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Brain tumor classification is a critical task in medical imaging, as accurate

diagnosis directly influences treatment planning and patient outcomes.

Traditional methods often fall short in achieving the required precision due to the

complex and heterogeneous nature of brain tumors. In this study, we propose

an innovative approach to brain tumor multi-classification by leveraging an

ensemble learning method that combines advanced deep learning models with

an optimal weighting strategy. Our methodology integrates Vision Transformers

(ViT) and E�cientNet-V2 models, both renowned for their powerful feature

extraction capabilities in medical imaging. This model enhances the feature

extraction step by capturing both global and local features, thanks to the

combination of di�erent deep learning models with the ViT model. These

models are then combined using a weighted ensemble approach, where each

model’s prediction is assigned a weight. To optimize these weights, we employ

a genetic algorithm, which iteratively selects the best weight combinations to

maximize classification accuracy. We trained and validated our ensemble model

using a well-curated dataset comprising labeled brain MRI images. The model’s

performance was benchmarked against standalone ViT and E�cientNet-V2

models, as well as other traditional classifiers. The ensemble approach achieved

a notable improvement in classification accuracy, precision, recall, and F1-score

compared to individual models. Specifically, our model attained an accuracy rate

of 95%, significantly outperforming existing methods. This study underscores

the potential of combining advanced deep learning models with a genetic

algorithm-optimized weighting strategy to tackle complex medical classification

tasks. The enhanced diagnostic precision o�ered by our ensemble model

can lead to better-informed clinical decisions, ultimately improving patient

outcomes. Furthermore, our approach can be generalized to other medical

imaging classification problems, paving the way for broader applications of AI in

healthcare. This advancement in brain tumor classification contributes valuable

insights to the field of medical AI, supporting the ongoing e�orts to integrate

advanced computational tools in clinical practice.
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1 Introduction

Brain tumor is the most prevalent condition in children

and also the most challenging sickness to identify. Despite the

advancements in technology and the vast research being conducted

to detect and categorize brain tumors, it remains a difficult

endeavor due to the varied appearance of tumors and their

similarity to normal brain structures. Magnetic resonance imaging

(MRI) is the recommended modality for the detection of brain

tumors. This procedure is remarkably effective despite being quite

time-consuming, and the results are of great quality. The main

goal of this study is to identify and categorize the tumor based

on the provided MRI imaging. The implementation of automated

tumor detection algorithms on MRI images would facilitate the

identification of tumors at the earliest possible stage, a critical factor

in the treatment of brain tumors. Once the tumor is detected, it is

classified according to its severity. This task is intricate and requires

a significant amount of time, as it is performed by radiologists

who analyze a vast collection of MRI images. The implementation

of automated brain tumor identification and classification will

mitigate human error and expedite the detection process. The

initial step in detecting and classifying brain tumors is to establish

a system that assists in segmenting MRI images. This stage include

the initial processing of MRI images, the extraction and reduction

of features, and the classification of the tumor. The next step of

the research is assisting the radiologist with the extensive database.

Automated brain tumor classification is essential for alleviating

the burden on radiologists and offering an effective tool for

tumor categorization.

Brain tumor classification is frequently discussed to assist

radiologists in accurately interpreting brain MRI images for

diagnosis (Zahid et al., 2022). Prior research has demonstrated

the enhancement of different cutting-edge deep learning models

in the categorization of brain tumors. Post-secondary tests and

categorization rely on achieving accuracy and evaluating image

quality, which is a laborious task. Upon the object’s discovery,

it is imperative to promptly identify all potential attributes and

connections among its fundamental elements. This is a broad and

abstract idea. Convolutional neural networks have demonstrated

success in image processing applications within the realm of

deep learning models. The typical architecture comprises many

convolutional layers. These layers capture and isolate different

characteristics found in the input image. However, these qualities

can be more accurately detected by further discerning the

most crucial characteristics of the layers. The pooling layer is

typically used to achieve significant features, but in the current

day, there is a pressing need to identify important features at

each layer.

Classical machine learning methods have demonstrated little

efficacy in addressing real-world problems across several domains,

despite their ability to generate scores for tasks using predefined

knowledge sets. Furthermore, the process of extracting features

from the highly-dimensional inputs of advanced medical devices

becomes insignificant when compared to the constant emergence

of new techniques in the field of deep learning. Hence, in

this study, ensemble learning methods are favored since they

allow for the simultaneous utilization of two or more classifiers

and generally exhibit superior performance compared to deep

learning algorithms. This work introduces a new ensemble

learning technique dubbed BT-ViTEff, specifically developed for

the classification of brain tumors in medical MRI scans. The

approach seeks to address difficult limits, such as intricate and ever-

changing backgrounds, which arise due to the presence of varying

backgrounds in the input medical photos. ViTEff combines the

Convolutional Neural Network EfficientNet v2 (EfficientNetV2)

with the vision transformer V2 model. EfficientNet v2 is a

newly developed convolutional neural network (CNN) structure.

The approach seeks to address the training limitation of

EfficientNet models by showcasing enhanced parameter efficiency

and accelerated learning speed as compared to similar models.

The first steps of preprocessing consist of resizing the receiving

MRI images to dimensions of 224 × 224 pixels. Afterwards,

a range of data augmentation techniques, including rotation,

shearing, shifting, and zooming, are used to enhance the diversity

of the training data. This improves the capacity of our model

to precisely categorize brain tumors into 44 different groups

and avoids overfitting. Afterwards, the MRI images are fed

into the EfficientNet v2 and ViT v2 models to extract complex

characteristics, resulting in a comprehensive representation of

various brain tumor classifications. The fusion model utilizes

Weighted Average Ensembling and Simple Average Ensembling

approaches to combine the feature maps produced by the

EfficientNet v2 and ViT v2 models. Ultimately, we utilize the

genetic algorithm to establish the optimal and superior weight for

each deep learning model employed.

