
Frontiers in Neuroinformatics 01 frontiersin.org

Systems Neuroscience 
Computing in Python (SyNCoPy): 
a python package for large-scale 
analysis of electrophysiological 
data
Gregor Mönke 1*, Tim Schäfer 1, Mohsen Parto-Dezfouli 1, 
Diljit Singh Kajal 1, Stefan Fürtinger 1, 
Joscha Tapani Schmiedt 2 and Pascal Fries 1,3,4

1 Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, 
Germany, 2 Brain Research Institute, Universität Bremen, Bremen, Germany, 3 Donders Institute for 
Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands, 4 Max Planck 
Institute for Biological Cybernetics, Tübingen, Germany

We introduce an open-source Python package for the analysis of large-scale 
electrophysiological data, named SyNCoPy, which stands for Systems Neuroscience 
Computing in Python. The package includes signal processing analyses across time 
(e.g., time-lock analysis), frequency (e.g., power spectrum), and connectivity (e.g., 
coherence) domains. It enables user-friendly data analysis on both laptop-based 
and high-performance computing systems. SyNCoPy is designed to facilitate 
trial-parallel workflows (parallel processing of trials), making it an ideal tool for 
large-scale analysis of electrophysiological data. Based on parallel processing 
of trials, the software can support very large-scale datasets via innovative out-
of-core computation techniques. It also provides seamless interoperability with 
other standard software packages through a range of file format importers and 
exporters and open file formats. The naming of the user functions closely follows 
the well-established FieldTrip framework, which is an open-source MATLAB toolbox 
for advanced analysis of electrophysiological data.
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Introduction

In neuroscience, methods such as electroencephalography (EEG), magnetoencephalography 
(MEG), electrocorticography (ECoG), and microelectrode recordings are used to measure 
electromagnetic signals originating from brain activity. The high time resolution of these 
techniques enables the analysis of brain activity across a large frequency range, which is essential 
for the understanding of the functional interconnection of brain regions in systems 
neuroscience. Researchers in this field are typically interested in identifying brain activity 
related to certain experimental conditions, e.g., the onset of a stimulus presented to a subject. 
Therefore, experimental tasks are repeated many times, and the resulting trials are later averaged 
to reduce noise and variance. The trial repetitions combined with modern experimental setups 
using an increasing number of recording sites (channels), and high sampling rates can lead to 
very large (> 10 GB) datasets. With these datasets, standard algorithms such as all-to-all 
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connectivity computations between channels can become impossible 
to carry out on laptops or desktop computers with limited memory and 
require workstations or high-performance computing (HPC) systems 
which can be complex to work with. Moreover, recently, there has been 
a significant surge of interest in using the scientific Python tech stack 
as an open-source environment for data analysis.

In this study, we present Systems Neuroscience Computing in 
Python (SyNCoPy), a Python package for the analysis of large-
scale electrophysiology data that combines an easy-to-use, 
FieldTrip-like (Oostenveld et al., 2011) application programming 
interface (API) with inbuilt support for distributed workflows on 
HPC systems.

Related software packages

Scientific software packages for the analysis of neuro-
electromagnetic data include FieldTrip, EEGLAB (Delorme et  al., 
2011; Delorme and Makeig, 2004), NUTMEG (Dalal et al., 2011), and 
Brainstorm (Tadel et  al., 2011) for MATLAB, and MNE Python 
(Gramfort et al., 2013, 2014) and Elephant (Denker et al., 2023) for 
Python. SPM software (Litvak et al., 2011) also includes functionality 
for MEE/EEG analysis.

FieldTrip is a MATLAB toolbox that was first published in 2011 and 
has been actively evolving since then. Its features include preprocessing, 
multivariate time series and connectivity analysis, and source 
localization. It comes with a data browser, interactive data visualizations, 
and extensive documentation. The functional API consists of powerful 
main functions (e.g., ft_preprocessing, ft_freqanalysis, and ft_
connectivityanalysis) and a number of smaller auxiliary functions. Most 
functions can be called with the input data and a config structure as 
input parameters and return an output data structure that includes a 
copy of the config, serving as a history of the operations applied to the 
data and a way to re-apply the analysis to different input data.

