best combination to tune the hyperparameters for obtaining the

best performance in an adequate amount of time. This technique

will also overcome the problem of overfitting, which maintains
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01 t=0;

02 Generate an initial population: Pop (0) =

{Vapor1 (0) , Vapor2 (0) ,.., VaporN (0)} by uniformly and

randomly sampling from the feasible solution

space;

03 Evaluate the objective function values f

(Vapor1 (0)), f (Vapor2 (0)), . . . , f (VaporN (0));

04 FES=N;

05 Find the best position best (0) of the initial

population;

06 RP=gbest (0)

07 While FES≤Max_FES, do

08 Raindrop(t) = (
(

1
N

)
∑N

i=1 Vapori1 (t) ,
(

1
N

)
∑N

i=1 Vapori2 (t) , . . . ..,

(1/N)
∑N

i=1 VaporiD (t));

09 Trail=Raindrop (t)

10 Randomly chosen indexes: r1, r2, r3, and r4ǫ {1, 2, . . . .,D} ;

11 Traili1 = Raindropr2 (t) + 8∗
(

Raindropr3 (t) − Raindropr4 (t)
)

;

12 If f (Trail)<f(Raindrop (t))

13 New_Raindrop (t)= Trail;

14 Else

15 New_Raindrop (t) =Raindrop (t);

16 End if

17 FES=FES+2:

18 For j=1: N, do

19 Randomly chosen indexes: kǫ {, 2, . . . ,N} ;

20 For j = 1 :D,do

21 c = sign
(

aj − 0.5
)

∗ log
(

βj

)

;

22 Small_Raindropij (t) =

New_Raindropj (t) + c∗(NewRaindropj (t) − Vaporkj (t));

23 End for

24 FES=FES+1;

25 End for

26 For i =;N, do

27 Flow_number=0;

28 While Flow_number≤Max_Flow_Number, do

29 λ = round (rand)+1;

30 Choose RPk1 and RPk2 (t) from RP by the tournament

selection procedure;

31 New_small_Raindropi (t) = Small_Raindropi (t) ;+d(t,λ);

32 FES=FES+1;

33 New_small_Raindropi (t) = Small_Raindropi (t) ;+d(t,λ);

34 Small_Raindropi (t) = New_small_Raindropi (t);

35 Flow_number=Flow_number+1;

36 Else

37 Break;

38 End if

39 End while

40 End for

41 Update raindrop pool RP;

42 Update population Pop (t + 1) = select (Pop(t)∪

Small_Raindrop(t));

43 t = t + 1;

44 End while

45 Output: the individual with the smallest

objective function value in the population

Algorithm 1. Input: N, the population size; D, the dimensions of

optimization problem;τ , the flowing step parameter; RP, the raindrop

pool; Max_Flow_Number, maximum number of flowing: Max_FES,

maximum number of function evaluations.

1 Input population: epochs, batch size,

momentum, learning rate, and layers

2 Outputs: Fitness function

3 While n = 1 to Max_iteration

4 Initialize the input populations using

five operators as mentioned in

Algorithm 1.

5 Calculate the output function from the

proposed framework using Equation (14)

6 Calculate the fitness function using

Equation (17):

7 If fitness function = Equation (17):

8 Assign the best global

hyperparameters.

9 Else

10 Go to step 3

11 End

Algorithm 2. Pseudo-code for the hyperparameter optimization using

AWDO.

TABLE 5 Dataset used in validating the proposed method.

Name of
dataset

Number of
samples

Cross-validation
ratios (training:

testing:validation)

Real-time datasets 9.45.903 70:20:10

UCI HAR 8.40.258 80:10:10

mHealth 7.85.245 60:20:20

the stability of the model while training the large datasets. This

research article employs the artificial raindrop algorithm (ARA)

for model tuning to obtain the maximum performance from

the network.

We have used a heuristic algorithm, “artificial raindrop

algorithm (ARA)” which is derived from the concept of natural

rainfall system. Therefore, its steps resemble the natural rain

process with several steps, including generation, falling, collision,

like flowing of raindrops, which is a heuristic algorithm based on

population. The major advantage of using ARA in the proposed

network is to obtain less computational overhead, high-speed

advantage, and less convergence time. Figure 6 represents the ARA

algorithm. In the algorithm, as shown in the figure, the population

consists of vapor, and a raindrop acts as an operator on the

population. In Figure 6, vapor is denoted by a gray circle, which is

a feasible solution. Raindrop is denoted by the blue circle, which

is an operator. The population has five raindrop operators. The

fitness function is represented by the altitude, which measures the

effectiveness of a feasible solution. Table 4 presents the operators

used in this optimization algorithm. Algorithm 1 presents the

pseudo code of the ARA optimization algorithm.