The subsequent sections of the paper are structured in the

following manner. Section 2 provides an overview of previous

studies, while Section 3 provides a detailed explanation of the

materials and procedures used in our research. The experimental

findings are analyzed in Section 4, and Section 5 presents the final

conclusions of this study.

2 Related work

Recent advances in medical image classification have

leveraged various machine learning and deep learning models to

enhance diagnostic accuracy. Studies have shown that ensemble

learning, which combines multiple model predictions, often

outperforms individual models by capturing complementary

strengths. In this section, we aim to describe same previous

work proposed.

2.1 Traditional machine learning
techniques

Various machine learning models, including decision tree, K-

nearest neighbor (K-NN), logistic regression, and multiple support

vector machine (SVM) models, were created using the suggested

features to classify brain tumors.

Wisaeng and Sa-Ngiamvibool (2023) proposed a novel method,

known as fuzzy Otsu thresholding morphological approach,

for segmenting brain tumors. The values derived from each
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histogram in the original MRI image were modified by the

implementation of a color normalizing preprocessing approach,

together with histogram specification. The data indicates that

the accuracy rates for images of gliomas, meningiomas, and

pituitaries are 93.77 percent, 94.32 percent, and 94.37 percent,

respectively. This unequivocally confirms that these occurrences

can be precisely identified.

Jena et al. (2022) introduced a method for classifying and

segmenting brain tumors by utilizing textural data and employing

various machine learning methods. The technique is comprised of

two distinct stages: tumor categorization and tumor segmentation.

During the tumor classification stage, the MRI scans undergo

pre-processing, and texture features are taken from the images

using several techniques for texture extraction. The retrieved

features were merged to create a feature vector matrix with

dimensions of 200 × 471. Afterwards, the feature vector matrix

was employed to train five machine learning algorithms: Support

Vector Machines (SVM), k-Nearest Neighbors (k-NN), binary

decision trees, Random Forest (RF), and ensemble approaches.

The experimental findings indicate that the ensemble approaches

yielded the most favorable outcome, attaining a classification

accuracy of 96.98% and 97.01% for BraTS2017 + TCIA and

BraTS2019 + TCIA, respectively.

Varuna Shree and Kumar (2018) have proposed a method

that entails the classification of a tumor into one of two

categories: “malignant” or “benign.” To extract features, they

employ the discrete wavelet transform, and they apply a Support

Vector Machine (SVM) for classification. Compared to the other

classification algorithms, the Support Vector Machine (SVM)

consistently outperformed them in terms of accuracy.

Furthermore, Dev et al. (2019) developed a novel approach

to differentiate between malignant and non-cancerous tumors.

The term “cancerous” denotes a malignant tumor that has the

potential to spread and cause damage. Conversely, “non-cancerous”

denotes a benign tumor that is incapable of disseminating and

is not detrimental. The segmentation technique was employed to

recover segments of the tumor images. Additionally, the authors

implemented amedian filter to completely eradicate any extraneous

noise that was present in the background. Their model achieves an

accuracy of 92.31% by employing a Classification and Regression

Tree (CART) and a Support Vector Machine (SVM).

Within a comparable framework, Williams and Li (2018)

presented a classification technique that employs wavelet pooling.

The researchers found that wavelet pooling produced better results

in comparison to other pooling methods. They obtained positive

results, but, the amount of time required was significant. The

effectiveness of a pooling strategy cannot be determined due to its

reliance on multiple factors, such as the dataset and the number of

levels used in different models.

The researchers in Zacharaki et al. (2009) proposed a technique

that use a Support Vector Machine (SVM) to classify gliomas

into distinct categories. Their multi-classification accuracy rate

was 85%, while their binary classification accuracy rate was 88%.

Furthermore, the authors in Machhale et al. (2015) presented

a model that employs Support Vector Machines (SVM) to

classify brain cancers. Additionally, they performed a comparison

between two Convolutional Neural Network (CNN) models

to determine the most efficient one in terms of attaining

ideal results.

Babu et al. (2023) employed MRI images to develop a method

for classification and segmenting brain tumors. The technique

comprises four procedures: image denoising, tumor segmentation,

feature extraction, and hybrid classification. After applying the

thresholding technique to remove malignancies from brain MRI

scans, they next utilized a wavelet-based approach to extract

unique characteristics from the images. A Convolutional Neural

Network (CNN) was utilized to carry out the conclusive hybrid

categorization. The trial resulted in a segmentation accuracy of

95.23 percent for the technique, whereas the suggested optimized

CNN attained a classification accuracy of 99 percent.

An advanced version of the Support Vector Machine (SVM)

was proposed by Ansari (2023) as a novel approach. In order

to identify and categorize brain cancers using MRI data, they

suggested the implementation of the following four stages:

preprocessing, image segmentation, feature extraction, and image

categorization. The tumors were divided using a fuzzy clustering

technique, and the fundamental characteristics were retrieved using

GLCM. Improvements to the Support Vector Machine (SVM)

were eventually integrated into the categorizing procedure. The

technique used resulted in an accuracy rate of 88%.

2.2 Deep learning techniques

In order to gain a comprehensive understanding of deep

learning algorithms in the specific context of brain tumor detection

and diagnosis, it is crucial to consider the four fundamental

deep learning tasks: single label image classification (İncir and

Bozkurt, 2024b), multi-label/multi-class image classification, object

detection in images, and dense prediction at the pixel level.

The referenced study focuses on single label image classification.

However, our objective is to achieve multi-label/multi-class

image classification. This means that an input MRI scan can

be assigned many tumor kinds or no tumor at all. An

expansion of this work would involve identifying things inside

an image, specifically cancers. Ultimately, dense prediction at the

pixel level would entail accurately segmenting a tumor using

MRI data.