EEGLAB has been developed since at least 2004 and is an 
interactive MATLAB toolbox for processing continuous and 
event-related EEG, MEG, and other electrophysiological data. It 
includes both a graphic user interface (GUI) and an API and has 
support for user-contributed code via a plug-in interface. Features 
include interactive visualization, artifact removal, independent 
component analysis (ICA), time–frequency analysis, and 
source modeling.

Brainstorm software package is written in MATLAB and Java but 
can be  run as a standalone application without the need for a 
MATLAB license. It focuses on a sophisticated GUI and provides 
some batch-processing functionalities.

Elephant is a Python library for the analysis of electrophysiological 
data with a focus on generic analysis functions for spike-train data and 
time-series recordings from electrodes.

MNE Python is a Python package that supports data preprocessing, 
source localization, statistical analysis, and estimation of functional 
connectivity between distributed brain regions. It is built on top of the 
scientific Python ecosystem, has many contributors, and is well integrated 
with other applications using the Neuromag FIF file format. MNE has 
extensive plotting capabilities and documentation, including publicly 
available example datasets and tutorials. It supports parallelization on 
multiple cores of a single machine via Python’s joblib module but 
currently no direct parallelization support for HPC systems. The API is a 

combination of fine-grained functions and methods defined directly on 
the data objects. MNE is focused on the analysis of EEG and MEG data 
and local field potentials (LFPs) and supports artifact removal, time/
frequency analysis, and source modeling.

We developed SyNCoPy to complement some of MNE’s and 
Elephant’s features and offer an easy, FieldTrip-like API, support for 
time-discrete spike datasets, and built-in parallelization on 
HPC systems.

The SyNCoPy architecture

The mentioned software solutions are well-established and share 
different features with SyNCoPy. However, none of them is made for 
handling very large datasets and for distributed computing on HPC 
systems. SyNCoPy supports this use case through an architecture that 
supports trial-parallel out-of-core computations. SyNCoPy’s core data 
structures consist of metadata and a multi-dimensional data array, but 
the data array is not loaded into memory by default. Instead, when a 
computation is requested, the data are streamed trialwise from 
Hierarchical Data Format 5 (HDF5) containers stored on the hard disk, 
and the results are written back to disk in a similar fashion. Metadata 
is stored in JavaScript Object Notation (JSON) format. This approach 
allows for memory-efficient processing of very large datasets with 
many trials, as well as for easy trial-based parallelization. Parallelization 
is achieved by employing the well-established Dask (Rocklin, 2015) 
library, having each Dask job handle one trial at a time. On a standard 
computer, trials can be handled sequentially or in parallel using several 
cores, if enough memory is available. On HPC or cloud-based systems, 
the Dask scheduler typically distributes the compute jobs over several 
nodes to achieve parallelization. This means that large numbers of trials 
can be processed in parallel using today’s HPC systems.

SyNCoPy is started on a laptop (left) to process a multi-trial 
dataset. When a high-level SyNCoPy API function is executed in a 
Jupyter Notebook, SyNCoPy’s algorithms based on NumPy and SciPy 
are wrapped in a computational routine that connects to a high-
performance compute cluster (or a local cluster on the laptop) via Dask 
and automatically distributes the trial-by-trial computations to the 
available resources. The jobs run in parallel (center), with each worker 
process handling one job at a time and writing the results for a trial into 
the proper slot of a single HDF5 container on disk. When all workers 
have finished their assigned jobs, the results on disk are complete and 
can be accessed from the SyNCoPy session on the laptop (right). The 
results can then be visualized with SyNCoPy’s plotting API based on 
matplotlib, exported to Neurodata Without Borders (NWB) format, or 
NumPy arrays can be extracted directly for custom post-processing 
using the standard scientific Python tech stack.

