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Fuzzy C-means clustering 
algorithm applied in computed 
tomography images of patients 
with intracranial hemorrhage
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In recent years, intracerebral hemorrhage (ICH) has garnered significant attention as 
a severe cerebrovascular disorder. To enhance the accuracy of ICH detection and 
segmentation, this study proposed an improved fuzzy C-means (FCM) algorithm 
and performed a comparative analysis with both traditional FCM and advanced 
convolutional neural network (CNN) algorithms. Experiments conducted on 
the publicly available CT-ICH dataset evaluated the performance of these three 
algorithms in predicting ICH volume. The results demonstrated that the improved 
FCM algorithm offered notable improvements in computational time and resource 
consumption compared to the traditional FCM algorithm, while also showing 
enhanced accuracy. However, it still lagged behind the CNN algorithm in areas 
such as feature extraction, model generalization, and the ability to handle complex 
image structures. The study concluded with a discussion of potential directions 
for further optimizing the FCM algorithm, aiming to bridge the performance 
gap with CNN algorithms and provide a reference for future research in medical 
image processing.
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Introduction

Computed tomography (CT) is a non-invasive medical imaging technique (Wang et al., 
2021). Because of its low cost, high blood sensitivity, and high efficiency in obtaining results, 
CT has been the preferred method for the initial diagnosis of intracranial hemorrhage (ICH). 
Although ICH can be divided into different periods according to the duration of bleeding, the 
Hounsfield Unit (HU) value of blood is significantly different from that of other brain tissues, 
which is higher than that of other brain tissues and lower than that of skull (Tamal, 2019). 
Thus, the main basis for judging the prevalence of ICH is intracranial CT images (Shah et al., 
2021). As the scale and volume of medical imaging datasets continue to expand, the role of 
computer-aided tools in supporting physician diagnosis and treatment has become increasingly 
critical (Schwenkreis et al., 2021). Traditionally, image segmentation involves dividing an 
image into non-overlapping regions based on attributes such as intensity or texture (Su et al., 
2015; Qiu et al., 2015; Procopio et al., 2022).
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Cerebral hemorrhage is the leading cause of death in adults, 
followed by heart disease and cancer. In most cases, necrosis of bodily 
organs results from untimely or misdiagnosis of bleeding disorders 
(Rønning et al., 2021; Martins-Oliveira et al., 2020; Kawata et al., 2017). 
Timely detection and accurate identification of the location and type of 
ICH lesions are key factors that directly impact patient survival rates. 
There are usually five types of cerebral hemorrhage: epidural hemorrhage 
(EDH), subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), 
ICH, and intravascular hemorrhage (IVH). Among them, ICH lesion in 
the brain tissue was concerned on in this work, because the life of ICH 
patients is completely dependent on their early diagnosis (Tutunjian 
et al., 2021; Mine et al., 2021; Lai et al., 2021). At present, foreign scholars 
have done a lot of research work on CT image segmentation of cranial 
ICH and formed relatively rich research results, but most of the research 
results are based on algorithm theory, which is divorced from the clinical 
application of CT images (Kavitha et al., 2019; Song et al., 2015).

Image segmentation is the process of assigning attributes to each 
pixel in an image, grouping pixels with similar attributes into distinct 
regions. This includes dividing digital images into multiple sub-regions 
to facilitate easier interpretation and analysis (Patel et al., 2021; Ortega 
Rodriguez et al., 2021; Cao et al., 2021). Segmentation methods are 
generally categorized into two types: hard segmentation and soft 
segmentation. Traditional methods fall under hard segmentation, 
including thresholding, dynamic contours, region growing, and 
clustering algorithms. In contrast, soft segmentation algorithms 
incorporate mechanisms to handle uncertainty and ambiguity in 
image segmentation tasks. Bayesian classification, Fuzzy c-means 
clustering (FCM) algorithm, and expectation maximization (EM) are 
soft segmentation methods. Applying these methods to brain CT 
image segmentation is conductive to distinguishing the brain tissue 
and cerebrospinal fluid correctly, but brain gray matter and white 
matter cannot be  distinguished (Jalal Deen et  al., 2017; Jiang 
et al., 2018).