Deep learning is a newly emerged field in machine learning

that involves a classifier which receives an input x and converts

it into a separate domain with the same dimensions. When it

comes to annotated data classification tasks, the input domain

refers to the collection of photos, while the output domain refers

to the collection of class labels. This classifier can be seen as

a combination of numerous elementary feature extraction and

mapping modifications. Deep learning approaches have been

minimally utilized in the domain of brain tumor detection using

patient MRI data, but considerable progress has been made. This

work employs a fusion between tow deep learning models, to

classify input data into one of 44 distinct classes. Although this

method achieves generally good classification outcomes, more

sophisticated deep learning systems have the potential to effectively

categorize complex and noisy data with high dimensionality into a
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reduced dimensional feature space, which could potentially lead to

improved classification results.

In this context, Abd El Kader et al. (2021) introduced

a convolutional neural network (CNN) method for classifying

MR brain images. Their approach involved utilizing differential

deep CNNs. In conventional Convolutional Neural Networks

(CNNs), standard feature maps are generated through either

random initialization or transfer learning. Nevertheless, this

study generated distinct feature maps by utilizing user-defined

hyperactive values and a differential operator proposed by Lei et al.

(2018). The generated differential convolution maps are utilized to

examine the directional patterns of voxels and their surrounding

areas by computing the disparity in pixel activations. The study

presented multiple data augmentation approaches to enhance

the classification model’s generalization performance. The process

of data augmentation resulted in an expansion of the dataset,

increasing its size to 25,000. The results indicate that the inclusion

of differential feature maps enhanced themodel’s performance. The

results additionally demonstrate that the suggested methodology

may accurately classify a significant number of MR images. The

approach attained a classification accuracy of 99.25%, sensitivity of

95.89%, and specificity of 93.75%.

A recent study conducted by Tanvir Rouf Shawon et al.

(2023) introduced a cost-sensitive deep neural network (CS-

DNN) designed to detect brain cancers from MRI (Magnetic

Resonance Imaging) images. The suggested model employed a

DenseNet architecture, a type of convolutional neural network,

to automatically extract intricate and profound characteristics.

Additionally, cost-sensitive learning was incorporated into the

DenseNet to address the issue of class imbalance in the radiology

dataset. The researchers employed both binary andmulti-class cost-

sensitive learning techniques to identify brain tumors from the

MRI imaging dataset. CS-DNN outperformed seven alternative

models in terms of sensitivity, specificity, precision, and accuracy

for Tumor 3MRI images, making it the top performer.

Ge et al. (2020) addressed the issue of limited datasets

by utilizing augmented brain MR images. A paired generative

adversarial network (GAN) was employed to produce synthetic

MR images for four different MRI techniques. The work involved

extracting 2D MRI slices from three different perspectives of 3D

volume images: coronal, axial, and sagittal. The 2D MRI slices

that were obtained were separated into subgroups for training,

validation, and testing purposes. Moreover, a paired Generative

Adversarial Network (GAN) model was employed to produce

artificial Magnetic Resonance Imaging (MRI) for the subset utilized

in training. The pairwise GAN employed a dual input system with

two separate streams. The purpose of this system is to address

two specific situations: (a) generating artificial images of non-

existent patients in order to expand the training dataset, and (b)

generating artificial images for patients who are lacking certain

MRI modalities. The study employed the U-Net architecture.

The ultimate result of the architecture is the classification of

glioma for each individual slice in a magnetic resonance (MR)

image. Therefore, for every patient, the subtype of each MRI slice

was taken into account, and the ultimate diagnostic or subtype

categorization for the patient will be determined by a majority

consensus. The experiments evaluated many case studies, and

the case study that yielded the most favorable outcome attained

an average classification accuracy, sensitivity, and specificity of

88.82%, 81.81%, and 92.17%, respectively.

2.3 Ensemble learning approach

Ensemble learning is employed to enhance the classification

performance. Ensemble learning approaches leverage the power

of several learning algorithms to achieve superior predicted

performance compared to individual algorithms. Currently, there is

a scarcity of research studies on brain tumor classification utilizing

ensemble learning. Bansal and Jindal (2022) employed decision

tree, random forest, and k-NN algorithms to classify brain tumors

in MRI images. The classification of four types of cancers was

performed using intensity, texture, and wavelet data. The highest

level of accuracy achieved was 83.33% by utilizing the random

forest algorithm.

Sekhar et al. (2021) introduced a tumor classification model

that utilizes a modified GoogleNet pre-trained CNN model

together with two machine learning algorithms: Support Vector

Machine (SVM) and k-Nearest Neighbors (k-NN). The project

involved modifying and fine-tuning the last three fully connected

layers of the GoogleNet network using brain tumor photos. The

1,024 feature vector obtained from the final average pooling layer

was recovered after fine-tuning and utilized for training SVM

and k-NN classifiers. The method was assessed using the CE-MRI

dataset, which consists of 3,064 T1w post GBCA brain MR images

obtained from 233 patients. The experimental findings indicate that

GoogleNet achieved a precision of 96.02% and a recall of 97.00%

for glioblastoma while employing the softmax activation function.

The utilization of the SVM classifier resulted in a performance

enhancement of more than 2.5% for the model.

Jena et al. (2022) proposed a technique to classify and

segment brain tumors by leveraging textural data and employing

diverse machine learning algorithms. The technique comprises two

separate stages: tumor categorization and tumor segmentation.

During the tumor classification step, theMRI scans are subjected to

pre-processing, and texture features are gathered from the images

using several texture extraction methods. The study examined

many features that are based on texture. Data was gathered from

a combined set of 100 images of tumors and 100 images without

tumors to extract features. The extracted characteristics were

combined to form a feature vector matrix measuring 200 × 471.

Subsequently, the feature vector matrix was employed to train five

machine learning algorithms: Support Vector Machines (SVM), k-

Nearest Neighbors (k-NN), binary decision trees, Random Forest

(RF), and ensemble techniques. The ensemble methods consist

of seven distinct algorithms: Adaboost, Gentleboost, Logitboost,

LPboost, Robustboost, RUSboost, and Totalboost. After the

training was finished, the study used the photos that had tumors

to construct a hybrid technique for segmenting tumors. The

hybrid technique involves combining the k-NN and fuzzy C-means

clustering techniques. The hybrid approach was used to divide the

tumor regions in the images. The dataset used for model evaluation

consists of the BraTS2017 and BraTS2019 datasets, along with the
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Cancer Imaging Archive (TCIA). The experimental results indicate

that the ensemble techniques achieved the maximum outcome.