The epochs, batch size, bias weights, momentum, hidden layers,

and learning rate are the hyperparameters employed during the

network’s training process. Initially, these hyperparameters are

chosen arbitrarily according to the AWDO and sent to the GRN

dense training layer.

The fitness function of the suggested AWDO is depicted by

the Equation 17. For every cycle, hyper-parameters are calculated
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FIGURE 7

Accerolometers’ data collected in the ThingSpeak Cloud, which are used for further analytics.

by using Algorithm 1. The looping ends when the fitness function

equates the Equation 17.

Fitness Function =
(

1− Accuracy
)

+ (1− Precision)

+
(

1− Recall
)

+ (1− F1− score) /4 (17)

For every cycle, the numerical hyperparameters are measured

by utilizing the mathematical formulations mentioned in

Algorithm 1. These parameters are then feed to network in which

fitness function are calculated. If the fitness function reaches the

limit, the looping will halt, or else it will persist indefinitely. In

this method, AWDO exhibits a comparatively slower convergence

rate in optimization tasks when contrasted with alternative meta-

heuristic algorithms within the optimization timeframe, which will

decrease and enhance the identification time. Algorithm 2 presents

the complete pseudocode for the proposed hyperparameter

optimization algorithm.

4 Implementation details

Experimental tests are conducted using TensorFlow with

14.76 GB RAM and NVIDIA Tesla T4 to generate and evaluate

the results. IoT and HAR real-time datasets are used to assess

the suggested framework. The description of data collection

is depicted in Table 5. Figure 7 depicts the data collected

from the real-time IoT test beds, which are stored in the

ThingSpeak Cloud.

TABLE 6 Mathematical formulation for the performance metrics’

calculation.

S. No. Performance
metrics

Mathematical
expression

01 Accuracy
P + N

T+F+P+N

02 Recall
P

T+F
×100

03 Specificity N
N+P

04 Precision
N

T+P

05 F1-score 2. Precison×Recall
Precision+Recall

4.1 Model evaluation

Table 6 delineates the experimental parameters employed

in training the suggested network. We have used different

metrics for evaluation, including the F1-score, the area

under the receiver operating characteristics (ROC), accuracy,

recall, and confusion matrix. Table 7 presents the details

of these performance metrics. Early stopping was used

to conquer the overfitting and generalization issues in

the training.

This part calculates different experimentation evaluation

metrics using real-time datasets. To exhibit the advancement of

the suggested framework stands out significantly, the performance
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TABLE 7 Performance metrics of the IPODTL-HAR framework in identifying the di�erent activities of individuals with disabilities.

Label activity
HAR dataset

Performance metrics

Accuracy Precision Recall Specificity F1-score

Walking 0.90 0.882 0.875 0.863 0.880

Sitting 0.892 0.885 0.865 0.854 0.874

Sleeping 0.895 0.873 0.843 0.853 0.862

Falling 0.90 0.893 0.872 0.882 0.872

Average value 0.892 0.873 0.865 0.853 0.879

FIGURE 8

(A, B) Confusion matrix for the suggested framework using real-time

training datasets and testing datasets.

of the various other residing deep learning models is considered

and compared with the model framework. The performance

metrics of existing HAR systems, such as IPODTL-HAR,

LSTM-HAR, GRN-HAR, 1D-CNN-HAR, and ANN, are

calculated and compared with the framework. Figures 8A,

B shows confusion matrix of the proposed algorithm in

detecting the various activities of the elderly or individuals

with disabilities.

Tables 7–12 present the efficacy of diverse learning

methodologies in detecting the human activities. Table 7 illustrates

the efficacy of the suggested model through its demonstration and

seems to achieve utmost efficacy in categorizing human activities.

The IPODTL–HAR model has produced the best performance in

handling real-time data but is still less than the proposed model,

which is evident from Table 8.

Both GRU and LSTM models have produced moderate

performance, whereas other existing algorithms, such as 1D-

CNN and DNN, have produced the least performance, which

is demonstrated in Tables 9–12. Figure 9 shows the comparative

analysis between the average performances of different models.

From Figure 9, it is evident that the incorporation of AWDO

in feedforward classifier network ensemble with GRN networks

has yielded the maximum performance. It is also proving its

superiority in handling real-time datasets, which also proves to be

a better choice for designing the intelligent HAR system that aids

individuals with disabilities.