The internal architecture of SyNCoPy and the recommended 
setup for running parallel computations on large datasets is depicted 
in Figure  1. Users connect to a remote JupyterHub instance, for 
example, provided by an institutional high-performance computing 
(HPC) cluster. After creating a global Dask client, running SyNCoPy 
analyses will use the available computing resources. The input data 
should reside on fast storage accessible from the cluster, typically a file 
server. When the user starts a parallel computation, SyNCoPy 
automatically detects and uses the Dask cluster and distributes the 
work to the HPC cluster nodes. The nodes write the results to disk, 
and the SyNCoPy data structure returned by the SyNCoPy API 
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function points to the data on disk. Note that the resulting data are 
never transferred directly over the network and are never loaded 
completely into memory. For post-processing, the API offers interfaces 
to matplotlib (Hunter, 2007) for plotting, and NumPy (Harris et al., 
2020) and pyNWB (Rübel et al., 2022) for data export.

SyNCoPy compute functions (running as a ComputationalRoutine) 
can attach to any running Dask client and hence harness the full 
flexibility of the Dask ecosystem, e.g., easy deployment to cloud resources.

SyNCoPy provides specialized data structures and a general 
method for implementing parallel out-of-core computations on it, the 
ComputationalRoutine. The user-exposed functions (high-level 
SyNCoPy API, such as syncopy.connectivityanalysis) internally 
evaluate user-specified configurations and then use the 
ComputationalRoutine mechanism to execute code that typically 
works on the data of a single trial. Depending on the global Python 
environment, the ComputationalRoutine executes the per-trial code 
sequentially or in parallel via Dask (see also esi-acme)1 to interact with 
a parallelization backend, e.g., a Slurm job scheduler running on an 
HPC cluster. SyNCoPy analysis scripts are agnostic about the 
hardware environment, meaning analyses can be developed and run 
locally on single machines such as laptops, and the same code can later 
be deployed on distributed computing resources.

Feature overview

The current features of SyNCoPy can be divided into the broad 
categories of data handling, preprocessing, time-locked analysis, 
frequency-domain analysis, and connectivity-based analysis.

Data structures and data handling

The data handling category includes functions for loading and 
saving data using SyNCoPy’s internal data formats, as well as some 
functions to convert data, i.e., import data and export them into 

1 https://github.com/esi-neuroscience/acme

other file formats. SyNCoPy’s core data structures generally contain 
a multidimensional data array and metadata. On disk, the data are 
represented as an HDF5 file, and when data are loaded into memory, 
they become available as NumPy arrays. SyNCoPy does not directly 
read files generated by electrophysiology recording systems; it 
currently supports importing data from files in NWB, HDF5, or 
NumPy formats. The data structures can be divided into data types 
for continuous data and discrete data. The AnalogData class is 
typically used to store raw electrophysiological data, i.e., multi-
channel, regularly sampled, analog data with one or more trials. If 
no trial information is available in the data source, the user typically 
creates a trial definition to define the trials. For many analysis types, 
latency selections are applied to ensure that the data are time-locked 
to a certain event such as stimulus onset, which results in a 
TimeLockData instance. Algorithms that output real or complex 
spectral data store these results in instances of the SpectralData 
class, and those resulting in channel–channel interaction 
information (connectivity measures) return instances of the 
CrossSpectralData class. The discrete data classes SpikeData and 
EventData are used to store spikes and events, respectively. The 
SpikeData class can store spikes identified in external spike sorting 
software such as SpyKING CIRCUS (Yger et al., 2018), including the 
raw waveform around each spike. The EventData class is used to 
store event times and is typically used in combination with other 
data classes.

All data classes can be initialized from NumPy arrays and data 
type-specific metadata, such as the sampling frequency for 
AnalogData instances. To facilitate memory-safe data handling also 
during initialization, Python generators producing single-trial NumPy 
arrays can be  fed directly into the respective SyNCoPy data class 
constructors. To improve interoperability with other software 
packages, functions to convert between the data structures of MNE 
Python and SyNCoPy are available. We also provide functions to save 
and load data in NWB format.

Preprocessing

SyNCoPy’s preprocessing functions work on AnalogData 
instances and support detrending, normalizing, and filtering signals, 

FIGURE 1

SyNCoPy architecture and a typical setup for parallel processing.
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including low-pass, high-pass, band-pass, and band-stop filters. 
Resampling and downsampling of time-series data are also supported.