In this study, various membership functions were utilized to 
define the objective using FCM algorithm, and the inflection point of 
the function was identified as the threshold through optimization of 
the objective function. Image segmentation can also be viewed as a 
clustering process. The advantage of the FCM algorithm is its capacity 
to employ various membership functions for assigning data points to 
multiple clusters. In this study, the FCM algorithm was enhanced, 
transitioning from a two-dimensional hybrid algorithm to a three-
dimensional one, which was then used to analyze CT images of ICH, 
with the aim of offering a valuable reference for ICH diagnosis.

Materials and methods

Principles for FCM algorithm

The FCM algorithm is a clustering method that evolved from 
traditional hard clustering techniques. Its core focus is on determining 
the optimal membership degrees and cluster centers. It was assumed 
that { }1 2 nM m ,m , ,m= …  was the grayscale value or eigenvalue of the 
image pixel, f was the number of clusters (number of cluster centers) 
that divided M, and the cluster center was expressed as 

{ } { }1 2 f xyA a ,a , ,a ,and b b= … =  was the membership matrix, xeb  
referred to the degree of membership of xm  in e-class area. The cost 
function expression of FCM was given in Equation 1:
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In Equation 2, xyB b=  was an n x× fuzzy membership matrix, 
which represented the size of the membership value of the y-th sample 

ym  belonging to the x-th class, and its range was 0–1; l was the 
weighted index; { }1 2 fA a ,a , ,a= …  was a h × f matrix composed of f 
cluster center vectors; and xy y xr ||m a ||= −  meant the Euclidean 
distance from the sample point ym  to the cluster center xa , which was 
also the 2-norm measurement from the pixel ym  to the cluster center.

To minimize the cost function E(B,A), the Lagrange multiplier 
method was used to establish the objective optimization function, and 
the objective function was obtained about the cluster center xa , and 
the partial derivative of the membership degree xyb . In addition, the 
derivative result was set to zero, and the iterative update expressions 
for the cluster center and membership degree were obtained as follows:
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If yT = β , the Equation 4 below could be obtained:
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If yT 0≠ , xyb  was a nonnegative real number satisfying the below 
condition, as shown in Equation 5:
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The iterative equation for membership was a mapping from points 
to sets. In the actual calculation process, the following membership 
update equation was used:
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In Equation 6, I  represented the number of iterations of the 
function. If the iteration Equations 3, 7 satisfied the iteration 
termination condition, that was, i I>  or i 1 i

x x xmax a a+= || − < α || , the 
iteration should be  stopped. After the algorithm completes its 
iterations, it classifies and segments pixels based on the principle of 
maximum membership degree. If yx yeb b> , then ym  was classified as 
the x class in cluster center, where e 1,2, ,f ;x e= … ≠ .

Improvement of FCM algorithm

The FCM algorithm typically uses Euclidean distance for 
clustering, which is suitable for clusters with spherical or ellipsoidal 
distributions. However, when clusters exhibit non-standard shapes, 
Euclidean distance may fail to capture the relationships between 
sample dimensions (Okamoto et  al., 2021). Therefore, this study 
introduced a kernel function to measure pixel distances in space. By 
mapping the lower-dimensional space to a higher-dimensional kernel 
space, complex nonlinear problems are transformed into linear ones, 
thereby enhancing the algorithm’s noise resistance. The improvement 
steps of improving the FCM algorithm were given as follows.

 (a) It should intuitively blurr the image.
The original image was converted from the spatial domain to the 

fuzzy domain, and grayscale processing was performed on each pixel. 
For a grayscale image of size C × D, the grayscale level was in the 
interval [ ]min maxm ,m , the image was represented by an intuitionistic 
fuzzy set as follows:

 ( ) ( ) ( ){ }xe xe xe xeQ m ,b m ,a m , m ,0 x C,0 e D= π < ≤ < ≤
 (7)

In Equation 7, ( )xeb m  was the membership degree of xem , and 
xem was the gray level of the pixel (x,e), which described the degree of 

brightness and darkness of the gray value of the pixel. The membership 
and non-membership expressions were shown in Equation 8 and 
Equation 9, respectively:

 ( ) ( )( )2xe xeb m b m=  (8)

 ( ) ( )( )2xe xea m 1 b m= −  (9)

The hesitation of the image after intuition fuzzification was shown 
in Equation 10:

 ( ) ( ) ( )( )xe xe xem 2b m 1 b mπ = −
 (10)

The grayscale value of each pixel was expressed in Equation 11:

 ( ) ( ) ( )( )em , ,xe xe xeb m a m mπ=  (11)

 (b) It can define the initialization parameters.
The membership matrix was extended to the gray level, and the 

gray level of the image was intuitively fuzzed to obtain the initialized 

membership matrix M. The number of cluster categories was set to f, 
the spatial constraint parameter was θ, the weighting index was l, the 
δ referred to the kernel function, the neighborhood radius was p, the 
iteration stop threshold was α, the maximum number of iterations was 
I, and the number of initial iterations was 0.

 (c) The local information of pixels was calculated based on their 
underlying principles.

 (d) The cluster center ( ) ( )II
xaA ∗∗ =  was updated according to 

Equations 3, 4 as follows, and Equation 12 was obtained:
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 (e) The membership function matrix I 1I 1
xyB b ++ =  was updated 

according to Equation 5 and Equation 13 was obtained:
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 (f) The generated hesitation degree 
( )I 1
xyð +

 was adopted to modify 
the membership degree ( ) ( )I 1I 1

xyB b ++ = , and Equation 14 and  
Equation 15 were obtained:
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 (g) Next, it should judge whether the conditions for iterative stop 
were met ( )I 1 IB B+ − < α . If the conditions were met, the 
iteration stopped; otherwise, i = i + 1 was defined to repeat the 
step (e) for the next iteration;

 (h) The image deblurring process involves substituting the 
membership values corresponding to each grayscale level from 
the intuitionistic fuzzy partition matrix into the image. This 
process enables pixel classification based on the principle of 
maximum membership degree.

Verification of algorithm segmentation 
performance

Relying solely on human judgment is insufficient for objectively 
assessing the success of the improved algorithm. Evaluation based on 
segmentation results provides a more reliable method for assessing 
algorithm quality. Additionally, the incorporation of various 
evaluation metrics through quantitative analysis enhances the 
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credibility of the assessment process. To better compare the 
segmentation performance of different algorithms, three evaluation 
indicators were introduced for analysis: partition coefficient (Vpc), 
partition entropy (Vpe), and Xie-Beni index (Vxb). The segmentation 
performances of the algorithms were shown in Figure 1.

Preprocessing of CT images

The dataset used in this section was CT-ICH, a public dataset for 
ICH, which collected CT scans from 113 patients, of which 41 patients 
had ICH. Each patient had 25 CT slices with a slice thickness of 6 mm. 
The mean age and standard deviation of age of the patients were 28.2 
and 18.7, respectively. Areas with bleeding were marked by 
specialized radiologists.

For the data format, the original authors of the dataset have 
windowed images in DICOM (Digital Imaging and Communications 
in Medicine) format, using two windows: brain (window level = 40 and 
window width = 120) and skull (window level = 700 and window 
width = 120) to composite images and save them in NIFTI format.

Given that the dataset includes non-hemorrhagic cases, this study 
focused on the segmentation of ICH lesions. Consequently, the dataset 
was reorganized to include only hemorrhagic images and their 
corresponding annotations, resulting in a total of 256 CT slices. Due 
to the insufficient number of 256 images for training the proposed 
network model, data augmentation techniques were employed to 

expand the dataset. Since the bleeding CT slice had the label of the 
bleeding area, the CT image and the label should be carried out at the 
same time during data expansion. The data expansion process was 
shown in Figure 2.