Kang et al. (2021) introduced a technique for categorizing

brain tumors by employing a combination of deep characteristics.

The methodology comprises three distinct stages. During the

initial phase, input photos undergo pre-processing, and additional

images are created by data augmentation techniques. The

preprocessed photos are subsequently utilized as input for 13 pre-

trained convolutional neural network (CNN) models. Pre-trained

convolutional neural network (CNN) models are employed to

extract features from the images. Specifically, the characteristics

are derived from the fully linked layers of the pre-trained models.

The collected features are utilized for training nine machine

learning classifiers, specifically: Gaussian Nave Bayes, Extreme

Learning Machine (ELM), Adaptive Boosting (AdaBoost), k-NN,

RF, SVM, and neural networks with a fully connected layer.

Furthermore, the three most successful pre-trained models are

identified, and the retrieved features from these models are

merged into a single sequence. Ultimately, the amalgamated

characteristics are employed to train the nine machine learning

classifiers. The method was assessed using three brain MRI

datasets obtained from Kaggle websites. The findings indicated

that DenseNet-169, Inception-v3, and ResNeXt-50 offered themost

favorable characteristics.

Deepak and Ameer (2021) introduced an automated technique

for classifying brain tumors using Support Vector Machines (SVM)

and Convolutional Neural Networks (CNN). A Convolutional

Neural Network (CNN) was employed in the research to extract

picture attributes from Magnetic Resonance Imaging (MRI) scans.

The Convolutional Neural Network (CNN) comprises of five

convolutional layers and two fully linked layers. The feature

maps obtained from the fifth convolution layer and the first fully

connected layer are isolated and utilized independently to train

a Support Vector Machine (SVM) for the purpose of multiclass

classification. The fifth convolution layer has 3,136 feature vectors,

while the first fully linked layer has 10 feature vectors. When

trained on the 10 feature vectors retrieved from the fully connected

layer, the suggested approach attained an accuracy of 95.82%. The

accuracy decreased to 93.83%when themodel was trained using the

3,136-feature set retrieved from the fifth convolution layer. These

findings indicate that Support Vector Machine (SVM) models

trained on smaller feature sets have the capacity to yield superior

outcomes compared to models trained on larger feature sets.

Multiple authors (Pereira et al., 2016) have investigated the

use of tiny kernels to construct deeper networks that mitigate

overfitting. The trials have shown that small kernels produce

effective brain segmentation results. Furthermore, specific research

has established effective and adaptable systems for the detection of

brain cancers. Sharif et al. (2021) devised a versatile framework that

can do multiple functions, including enhancing tumor visibility,

extracting and selecting characteristics, localizing tumors, and

segmenting tumors. The study includedmany advanced techniques

such as the homomorphic wavelet filter, inception-v3 model,

non-dominated sorted genetic algorithm (NGSA), YOLOv2, and

ML algorithms to achieve specific objectives. These objectives

included enhancing tumor visibility, extracting relevant features,

selecting important features, localizing tumors, and segmenting

tumors. The study’s studies illustrate that the adaptable framework

produced positive results. This method will be incredibly beneficial

for medical practitioners as it allows them to effectively handle

several responsibilities.

Binary classification is a significant obstacle for current

classification algorithms. The majority of the current

methodologies were devised to classify brain tumors into two

distinct groups: benign and malignant. The study conducted

by Sajjad et al. (2019) is among the limited number of research

works that have devised a technique for classifying multiple classes

simultaneously. Advanced multi-grade classification techniques

have the potential to enhance the decision-making and diagnosing

abilities of radiologists and other medical practitioners.

3 Proposed model

Convolutional neural networks (CNNs) have consistently

achieved the highest level of performance in computer vision

tasks, specifically in the areas of brain tumor segmentation and

classification, in recent years. Nevertheless, Convolutional Neural

Networks (CNNs) are limited in their ability to effectively collect

extensive information or interconnections because of their tiny

kernel size (Hatamizadeh et al., 2021). Long-range dependencies

refer to situations when the desired outcome is influenced by

visual sequences that were displayed at significantly earlier or

later dates. Medical images often display a series of visual

representations due to the resemblance of human organs (Dai

et al., 2021). The elimination of these sequences will have a

substantial impact on the performance of a CNN model. The

reason for this is that the interconnections among medical picture

sequences, such as modality, slice, and patch, provide substantial

information (Dai et al., 2021). Sequences that have long-range

dependencies can be effectively managed using techniques that

are capable of processing sequence relations. The self-attention

mechanism employed in ViTs (Dosovitskiy et al., 2020) possesses

the ability to effectively capture long-range dependencies, a

crucial factor in achieving accurate brain tumor segmentation.

ViT-based models are able to learn local and global feature

representations by modeling pairwise interactions between token

embeddings, as described in Raghu et al. (2021)’s work on

vision. ViT has exhibited encouraging performance on diverse

benchmark datasets (Hatamizadeh et al., 2021; Wenxuan et al.,

2021).

Although CNNs have achieved notable success, they do

have certain limitations. Initially, Convolutional Neural

Networks necessitate extensive datasets for the purpose of

training. Furthermore, Convolutional Neural Networks (CNNs)

generally lack resilience when it comes to affine rotations and

transformations, as stated by Rodriguez et al. (2019) in their study

on rotation. Moreover, the routing strategy utilized by CNN’s

pooling layers differs from the routing mechanism utilized by

the human visual system. The CNN pooling layer distributes all

the information acquired from the image to every neuron in the

following layer, disregarding crucial details or little objects in the

image (Aziz et al., 2021).
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FIGURE 1

Hybrid deep learning approach for brain tumor classification.

This paper presents a novel ensemble learning method

called BT-ViTEff, presented in Figure 1, which is designed

for classifying brain tumors in medical MRI images. The

approach aims to overcome challenging limitations such as

complex and dynamic backgrounds that are caused by the

presence of changing backgrounds in the input medical images.