Time–frequency analysis

SyNCoPy provides functions for frequency analysis and time–
frequency analysis on input of type AnalogData. The (multi-)tapered 
Fourier transform (MTMFFT) algorithms perform spectral analysis 
on time-series data using either a single taper window or many tapers 
based on the discrete prolate spheroidal sequence (DPSS). The 
effective frequency smoothing width can be directly controlled in 
Hertz with the tapsmofrq parameter as in FieldTrip. The single tapers 
available in SyNCoPy are imported from SciPy’s signal module 
(Virtanen et al., 2020). The resulting spectra can be post-processed 
using the FOOOF method (Fitting Oscillations and One-over-f) 
(Donoghue et  al., 2020). A sliding window short-time Fourier 
transform is also available as well as Welch’s method for the estimation 
of power spectra based on time-averaging over short, modified 
periodograms (Welch, 1967). Both the non-orthogonal continuous 
wavelet transform (Torrence and Compo, 1998) and superlets, which 
can reveal fast transient oscillations with high resolution in both time 
and frequency (Moca et al., 2021), are available in SyNCoPy for time–
frequency analysis.

Connectivity analysis

The connectivity analysis module reveals functional connectivity 
between channels. It provides algorithms for cross-spectral density 
estimation (CSD), coherence, pairwise phase consistency (PPC), 
(Vinck et al., 2010), non-parametric Granger causality (Dhamala et al., 
2008), and cross-correlation. Running connectivity analysis requires 
SpectralData input. If an AnalogData instance is passed, an implicit 
MTFFT analysis is run with default parameters to obtain a 
SpectralData instance.

Statistics

SyNCoPy provides functions to compute the mean, median, 
standard deviation, and variance along arbitrary axes of its data 
classes. The inter-trial coherence can be computed for input of type 
SpectralData. Jackknifing (Richter et al., 2015) is also implemented 
and can be used to compute confidence intervals for coherence or 
Granger causality results. The peristimulus time histogram (PSTH) 
can be computed for SpikeData instances (Palm et al., 1988).

Plotting and utility functions

We provide plotting functions for various SyNCoPy data types, 
including AnalogData, SpectralData, and SpikeData. The SyNCoPy 
plotting functions are intended to give scientists a quick and easy 
overview of their data during the development of the data analysis 
pipeline and for project presentations but not to provide publication-
ready figures. The functions internally use matplotlib, and the resulting 
figures can be post-processed by users if needed.

The synthdata module in SyNCoPy contains utility functions to 
create synthetic datasets, which is useful for training purposes, and to 
test custom algorithms and assess their performance. Apart from 
standard processes such as white noise or Poisson shot noise to 
simulate spike data, we also offer red noise (AR(1) process) and a 
phase-diffusion algorithm (Schulze, 2005) to mimic experimental 
LFP signals.

Basic algebraic operations such as addition and multiplication are 
supported (and parallelized) for all SyNCoPy data classes and NumPy 
arrays, allowing for flexible synthetic data construction and standard 
operations such as baseline corrections.

Example of a step-by-step analysis 
pipeline for a real electrophysiological 
dataset

In the following, we present an example of a step-by-step analysis 
pipeline to demonstrate how to use SyNCoPy for analyzing 
extracellular electrophysiology data. For comparison, the same 
analysis was carried out in MATLAB with FieldTrip. The source code 
for the SyNCoPy version and the FieldTrip version is available online 
at https://github.com/frieslab/syncopy_paper.