 1. The CT image and the label were channel-fused to obtain a 
fusion image;

 2. The fused images were performed with random rotation 
transformation, flip transformation, scaling transformation, 
contrast transformation, noise disturbance, and other data 
enhancement processing to obtain a new fused image;

 3. Channel splitting was applied to the newly fused image to 
generate a new CT image and corresponding label.

Experimental setting

Graphic processing unit (GPU) was accelerated training with an 
NVIDIA RTX 2080TI graphics card. The dataset used in the 
experimental part was the dataset obtained after data processing. 
During training, the optimizer used was the Adam optimizer. The 
initial learning rate was set to 0.0002, and the adjustment strategy of 
the learning rate was adjusted according to the training loss. If the 
training loss was constant every 2 epochs, the learning rate was 
reduced by a factor of 0.6. The resolution of the image was set to 512 
* 512, the batchsize was set to 18, and a total of 100 epochs 
were trained.

Analysis of performance evaluation metrics

To quantitatively assess the performance of image segmentation, 
multiple metrics were employed. These metrics specifically include the 
Dice similarity coefficient, root mean square error (RMSE), and 
average algorithm runtime. Higher Dice similarity coefficients, along 
with lower RMSE and average runtime, indicate greater accuracy in 
image segmentation. The calculations for these metrics are provided 
in Equations 16, 17.

 ( )
2

Dice i i

i i

E R
E R

−
=

+  
(16)

 
( )2

1

1RMSE
N

i i
i

E R
N =

= −∑
 

(17)

In these equations, Dice, E, R, RMSE, and N represent the Dice 
similarity coefficient, segmented tissue area, ground truth tissue area, 
root mean square error, and total number of pixels, respectively.

Evaluation metrics for lesion volume 
prediction

During the testing phase, 256 CT images were analyzed and 
volume predictions were made. The algorithm predicted the 
hemorrhage probability for each voxel; if the probability exceeded 0.5, 

FIGURE 1

Flow chart for segmentation of algorithm.
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the voxel was classified as hemorrhagic, otherwise as normal. In 
comparing the performance of traditional FCM algorithms, the 
improved FCM algorithm, and convolutional neural network (CNN) 
for lesion volume prediction, the objective was to evaluate the 
differences in their predictive capabilities. CNN, a deep learning 
algorithm particularly suited for image data, operates on the principle 
of extracting spatial features through convolutional operations and 
building abstract feature representations layer by layer. Typically, a 
CNN comprises multiple convolutional layers for feature extraction, 
pooling layers for dimensionality reduction and feature compression, 
and fully connected layers that integrate features to complete 
classification or regression tasks. Introducing the CNN algorithm into 
this comparison allows for an effective assessment of the strengths and 
limitations of each method under varying complexities and conditions, 
facilitating the selection of the most suitable volume prediction 
approach for practical applications.

Computational efficiency and real-time 
adoption potential of algorithms

To assess the computational efficiency and real-time application 
potential of FCM, improved FCM, and CNN in clinical settings, the 
aim was to determine which algorithm was better suited for rapid and 
accurate processing of ICH or other medical imaging tasks in practical 
clinical scenarios. A dataset of 256 CT images with varying volumes 
of ICH was used to simulate diverse conditions within a clinical 
environment. The three algorithms were executed on standardized 
hardware (equipped with CPUs of equivalent computational capacity) 
to ensure fairness in testing. The evaluation metrics are as follows: (1) 
Computation time: the processing time per image, measured in 
seconds (s), reflects the algorithm’s computational efficiency. (2) 
Latency: the total time from image input to result output, measured 
in seconds (s), indicates the algorithm’s potential for real-time 
applications. (3) Throughput: the number of images processed per 

second (frames per second, FPS), used to gage the algorithm’s 
handling capacity under high load conditions.

(4) Memory usage: the amount of memory occupied by the 
algorithm during execution, measured in megabytes (MB), reflects the 
algorithm’s resource consumption.

Statistical analysis methods

IBM SPSS Statistics 26 was adopted for statistics. The age and 
disease course of the subjects were expressed as mean ± standard 
deviation (x ± s). The normality test was performed, and the rank 
sum test was performed for those that did not conform to the 
normal distribution. The variance homogeneity test was performed 
for the normal distribution, and the two-sample t test was 
performed to compare the parameters of the high-level and 
low-level groups. If the variances were not homogeneous, the 
corrected t-test was used. In addition, p < 0.05 was considered to 
be statistically significant.