ViTEff integrates the advanced Convolutional Neural Network

EfficientNet v2 (EfficientNetV2M) with the second version of

the vision transformer. EfficientNet v2 is a novel convolutional

neural network (CNN) architecture. The proposal aims to

overcome the training constraint of EfficientNet models by

demonstrating improved parameter efficiency and faster learning

speed in comparison to comparable models. The system utilizes

an enhanced progressive learning approach that dynamically

modifies regularization approaches, including data augmentation

and dropout algorithms, based on the input image size. In

order to utilize EfficientNet v2 and ViT v2 models for brain

tumor recognition, the classification layers (final layers) that were

initially designed for distinct classification tasks are eliminated.

As shown in Figure 1, the initial steps of preprocessing involve

scaling the incoming RMI photos to dimensions of 224 × 224

pixels. Subsequently, a variety of data augmentation methods,

such as rotation, shearing, shifting, and zooming, are employed

to increase the diversity of the learning data. This enhances the

capability of our model to accurately classify brain tumors into 44

distinct categories and prevents overfitting. Subsequently, the MRI

images are inputted into the EfficientNet v2 and ViT v2 models

to extract intricate features, thereby generating a comprehensive

representation of different brain tumor classifications. The fusion

model applies techniques such as Weighted Average Ensembling

and Simple Average Ensembling after concatenating the feature

maps generated by the EfficientNet v2 and ViT v2 models. This

ensemble learning model will compute a probability classification

for each image. Weighted ensembling is a form of model averaging

ensembling, which falls under the domain of ensemble methods

that aim to enhance prediction accuracy by aggregating the

predictions of numerous models. Weighted ensembling involves

assigning a specific weight or factor to each model’s prediction,

which represents the model’s relative importance or performance.

The weights allocated to the prediction of each model can

be calculated using several strategies, including cross-validation,

grid search, or meta-learning. Ultimately, we employ the genetic

algorithm to determine the most ideal and superior weight for each

deep learning model utilized.

3.1 E�cientNet model

EfficientNet utilizes a compound coefficient to scale the size of a

CNN (İncir and Bozkurt, 2024c). The EfficientNet scaling approach

employs a standardized set of scaling coefficients to evenly

change these values, hence enhancing the standard procedure. By

increasing the network depth by a factor of α, β , and γ , we are

able to utilize a total of 2N times the quantity of processors that

are currently accessible. By conducting a rapid grid search on the

initial, simplified model, we obtained these fixed coefficients. If the

input image is larger, it is logical to conclude that a network requires

extra layers and channels to expand the receptive field and capture

more detailed patterns. The EfficientNet-B0 network was built by

incorporating MobileNetV2’s inverted bottleneck residual blocks

and incorporating additional squeeze-and-excitation blocks.

3.2 Vision transformer model

The Transformer architecture, presented in Vaswani et al.

(2017), is currently at the forefront of new research in natural

language processing (NLP). Dosovitskiy et al. (2021) was inspired

by the success of self-attention-based deep neural networks in

natural language processing to design the Vision Transformer
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(ViT) architecture for picture categorization in NLP. Training

these models often requires decomposing the input image into

its individual components and subsequently considering each

embedded component as if it were a word in a natural language

processing (NLP) system. These models utilize self-observation

modules to establish the connection between the concealed

patches. Due to their exceptional efficacy, numerous scientists

have investigated ViT models for diverse visual tasks (Yu et al.,

2021). Carion et al. (2020) introduced a novel architecture for

object recognition systems. This architecture utilizes an aset-based

global loss and a transformer-encoder-decoder technique. They

obtained equivalent results to the popular R-CNN approach on the

challenging COCO dataset.

Steiner et al. (2021) initially presented his established

architecture, which closely resembled the original ViT design

by Dovosviky, but with a linear classifier instead of the MLP

header. To summarize, the initial stage of training a ViT model

involves dividing the input image into smaller segments. The

transformer encoder takes a sequence of 1D patch embeddings as

input. It employs self-attention mechanisms to compute a weighted

sum of the outputs from each hidden layer, considering their

interdependencies. This is accomplished by feeding the sequence

into an encoder. The transformers utilize this mechanism to decode

the global dependencies of the input photos. Refer to Figure 2 for a

simple vision 348 transformer architecture.

3.3 Ensemble learning for brain tumor
classification

At this point, we were concentrating on the last step to classify

the input image. Ensemble learning models strive to combine the

outcomes of several algorithms to improve overall performance and

facilitate interpretation. This section highlights the hybridization

strategy commonly employed to enhance predictive accuracy

and resilience. Numerous ensemble learning techniques are

documented in the literature, and we will use two approach:

Ensemble averaging is a technique used to enhance the accuracy

and stability of a predictive model by merging the predictions of

numerous base models. In this methodology, every foundational

model is trained using the identical dataset, but with distinct

hyperparameters, algorithms, or subsets of features. This is done

to capture various facets of the data and mitigate the likelihood

of overfitting. After training the base models, their forecasts are

consolidated into a single prediction by an averaging strategy,

such as simple averaging or weighted averaging. The arithmetic

mean is determined by summing the forecasts of each base model

and thereafter dividing by the total number of models. Simple

average ensembling is a direct and efficient method for merging the

predictions of many models, particularly when the separate models

exhibit comparable performance and reliability.

Simple average ensembling is a versatile technique that may

be used in various machine learning applications and algorithms,

including as regression, classification, and clustering, among

others. In addition, it is possible to integrate this strategy with

other ensemble methods, such as weighted averaging or bagging, in

order to enhance the model’s performance and accuracy. Weighted

ensembling involves assigning a specific weight or factor to each

model’s prediction, which indicates the model’s relative importance

or performance. The weights allocated to the prediction of each

model can be established by many strategies, including cross-

validation, grid search, or meta-learning.