5 Conclusion and the future
enhancement

In this research, we bring forth a pioneering hybrid deep

learning-based HAR system specifically designed to recognize

human activities for individuals with disabilities, thereby aiming

to enhance their quality of life. Our proposed model innovates

in feature extraction and activity classification within HAR

frameworks. Utilizing GRN, our model establishes a novel

feature extraction algorithm tailored for intricate activity patterns.

Concurrently, we introduce a novel activity classifier, the DEFNN,

refined through the AWDO algorithm.

The strategic amalgamation of DEFNN with AWDO optimizes

the model’s hyperparameters, enabling the deep feedforward

networks to excel in classification accuracy by incorporating

principles of ELMs. This methodological innovation ensures our

HAR system not only achieves high precision in activity recognition

but also maintains computational efficiency.

Our empirical analysis, grounded on real-time data gathered

from IoT testbeds encompassing around 900,000 data points,

underscores the model’s robustness. Performance evaluations

reveal our system outshines contemporary deep learning-based

HAR frameworks, offering heightened detection performance

and reduced computational load. Utilizing metrics for instance

accuracy is 99.5%, precision is 98%, recall is 97%, specificity

achieves 98%, and F1-score is 98.2%.
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TABLE 8 Performance metrics of the proposed model in identifying the di�erent activities of individuals with disabilities.

Label activity
HAR dataset

Performance metrics

Accuracy Precision Recall Specificity F1-score

Walking 0.99 0.984 0.972 0.98 0.982

Sitting 0.983 0.975 0.970 0.971 0.972

Sleeping 0.992 0.983 0.979 0.982 0.988

Falling 0.990 0.982 0.979 0.983 0.981

Average value 0.99 0.982 0.976 0.975 0.982

TABLE 9 Performance metrics of the GRU framework in identifying the di�erent activities of individuals with disabilities.

Label activity
HAR dataset

Performance metrics

Accuracy Precision Recall Specificity F1-score

Walking 0.843 0.821 0.79 0.83 0.802

Sitting 0.836 0.810 0.783 0.79 0.793

Sleeping 0.822 0.810 0.79 0.78 0.802

Falling 0.842 0.832 0.792 0.76 0.812

Average value 0.8375 0.818 0.79 0.80 0.792

TABLE 10 Performance metrics of the LSTM framework in identifying the di�erent activities of individuals with disabilities.

Label activity
HAR dataset

Performance metrics

Accuracy Precision Recall Specificity F1-score

Walking 0.712 0.70 0.673 0.653 0.683

Sitting 0.702 0.693 0.658 0.647 0.673

Sleeping 0.70 0.692 0.634 0.652 0.662

Falling 0.71 0.682 0.674 0.634 0.682

Average value 0.705 0.683 0.662 0.634 0.650

TABLE 11 Performance metrics of the ID–DNNmodel in identifying the di�erent activities of individuals with disabilities.

Label activity Performance metrics

Accuracy Precision Recall Specificity F1-score

Walking 0.684 0.674 0.653 0.632 0.662

Sitting 0.70 0.682 0.642 0.622 0.660

Sleeping 0.693 0.670 0.651 0.630 0.671

Falling 0.683 0.67 0.643 0.629 0.650

Average value 0.692 0.672 0.650 0.628 0.663

Looking forward, we aim to augment the system’s capability

by integrating edge analytics, mainly focusing on video and

image inputs, to refine the HAR system further. This anticipated

enhancement is poised to elevate the utility of our HAR system in

assisting individuals with disabilities, potentially transforming their

interaction with their environment and ensuring a higher quality

of life.

AWDO with GRN to improve the performance of person

recognition by reconstruction can be achieved using other block

normalization methods and preprocessing steps of the dataset for

reconstruction. Add conditions to create additional images that

handle other changes in the image. The primary purpose of the

performance is to achieve practical goals in the future work in the

real-time settings.
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TABLE 12 Performance metrics of the DNN Model in identifying the di�erent activities of individuals with disabilities.

Label activity Performance metrics

Accuracy Precision Recall Specificity F1-score

Walking 0.783 0.77 0.727 0.763 0.75

Sitting 0.773 0.752 0.703 0.723 0.725

Sleeping 0.782 0.743 0.720 0.710 0.732

Falling 0.779 0.772 0.729 0.702 0.732

Average value 0.774 0.752 0.720 0.714 0.720

FIGURE 9

Comparative analysis of the performance of the various other

models in identifying the HAR for individuals with disabilities.
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