Results and discussion

Images using the improved algorithm

In the absence of noise interference, the FCM algorithm effectively 
distinguishes between white matter, gray matter, cerebrospinal fluid, 
and lesion regions in images. However, due to the high correlation 
between pixels, adjacent pixels exhibit almost identical data 
characteristics. This spatial relationship between adjacent pixels plays 
a crucial role in the segmentation process. General edge detection 
techniques use this spatial information for image segmentation, but 
the standard FCM algorithm does not fully utilize this spatial 
information. In the standard FCM algorithm, abnormal feature data 
(such as noise) were easily misclassified, such as pseudo-spots of brain 

Image + Label Blending image

Stochastic mapping New blending image

Channel separation New Image + Label

FIGURE 2

Flow chart of data augmentation.
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gray matter appearing in the white matter of the brain, as shown in 
Figures 3, 4.

In Figure  3B, the FCM was more sensitive to noise. In the 
improved FCM algorithm, the membership function of pixels was 
redefined according to the correlation between pixels. The proximity 
effect caused the improved FCM algorithm to favor uniformly labeled 
segments. In Figure 3C, after enhancement of the FCM algorithm, 
isolated artifacts were reduced, resulting in more uniform image 
segmentation. A higher parameter q enhances the smoothing effect of 
the improved FCM algorithm, although this may also blur details and 
reduce segmentation accuracy. When processing noise-contaminated 
images, the standard FCM algorithm was more prone to confusing 
white matter with gray matter compared to the improved FCM 
algorithm. Noise altered the locations of white matter and gray matter 
pixels, leading to increased misclassification.

The FCM spatial processing algorithm was effective for grayscale 
images disturbed by noise (Figure 4A). In this algorithm, the median 
value in the neighborhood centered on the pixel was used to represent 
spatial information, which meant that the FCM spatial processing 
algorithm would smooth the image, so although FCM was not 
sensitive to noise interference, it would cause damage of the images. 
In this section, the improved algorithm achieved iterative assignment 
of each pixel to the cluster with the highest membership degree by 
integrating spatial information into the membership function. 
Incorporating spatial information into the objective function reduced 
sensitivity to noise. Images e and f illustrate accurately classified 
intracranial structures in the absence of noise, with clearer 
differentiation between white matter and gray matter. The algorithm 
also maintained accurate classification in the presence of noise, owing 
to its dual consideration of spatial information and enhanced noise 
resistance, thereby preserving image details.

Segmentation results of lesions in brain CT 
images

The experimental results were shown in Figure 5, where the size 
of each image was 512 × 512. In this group of experiments, a total of 2 
algorithms were used, namely the standard FCM and the algorithm in 
this work. Next, a comparative analysis of the two algorithms was 

conducted using specific parameters: l was set to 2, alpha = 0.0001, and 
the neighborhood size was 5 × 5. After the intracranial CT images were 
classified with the clustering algorithms, the segmented images were 
further processed using a region-growing algorithm to highlight the 
significant differences between the two algorithms.

Comparison on lesion area

In Figure  6, among noisy CT images, the CNN algorithm 
exhibited the lowest prediction error, indicating its superior capability 
in handling data and providing more accurate volume predictions in 
the presence of noise. The improved FCM algorithm followed, 
showing an enhancement over the traditional FCM algorithm. The 
traditional FCM algorithm demonstrated the highest error, reflecting 
its poorest performance on noisy images. In the case of original CT 
images, the CNN algorithm also achieved the lowest prediction error, 
demonstrating its continued excellence in noise-free conditions. The 
improved FCM algorithm performed slightly worse than CNN on 
original images but still outperformed the traditional FCM algorithm. 
The traditional FCM algorithm’s error remained the highest, indicating 
its inferior performance compared to the other two algorithms, even 
in the absence of noise.