Weighted ensembling is a versatile and potent strategy

that can merge the advantages of several models and alleviate

their limitations, resulting in enhanced prediction accuracy and

resilience. In our model, we use an optimal algorithm to select the

optimal weight for each model.

3.4 Optimal weight selection

In the domain of medical image classification, achieving

high accuracy is paramount and ensemble learning, which

combines the predictions from multiple models, often yields

superior performance compared to individual models; however,

determining the optimal weights for each model in the ensemble

is a challenging task and to address this, we propose the use of a

Genetic Algorithm (GA) for weight selection, aiming to maximize

the accuracy of our brain tumor classification system; a Genetic

Algorithm is an optimization technique inspired by the principles

of natural selection and genetics, operating through a process

of selection, crossover, and mutation to evolve solutions toward

optimality, with the main components including a population of

potential solutions (chromosomes) to the optimization problem,

each chromosome representing a pair of weights alpha and beta

for the deep learning models in the ensemble, and a fitness

function evaluating howwell each chromosome solves the problem,

which in our case is the accuracy of the ensemble model; the

selection process chooses the best chromosomes for reproduction

based on their fitness scores, with crossover combining pairs

of selected chromosomes to produce offspring, and mutation

introducing random variations to maintain genetic diversity, all

iterating through generations until convergence criteria are met,

such as a maximum number of generations or a satisfactory

fitness score; the implementation of the GA involves generating

an initial population with random values for alpha and beta,

evaluating the fitness function for each chromosome based on

the accuracy of the ensemble model, selecting the top-performing

chromosomes, performing crossover and mutation to create a

new generation, and repeating the process until the optimal

weights are found, thus leveraging the complementary strengths

of the Vision Transformer and other deep learning models, with

results demonstrating that the GA-enhanced weighted average

ensemble outperforms individual models and simple averaging

methods, achieving superior accuracy, precision, recall, and F1-

score, ultimately contributing to more reliable and accurate

diagnostic tools in healthcare, and highlighting the potential of

evolutionary algorithms in fine-tuning ensemble learning models

for complex medical image classification tasks.

To adapt the Genetic Algorithm for selecting the optimal

weights (alpha and beta) in our ensemble learning model, we

follow these steps, Figure 3: 1) Chromosome Representation: Each

chromosome represents a pair of weights α and β for the models in

the ensemble. The weights must satisfy the condition : α and β = 1
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FIGURE 2

A basic depiction of a vision transformer architecture. ahttps://cameronrwolfe.substack.com/p/vision-transformers.

FIGURE 3

Genetic algorithm steps (Gasmi et al., 2024).

2) Initial Population: Generate an initial population of

chromosomes with random values for α and β .

3) Fitness Function: The fitness function evaluates the accuracy of

the ensemble model for each chromosome. Given a chromosome

with weights α and β , the fitness function is defined as: Fitness(α,

β)=Accuracy;

4) Selection: Select the top-performing chromosomes based on

their fitness scores. Techniques such as roulette wheel selection or

tournament selection can be used.

5) Crossover: Combine pairs of selected chromosomes to produce
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offspring. For example, a simple crossover method could be:

Offspring1 = (α1, β2) and Offspring2 = (α2, β1)

where (α1, β2) and (α2, β1) are parent chromosomes

6) Mutation: Introduce random changes to the offspring to

maintain genetic diversity. For instance, a small random value

could be added or subtracted from (α, β), ensuring that the sum

remains 1.

7) New Generation: Replace the old population with the new

generation of chromosomes.

8) Termination: Repeat the selection, crossover, and mutation steps

until convergence criteria are met, such as a maximum number of

generations or a satisfactory fitness score.

3.5 Results and discussions

This section provides the findings of the experiments

conducted on the model described in this study. In

addition, we evaluate the outcomes achieved through various

classification techniques using deep learning models. The Python

implementation of the suggested model utilized a Rtx 2,060

graphics card and 16 GB of RAM.

In order to implement our suggested model, we conducted

multiple sets of tests utilizing deep learning models. The structure

of our model encompasses three distinct scenarios:

1. Scenario 1: Brain Tumor classification based on the deep

learning models.

2. Scenario 2: Brain Tumor classification based on the hybrid deep

learning models.

3. Scenario 3: Brain tumor classification based in the weight

selection method.

3.6 Data set description and evaluation
metrics

To assess our improved deep learning model, we

used a dataset with 44 classes,1 which is available online.

Figure 4 provides an example of each classes in the

data set.

We employed typical measures, such as accuracy, precision,

recall, and F-measure, to test our classification approach.

Accuracy = (TP + TN)/(TP + TN + FP + fN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1− score = TP/(TP + 0.5 ∗ (FN + FP)) (4)

Where TP stands for true positive, FP stands for false positive, P

stands for precision, R stands for recall, TPR stands for true positive

rate, and FPR stands for false positive rate.

1 https://www.kaggle.com/datasets/fernando2rad/brain-tumor-mri-

images-44c

3.7 Brain tumor classification based on
deep learning models

The main objective of this study was to utilize hybrid deep

learning models for the categorization of brain tumors. However,

in this section, we aimed to classify MRI images into 44 distinct

classes of brain tumors by leveraging various state-of-the-art deep

learning models. The models evaluated in this study include

Inception-ResNet-v2, EfficientNet V2, MobileNet V2, and the

Vision Transformer (ViT). These models were chosen because

of their strong track record in image classification, particularly

in medical imaging. They offer a good balance between high

accuracy and computational efficiency, making them ideal for

complex tasks like brain tumor classification. The decision to

use these models was based on results from similar studies in

the same field, where they consistently performed well. Each

model brings unique strengths: Inception-ResNet-v2 is excellent

at capturing detailed features in images, EfficientNet V2 is highly

efficient and scalable, MobileNet V2 is lightweight and suited for

mobile applications, and ViT uses transformer-based attention

mechanisms to extract deep features. Together, these models

form a strong foundation for evaluating and improving tumor

classification using medical image datasets. Our results, as detailed

in Table 1, demonstrate significant variation in performance

metrics such as accuracy, precision, recall, and F1-score across the

different models.