Figure 2 depicts the analysis pipeline and SyNCoPy functions 
used to process a sample brain signal. The dataset used in the analyses 
is publicly available and comes from the Allen Institute Visual 
Coding—Neuropixels project2 and has been described previously 
(Siegle et  al., 2021). In summary, LFP and spiking activity were 
simultaneously recorded through high-density Neuropixel 
extracellular electrophysiology probes. These recordings encompass 
various regions of the mouse brain during the processing of visual 
stimuli. The LFP data were recorded using Open Ephys (Siegle et al., 
2017), and spike data were extracted with Kilosort (Pachitariu et al., 
2024). During the experiment, mice were presented with different 
visual stimuli. In this study, the full-field flash stimulus with a 
duration of 250 ms was considered as the stimulus epoch, while the 
250-ms period before stimulus onset was used as the baseline 
(Figure 2B). To evaluate connectivity analyses, two visual areas from 
one sample session were selected (Area A, in the Allen dataset, 
referred to as Area VISl, corresponding to the primary visual area, 
lateral part; Area B, in the Allen dataset, referred to as Area VISrl, 
corresponding to the primary visual area, rostral part). After 
preprocessing data for aligning the data to stimulus onset, the 
aforementioned time-domain and frequency-domain analyses were 
tested on the data. Figure 2C shows the LFP response averaged across 
different trials and channels of Area A. It indicates an evoked 
response with a short latency after visual stimulus presentation. 
Time-locked raster plots and the peristimulus time histogram 
(PSTH) of the spike trains are shown for 150 trials of a sample 
neuron (Figures 2D,E, respectively). Subsequently, we calculated the 
power spectrum of the LFP from Area A, the coherence spectrum 
between the LFPs of Area A and Area B, the pairwise phase 
consistency (PPC) spectrum between the LFPs of Area A and Area 
B, and the non-parametric Granger causality (GC) spectrum between 

2 https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html
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the LFPs of Area A and Area B, as four common frequency-
domain analyses.

These analyses were calculated in both SyNCoPy and FieldTrip for 
demonstration purposes and to illustrate the comparability of the 
outputs. To this end, the data were first zero-padded. Then, based on 
the MTMFFT method and using the Hann window, the power 
spectrum was calculated during the stimulus period and the baseline 
period for each trial and recording channel. MTMFFT conducts 
frequency analysis on time-series trial data either by employing a 
single taper (such as Hann) or by utilizing multiple tapers derived 
from discrete prolate spheroidal sequences (DPSS). For each recording 
channel separately, the power spectra of the stimulus period and the 
baseline period were separately averaged, and the ratio of stimulus 
over baseline power was calculated. Subsequently, the power ratio 
spectra were averaged over channels (Figure 2F).

Similarly, the coherence (Figure  2G), PPC (Figure  2H), and 
Granger causality (Figure 2I) between the selected area pairs were 
measured after zero padding the signals. The results are essentially 

identical between SyNCoPy and FieldTrip for power, coherence, and 
PPC, and they are very similar for GC (Figures 2F–I).

Memory benchmarks

Peak memory consumption—methods

We investigated the peak memory consumption (PMC) of 
SyNCoPy for several algorithms in a typical usage scenario, i.e., during 
parallel processing on an HPC cluster. Specifically, the “small” queue 
of the Raven cluster at the Max Planck Computing and Data Facility 
(MPCDF) of the Max Planck Society was used. To assess the memory 
consumption as a function of the dataset size, we created synthetic 
datasets of increasing size with SyNCoPy’s synthdata module and 
processed them with SyNCoPy. We evaluated (1) preprocessing with 
a Butterworth + Hilbert filter, (2) the MTMFFT, (3) the MTMFFT f.t. 
algorithm (here, f.t. specifies that a fixed number of tapers was used 