Comparison on FCM algorithm analysis 
difference

In Figure  7, the performance of the three algorithms was 
compared across three metrics: precision rate, sensitivity, and 
specificity. The CNN algorithm demonstrated the highest precision 
rate, indicating its superior ability to accurately identify true lesion 
regions and minimize misclassification. The improved FCM algorithm 
also showed a significant increase in precision, approximately 8% 
higher than that of the traditional FCM algorithm. The traditional 
FCM algorithm exhibited the lowest precision rate, suggesting a 
higher tendency for errors in prediction. The CNN algorithm achieved 
the highest sensitivity, reflecting its exceptional capability in detecting 
actual lesions. The improved FCM algorithm also showed a 
considerable improvement in sensitivity, approaching that of the CNN 

A B C

FIGURE 3

Cranial CT image clustering operation result diagram. A was the brain source image, B was the result of FCM fuzzy clustering, and C was the result 
processed by the preliminary algorithm.
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algorithm. The traditional FCM algorithm had the lowest sensitivity, 
indicating a higher likelihood of missing some lesion areas. Regarding 
specificity, the CNN algorithm performed best, demonstrating its 
accuracy in distinguishing non-lesion regions and reducing false 
positives in normal tissue. The improved FCM algorithm also showed 
an enhancement in specificity, allowing for better differentiation of 
non-lesion areas. The traditional FCM algorithm had relatively lower 
specificity, implying a higher rate of false positives.

Graphical abstract

The FCM spatial processing algorithm was effective for grayscale 
images disturbed by noise (Figure 8D). In this algorithm, the median 
value in the neighborhood centered on the pixel was used to represent 
spatial information, which meant that the FCM spatial processing 
algorithm would smooth the image, so although FCM was not 
sensitive to noise interference, it would cause damage of the images. 
The improved algorithm in this section allowed each pixel to 
be assigned to the cluster with the highest membership in an iterative 
process by incorporating spatial information into the membership 
function. By incorporating spatial information into the objective 

function, the sensitivity to noise can be reduced. Observing images e 
and f revealed that intracranial images can be accurately classified 
without noise interference, resulting in clearer differentiation between 
brain white matter and gray matter. Correct classification was also 
possible in the presence of noise interference. Because of the 
consideration of dual spatial information, the algorithm was 
insensitive to noise and destroys the details of the image less.

Comparison of segmentation performance 
across different algorithms

In Table  1, the CNN algorithm achieved the highest Dice 
similarity coefficient of 0.93, indicating the greatest overlap with the 
ground truth in segmentation tasks and thus the highest segmentation 
accuracy. The improved FCM algorithm followed, with a Dice 
similarity coefficient of 0.91, representing a significant improvement 
over the traditional FCM algorithm’s coefficient of 0.85. The traditional 
FCM algorithm had the lowest Dice coefficient, reflecting its relatively 
poorer segmentation performance and lower overlap with the ground 
truth. The CNN algorithm also had the lowest RMSE of 0.095, 
demonstrating the smallest segmentation error and minimal deviation 

A B C

FIGURE 4

The result of the improved brain CT image clustering operation. A was the result of adding the spatial algorithm, B showed the result of the improved 
algorithm, and C showed the result of the analysis of the singular point by the improved algorithm.

A B C

FIGURE 5

Comparison of lesion segmentation of cranial CT. A was the intracranial CT image, B showed the FCM clustering result, and C showed the 
segmentation result of the algorithm.
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from the ground truth. The improved FCM algorithm ranked next, 
with an RMSE of 0.097, showing a notable reduction compared to the 
traditional FCM algorithm’s RMSE of 0.117, indicating an 
improvement in precision with the enhanced FCM approach. The 
traditional FCM algorithm had the highest RMSE, signifying a larger 
segmentation error and greater deviation from the ground truth. In 
terms of average processing time, the CNN algorithm performed the 
fastest with an average time of 101 s, reflecting both high accuracy and 
efficiency. The improved FCM algorithm had a slightly longer average 
processing time of 107 s, but this was an improvement over the 
traditional FCM algorithm. The traditional FCM algorithm had the 
longest average processing time of 146 s, indicating not only lower 
accuracy but also reduced efficiency in segmentation tasks.