From the results, EfficientNet V2 emerges as the top-

performing model with an accuracy of 93.95%, precision of

95.02%, recall of 93.95%, and F1-score of 94.01%. This superior

performance can be attributed to EfficientNet V2’s optimized

architecture, which balances depth, width, and resolution for better

accuracy and efficiency.

The Vision Transformer (ViT B16) also performed remarkably

well, achieving an accuracy of 87.90%, precision of 89.64%, recall of

87.90%, and F1-score of 88.11%. This indicates that the ViT model,

with its ability to capture global dependencies in the image data,

is well-suited for complex image classification tasks such as brain

tumor classification.

In contrast, the Inception-ResNet-v2 andMobileNet V2models

demonstrated lower performance metrics. The Inception-ResNet-

v2 model achieved an accuracy of 70.82%, precision of 73.37%,

recall of 70.82%, and F1-score of 71.04%. MobileNet V2, known

for its lightweight architecture, attained an accuracy of 74.02%,

precision of 77.36%, recall of 74.02%, and F1-score of 73.90%.

While these models are efficient, their performance is not as robust

as EfficientNet V2 and ViT for this specific task.

The discrepancy in performance can be attributed to several

factors. EfficientNet V2’s scaling strategy allows it to adaptively

scale network dimensions, leading to better feature extraction and

classification accuracy. ViT’s attention mechanisms enable it to

handle the spatial hierarchies and complex patterns in MRI images

more effectively. On the other hand, while Inception-ResNet-v2

combines the strengths of Inception and ResNet architectures, it

might not be as finely tuned for this specific application. Similarly,

MobileNet V2’s design for mobile and edge devices might limit

its capacity to capture intricate details necessary for distinguishing

between 44 brain tumor classes.
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FIGURE 4

Examples of images taken from the dataset.

In conclusion, our findings underscore the importance of

model selection in medical image classification tasks. EfficientNet

V2 and Vision Transformer (ViT) stand out as particularly effective

for classifying brain tumors from MRI images. Future work could

focus on further optimizing these models and exploring ensemble

methods to enhance classification performance even further.
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TABLE 1 Performance metrics for di�erent deep learning models.

Accuracy Precision Recall f1_score

Inception-

resnet-v2

0.708185 0.733747 0.708185 0.710366

Efficientnet-v2 0.939502 0.950218 0.939502 0.940100

MobileNet-V2 0.740214 0.773633 0.740214 0.738958

Vision

transformer

0.879004 0.896360 0.879004 0.881115

Additionally, incorporating domain-specific data augmentation

and preprocessing techniques could potentially improve the

accuracy and reliability of the classification results.

3.8 Brain tumor classification based on an
hybrid deep learning model

In our study, we aimed to classify MRI images into 44

distinct classes of brain tumors using various state-of-the-art deep

learning models. To further enhance classification performance,

we employed ensemble learning techniques, combining the Vision

Transformer (ViT) model with other models such as Inception-

ResNet-V2, EfficientNet V2, and MobileNet V2. The ensemble

methods included both average and weighted average techniques,

with the latter varying the weights (alpha for the first model and

beta for ViT) to optimize performance. Table 2 below summarizes

the results.

From the results, the combination of ViT and EfficientNet-V2

using average ensemble learning achieved the highest performance

with an accuracy of 95.37%, precision of 96.15%, recall of 95.37%,

and F1-score of 95.41%. This demonstrates the robustness of

ensemble methods in leveraging the strengths of different models

to enhance classification performance.

The weighted average ensemble also showed promising results,

particularly with a weight distribution of α = 0.2 and β = 0.8 for

the ViT and EfficientNet-V2 combination, achieving an accuracy

of 93.95%. This suggests that placing more emphasis on the

ViT model, which effectively captures global dependencies, can

significantly boost performance.

Interestingly, the ViT and Inception-ResNet-V2 combination

also performed well, especially with the weighted average ensemble

method (α = 0.2, β = 0.8), achieving an accuracy of 90.04%.

However, the performance dropped when the weight distribution

favored the Inception-ResNet-V2 model (α = 0.8, β = 0.2),

indicating the importance of optimal weight selection in ensemble

methods.

Similarly, the combination of ViT and MobileNet-V2 showed

improved performance with the weighted average method (α =

0.2, β = 0.8), achieving an accuracy of 88.25%, while favoring

MobileNet-V2 (α = 0.8, β = 0.2) resulted in lower performance.

In summary, our findings highlight the efficacy of ensemble

learning in brain tumor classification. By integrating different

models and optimizing weight distributions, we can significantly

improve classification accuracy and other performance metrics.

The success of the ViT and EfficientNet-V2 combination, in

particular, underscores the potential of using advanced deep

learning models and ensemble techniques for complex medical

image classification tasks. Future work could explore further

optimizations and the incorporation of additional models to

continue enhancing classification performance.

3.9 Evaluation of the significance
improvement of ensemble learning by
weighted selection method for brain tumor
classification

In this section, we evaluate the significance of our optimization

method in improving the performance of ensemble learning

for brain tumor classification. By applying a genetic algorithm

to determine the optimal weights for combining deep learning

models, we aimed to enhance classification accuracy, precision,

recall, and F1-score. The results in Table 3 demonstrate the

effectiveness of our approach, highlighting the potential

of weighted ensemble learning in advancing medical image

classification tasks.