FIGURE 2

SyNCoPy analysis for an example of electrophysiological dataset. (A) Example analysis pipelines using SyNCoPy functions to process 
electrophysiological data. The different pipelines result in the plots shown in panels (D-I), as indicated above the arrows feeding into the final plotting 
routine. (B) During the presentation of the full-field flash stimulus lasting for 250  ms, LFP and spiking activity were recorded from different brain areas 
of awake mice. (C) The averaged LFP response over trials and channels of Area A, time-locked to stimulus onset. (D,E) Time-lock raster plot (D) and 
peristimulus time histogram (E) of spiking activity of 150 trials in a sample neuron. (F) Spectra of LFP power ratio between stimulus and baseline period 
in the frequency range of 1–95  Hz averaged over trials and channels of Area A. The black line reflects the FieldTrip result, and the red-shaded line 
corresponds to the SyNCoPy result. (G-I) Same as F but for coherence between LFPs of Area A and Area B (G), pairwise phase consistency between 
LFPs of Area A and Area B (H), Granger causality between the LFPs of Area A and Area B (I). Black lines are FieldTrip results, and red-shaded lines are 
SyNCoPy results. The solid line is feedforward, and the dashed line is feedback direction (I).
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for better comparison, as explained in more detail below), (4) wavelets, 
and (5) coherence. The starting dataset size was 10 trials, 5,000 samples 
per trial, and 50 channels, which requires approximately 10 MB of 
space. We created scripts to run each algorithm with different dataset 
sizes. After each call to a SyNCoPy API function, the Python garbage 
collector was called to ensure meaningful measurements. During each 
run, the PMC was monitored with the memory_profiler package3 for 
Python. The PMC is the highest amount of memory consumption of 
the submitting process and one worker that was measured during a 
run. We repeated the process 20 times for each unique combination of 
dataset size and algorithm to obtain robust results. We report the 
mean and the standard deviation over the 20 runs in Figure 3.

Peak memory consumption—results

The results of the peak memory consumption (PMC) measurements 
are illustrated in Figure 3. First, we investigated the effect of the trial 
count on PMC (Figure 3A). We incrementally increased the number of 
trials from 10 up to 40,000 while keeping the samples per trial and the 
number of channels constant. At each data point, we performed 20 
independent runs with the respective algorithm. The PMC stayed 
largely constant, irrespective of the trial count, for all algorithms. The 
PMC was lowest for the Butterworth filter, followed by the MTMFFT, 
Coherence, and Wavelets. Second, we  demonstrate the effect of 
increasing the number of samples per trial on memory consumption 
(Figure 3B). We gradually increased the number of samples per trial 
from 10 to 40,000 while keeping the trial count and channel count 
constant. For the wavelets, the multi-taper analysis with a fixed number 
of tapers (MTMFFT f.t.), and coherence computation, a linear effect on 
the PMC is visible. For the Butterworth filter, memory consumption is 
essentially constant, as for this method we  employ SciPy’s signal.
sosfiltfilt implementation, which works on finite sections of the input 
data. For the full multi-taper analysis (MTMFFT), the PCM increases 
quadratically with the sample count: The FFT itself has a PMC that is a 
linear function of the number of samples, and the number of tapers 
needed to achieve a consistent frequency smoothing (tapsmofrq 

3 https://github.com/pythonprofilers/memory_profiler

parameter) also scales with the number of samples. Finally, we observe 
the effect of increasing the number of channels on the PMC of the 
algorithms (Figure 3C). For the wavelets and the MTMFFT, a linear 
effect on the PMC is shown. For the Butterworth filter, the PMC again 
is almost constant. Coherence shows quadratic scaling of PMC with the 
number of channels, which directly follows from combinatorics.

Discussion

SyNCoPy is a Python package for the analysis of 
electrophysiological data, with a focus on extracellular 
electrophysiology. It stands out from similar software packages by its 
ability to scale easily from laptops to HPC systems and thus support 
very large datasets, and an API similar to FieldTrip. SyNCoPy’s 
support for big data is based on its architecture, which (1) allows for 
easy usage of typical HPC systems available at many scientific 
institutions, (2) streams data from disk to memory only when needed, 
and (3) isolates computations on the minimal amount of data required 
for independent computations. We demonstrated SyNCoPy’s memory 
efficiency by benchmarking peak memory consumption (PMC) for a 
number of algorithms. The results demonstrate that SyNCoPy’s 
architecture is indeed able to provide largely constant PMC, 
independent of the number of trials. Moreover, the PMC scales as 
expected for the respective algorithms with increases in single-
trial size.