Comparison of ICH volume between two 
algorithms

In Table 2, for predicting ICH volumes less than 5 mL, the CNN 
algorithm had the smallest absolute error (0.49 ± 0.35 mL), indicating 
the highest prediction accuracy for small-volume hemorrhages. The 
improved FCM algorithm slightly lagged behind the CNN, while the 
traditional FCM algorithm exhibited the largest error. In terms of 
relative error, the traditional FCM algorithm performed slightly better 
than the improved FCM and CNN algorithms, although the differences 

among the three were minor and their overall performances were 
relatively close. For medium-volume hemorrhages (5–25 mL), the CNN 
algorithm had the lowest absolute error (1.45 ± 1.16 mL) and relative 
error (0.15 ± 0.05%), indicating the highest prediction accuracy within 
this volume range. The improved FCM algorithm followed, showing 
significant improvement over the traditional FCM algorithm. The 
traditional FCM algorithm had the highest errors, particularly in 
absolute error, indicating weaker performance in predicting medium-
volume hemorrhages. For large-volume hemorrhages (>25 mL), the 
improved FCM algorithm had the smallest absolute error 
(7.56 ± 5.19 mL), slightly better than the CNN algorithm 
(7.61 ± 4.72 mL), while the traditional FCM algorithm had a significantly 
larger error (18.26 ± 12.71 mL), reflecting the poorest performance. 
Regarding relative error, the improved FCM algorithm had the lowest 
error (0.10 ± 0.08%), followed closely by the CNN algorithm, with the 
traditional FCM algorithm exhibiting the highest relative error.

Comparative analysis of algorithm 
applicability and advantages

In a clinical environment, shorter computation times enable 
physicians to obtain results more rapidly. In Table  3, the CNN 
algorithm had the shortest computation time (1.01 s per image), 
indicating its advantage in efficiency. Shorter latency times reflect 
higher potential for real-time application. The CNN algorithm also 
had the shortest latency time (1.05 s), followed closely by the improved 
FCM algorithm (1.12 s), both demonstrating strong real-time 
application capabilities. Throughput measures the algorithm’s 
processing capability under high load conditions, with the CNN 
algorithm exhibiting the highest throughput (0.95 frames per second, 
FPS), making it suitable for clinical scenarios requiring rapid 
processing of large volumes of images. Lower memory usage indicates 
reduced resource consumption by the algorithm. Although the CNN 
algorithm exceled in computational efficiency, it had a higher memory 
usage (640 MB), which may be less suitable in resource-constrained 
environments compared to the FCM algorithm (524 MB).

Discussion

In recent years, with the development and popularization of 
artificial intelligence technology, its influence has penetrated into all 
walks of life, and the medical field is no exception. Imaging technology 
in medicine is a necessary means for the early diagnosis and evaluation 
of many major diseases. However, many data and the lack of human 
experience have led to the inability to confirm and treat the disease in 
a timely manner (Turcato et al., 2021; Shalaby et al., 2021; Rundo et al., 
2020; Podolsky-Gondim et al., 2021). ICH is one of the major diseases 
that threaten human health. CT is a commonly used imaging 
technique for ICH, and different ICH types have different 
characteristics. Presenting different states in different modes is a 
tedious and time-consuming task for direct manual segmentation of 
CT images. At present, many researchers have done a lot of research 
and made some progress, but there is still a certain gap from clinical 
application. For this reason, the FCM algorithm was improved, and 
on this basis, the segmentation of CT images provided reference to the 
research on the diagnostic value of ICH (Munarriz et al., 2021).
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The results of clustering aligned with the objectives of image 
segmentation, leading to the widespread use of clustering algorithms 
in this field. In real life, the probability of the existence of fuzzy events 
was much greater than that of precise events, thus resulting in fuzzy 
clustering algorithms (Kang et al., 2021; Jasim and Brindha, 2021; 
Huang et al., 2020). FCM algorithm is one of the classical algorithms 
of fuzzy clustering, but FCM algorithm still has defects in many 
aspects. Many scholars have devoted themselves to the study of 
improved FCM algorithms, among which the representative ones are 
IFCM algorithm and SFCM algorithm (Cheswick et al., 2019; Callejas-
Moraga et al., 2020; Cajander et al., 2016). In this work, the improved 
FCM was analyzed deeply, aiming to find a more objective and 
effective improvement method.