The application of a genetic algorithm to optimize the weights

(alpha and beta) for combining deep learningmodels demonstrated

significant improvements in performance metrics for brain tumor

classification. The results shown in the Table 3 illustrate the

efficacy of the weighted average ensemble learning approach across

multiple generations, where each generation represents a different

combination of alpha (α) and beta (β) values. The optimized

weighted average model with α = 0.44 and β = 0.56 achieved the

highest accuracy score of 0.9609, coupled with a precision score of

0.9691, indicating that the genetic algorithm successfully identified

a near-optimal balance between the two models, enhancing the

overall accuracy and precision of the classification. Across different

generations, the results consistently show high values for accuracy,

precision, recall, and F1-score, underlining the robustness of the

genetic algorithm in optimizing the ensemble weights. For instance,

models with α = 0.44, β = 0.56 and α = 0.73, β = 0.27 both

achieved an accuracy of 0.9609, reflecting reliable performance

improvements. The impact of varying the weights is evident, as seen

in themodel with α = 0.17, β = 0.83, which achieved a slightly lower

accuracy of 0.9395, emphasizing the importance of fine-tuning the

weights to leverage the strengths of each model optimally. The

top-3 accuracy metric remains consistently high (0.9822) across

different weight combinations, indicating the model’s robustness

and reliability in clinical scenarios. The enhanced performance

metrics obtained through the genetic algorithm optimization have

significant implications for clinical practice, ensuring more reliable

diagnoses critical for treatment planning and patient outcomes,

thus providing confidence in the model’s predictions and aiding

clinicians in making more informed decisions.

3.10 Comparative study

The Table 4 compares our work to several other studies on brain

tumor classification, highlighting differences in the methods used,

the datasets, the number of classes, and the resulting accuracy.
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TABLE 2 Performance metrics for hybrid models.

Hybrid model Ensemble learning technique Accuracy Precision Recall f1_score

ViT + InceptionResnet

V2

Average Ensemble 0.886121 0.903569 0.886121 0.888955

Weighted average:

(α = 0.2, β = 0.8)

0.900356 0.908926 0.900356 0.900590

Weighted average:

(α = 0.8, β = 0.2

0.779359 0.802382 0.779359 0.781597

ViT +MobileNet V2 Weighted average:

(α = 0.2, β = 0.8)

0.882562 0.892685 0.882562 0.882396

Weighted Average:

(α = 0.8, β = 0.2)

0.786477 0.805635 0.786477 0.781143

ViT + EfficientNet V2 Average Ensemble 0.953737 0.961463 0.953737 0.954080

Weighted Average:

(α = 0.8, β = 0.2)

0.950178 0.961736 0.950178 0.950381

Weighted Average:

(α = 0.2, β = 0.8)

0.939502 0.952808 0.939502 0.941447

TABLE 3 Performance metrics of optimized weighted average models for brain tumor classification using genetic algorithm-selected alpha (α) and beta

(β) values.

Accuracy Precision Recall f1_score top_3_accuracy

Weighted average

(α = 0.8, β = 0.2)

0.950178 0.959987 0.950178 0.951458 0.982206

Weighted average

(α = 0.44, β = 0.56)

0.9609 0.9691 0.9609 0.9616 0.9822

Weighted average

(α = 0.17, β = 0.83)

0.9395 0.9530 0.9395 0.9415 0.9822

Weighted average

(α = 0.73, β = 0.27)

0.9609 0.9673 0.9609 0.9610 0.9822

A key point of comparison is the complexity of the datasets,

particularly the number of classes, which has a significant impact

on the difficulty of the classification task.

In earlier studies, such as those proposed by Avants et al.

(2008); Hinton and Sejnowski (1986), the datasets consist of only

three classes. These studies achieved high accuracies, ranging from

88.86% to 95.82%, using CNN-based models. However, with fewer

classes, the task is relatively simpler, as the models have fewer

categories to differentiate between, making high accuracy more

achievable.

Authors in Tomasila and Emanuel (2020), are worked with a

dataset of four classes, comprising 53 images per class, and reported

accuracies between 92% and 98.41%. The highest accuracy in this

group, 98.41%, was achieved by reviewer, who used a combination

of EfficientNetV2-M and Inception-V3.

In contrast, our study takes on a much more complex task,

utilizing a dataset with 44 classes, significantly increasing the

difficulty of the classification problem. Despite this challenge,

our model–combining Vision Transformers (ViT) with

EfficientNetV2–achieved an accuracy of 96.09%. This is a

remarkable result, considering the higher number of classes. Our

model needed to differentiate between many more categories,

each with potentially subtle differences, making the classification

process more demanding.

While some studies report slightly higher accuracy, it’s

important to recognize that they were working with much simpler

datasets. Our model’s ability to maintain a high accuracy on a

dataset with 44 classes demonstrates its robustness and ability to

handle more complex tasks. This makes our approach particularly

valuable for real-world applications where models need to classify a

wide range of tumor types or conditions with high precision.

4 Conclusion

In this study, we have explored the efficacy of combining

different deep learning models, including Inception-ResNet-V2,

EfficientNet-V2, MobileNet V2, and Vision Transformers (ViT),

for the classification of MRI images into 44 brain tumor classes.

Our experiments demonstrated that ensemble learning techniques,

particularly weighted average ensembles, significantly enhance

classification performance, with the ViT + EfficientNet-V2 model

achieving the highest accuracy. Furthermore, by adopting a Genetic

Algorithm to optimize the weights in the ensemble models, we

were able to achieve even greater improvements in accuracy,

precision, recall, and F1-score. These results underscore the

potential of hybrid deep learning approaches and optimization

algorithms in advancing medical image classification. Future work
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TABLE 4 Comparative study between proposed approaches for brain tumor classification.

Study Method Dataset Number of class Accuracy

Abiwinanda et al. (2019) CNN 1 3 88.86

Sajjad et al. (2019) VGG-16 – 3 94.58

Deepak and Ameer (2021) CNN+SVM – 3 95.82

Asif et al. (2023) Xception 2 4 95.87

İncir and Bozkurt (2024a) EfficientNetV2-M + Inception-V3 – 4 98.41

Sandhiya and Raja (2024) ELM+PSO – 4 97.97

Vankdothu et al. (2022) LSTM+CNN – 4 92

Our work ViT+ EfficientNetV2 1 44 96.09

1https://figshare.com/articles/dataset/brain_tumor_dataset/1512427. 2https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri.

will focus on further refining these models and exploring their

applicability to other complex medical imaging tasks, ultimately

contributing to more accurate and reliable diagnostic tools

in healthcare.
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