From a feature perspective, SyNCoPy currently focuses on the 
preprocessing of raw data, time–frequency analysis, and connectivity 
measures. We expect that neuroscience users may want to employ 
SyNCoPy in combination with other well-established software 
packages such as MNE Python, Elephant, and others that contain 
complementary functionality. To facilitate this, we provide support for 
converting MNE Python data structures and importing and exporting 
standard file formats such as NWB. In addition, the SyNCoPy file 
format is based on the open standards HDF5 and JSON and can thus 
be read by standard libraries available for a variety of languages.

SyNCoPy does not have a graphical user interface and relies on 
scripting. While this may require a certain initial time investment for 
users completely new to programming, we  believe that the 
standardization and increased reproducibility offered by this approach 
pay off quickly. FieldTrip is largely based on the same approach and 

FIGURE 3

SyNCoPy memory efficiency. Peak memory consumption (PMC) as a function of input size for selected algorithms. The PMC measurements are based 
on synthetic data. The starting dataset size is 10 trials, 5,000 samples, and 50 channels. Each data point shows the PMC mean and standard deviation 
of 20 independent runs. (A) PMC is largely independent of the number of trials. The total size of the test dataset varied over almost three orders of 
magnitude (10 trials to 7,000 trials, ~10  MB to 7GB), while the size of a single trial was kept constant at 1  MB. (B) PMC depends on the number of 
samples per trial and the algorithm. The number of samples (length of the signals) varied from 10 to 40,000. (C) PMC depends on the number of 
channels and the algorithm. Channel numbers varied from 2 to 250.
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has reached a large user community. To help new users, SyNCoPy 
comes with full API documentation and includes a set of articles that 
demonstrate typical analysis workflows. Questions and issues can 
be reported and discussed on the SyNCoPy GitHub repository.4

Limitations

First, it is important to acknowledge that memory efficiency is a 
software requirement that, in some situations, conflicts with 
performance in the sense of processing speed: For a small dataset, it is 
faster to load everything into memory at once than to stream chunks 
of the data on demand. However, for large datasets, this computing 
strategy prevents the processing of datasets larger than (a certain 
fraction of) the machine’s RAM and thus is not feasible.

Second, SyNCoPy is focused on trial-parallel processing, which is 
from our perspective a very common scenario in Neuroscience. 
However, in some situations or for certain algorithms, it may 
be beneficial to support parallelization along different axes. While 
SyNCoPy does have built-in support for parallelization over channels 
for some algorithms, it does not in general support parallelization 
along an arbitrary axis of the dataset.

Third, the extension of SyNCoPy with new algorithms is possible 
by creating a custom computational routine, but this process currently 
requires a good understanding of both parallel computing and some 
SyNCoPy internals and is thus intended for more advanced users.

Fourth, the target audience of SyNCoPy consists of neuroscientists 
who need to process larger datasets. The exact limitation for the size 
of the dataset depends on the specific algorithms and the settings 
used, of course, but what always holds is that a single trial must easily 
fit into the RAM of the machine, i.e., typically the HPC cluster node 
that runs the computations. It is important to understand that certain 
operations used while loading and saving data, or in the algorithms 
themselves, will need to create one, or in some cases even more, copies 
of the trial data in memory. Therefore, working with a dataset that has 
almost the size of the RAM is not feasible in reality. This is not a 
limitation of SyNCoPy but applies to all operations on computers, 
including the standard NumPy and SciPy libraries used internally by 
SyNCoPy to implement or run the algorithms on the data of a single 
trial. The required memory typically is a small multiple of the single-
trial size.

Conclusion

SyNCoPy provides seamless scaling of trial-based workflows for 
the analysis of large electrophysiology datasets in Python. In this 
study, we demonstrated its ability to scale to very large datasets by 
measuring the peak memory consumption over a range of algorithms 
for datasets with varying numbers of trials, samples per trial, and 
channels. Furthermore, we illustrated how to use SyNCoPy on a real-
world dataset, along with a direct comparison of the same analyses 
carried out with the well-established FieldTrip toolbox.

4 https://github.com/esi-neuroscience/syncopy/issues

SyNCoPy was built to integrate into the current ecosystem of 
neuroscience tools. We hope that it will help researchers work with 
large datasets in a reproducible way and reduce the barriers to fully 
utilizing existing HPC resources in neuroscience.
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