Based on the segmentation performance of different algorithms, 
our experiments yielded the following results: The Dice similarity 
coefficient for the improved FCM algorithm reached 0.91, surpassing 
the 0.85 achieved by the traditional FCM algorithm, indicating a 

significant improvement in segmentation accuracy. The RMSE of the 
improved FCM algorithm was 0.097, lower than the 0.117 of the 
traditional FCM algorithm, further demonstrating smaller and more 
precise segmentation errors. The average processing time for the 
improved FCM algorithm was 107 s, notably shorter than the 146 s 
required by the traditional FCM algorithm, highlighting the 
improvement in computational efficiency. In terms of performance, 
the improved FCM algorithm showed significant advancements in 
both Dice similarity coefficient and average processing time. This 
indicates that the improved FCM algorithm not only achieved more 
accurate image segmentation but also completed computations more 
rapidly, which is crucial for large-scale medical image processing. 
Across all volume ranges, the improved FCM algorithm consistently 
exhibited lower absolute errors compared to the traditional FCM 
algorithm, with a particularly significant reduction in absolute errors 
for larger volumes (>25 mL). This indicated that the improved 
algorithm could accurately predict hemorrhage volumes in practical 
applications. For volumes <5 mL, although the improved FCM 
algorithm showed smaller absolute errors, its relative error was slightly 
higher than that of the traditional FCM algorithm. This sensitivity in 
relative error could be attributed to the inherently smaller error range 
for small hemorrhage volumes. By enhancing both the accuracy and 
efficiency of image segmentation, the improved FCM algorithm was 
able to better assist clinicians in diagnosing and treating ICH, thereby 
improving the efficiency and accuracy of clinical workflows.

CNN is a prototypical deep learning algorithm that, unlike 
traditional clustering-based FCM algorithms, can automatically 
extract more advanced and complex features. Therefore, comparing 

A B C

D E F

FIGURE 8

Cranial CT image clustering operation result diagram. A was the brain source image, B was the result of FCM fuzzy clustering, and C was the result 
processed by the preliminary algorithm, D was the result of adding the spatial algorithm, E showed the result of the improved algorithm, and F showed 
the result of the analysis of the singular point by the improved algorithm.

TABLE 1 Segmentation performance of different algorithms.

Algorithm Dice similarity 
coefficient

Root 
mean 
square 
error

Average 
time (s)

FCM 0.85 0.117 146

Improved FCM 0.91 0.097 107

CNN 0.93 0.095 101
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the performance of CNN with that of FCM and improved FCM 
algorithms allows for the assessment of whether deep learning 
methods offer significant advantages in handling medical imaging 
tasks such as ICH volume prediction and image segmentation. 
Through this comparison, a more rigorous performance evaluation 
of the improved FCM algorithm can be conducted. If the improved 
FCM algorithm performs comparably to or better than the CNN 
algorithm on certain metrics, it would validate the effectiveness of 
these enhancements. Conversely, if the CNN algorithm significantly 
outperforms the improved FCM algorithm, it may indicate that deep 
learning methods are more suitable for handling complex imaging 
tasks. Additionally, this comparison provides insights into the relative 
strengths and weaknesses of the three algorithms for various clinical 
applications. For example, while CNN may offer superior accuracy, 
it requires higher computational resources; in contrast, FCM 
algorithms may be easier to implement and consume fewer resources. 
By comparing performance, researchers can select the most 
appropriate algorithm based on specific clinical needs. The 
experimental results indicate that the CNN algorithm exhibited the 
lowest errors when processing both types of CT images, 
demonstrating strong adaptability and accuracy, particularly in 
handling complex or noisy images. The improved FCM algorithm 
showed moderate performance on noisy and original CT images, 
with some improvement over the traditional FCM algorithm but still 
lagged behind the CNN algorithm. The traditional FCM algorithm 
had higher errors in both types of images, especially in noisy CT 
images, reflecting relatively poorer performance. This suggests that 
the CNN algorithm has a significant advantage in volume prediction 
tasks, particularly in processing noisy CT images, where its 
robustness and predictive accuracy outperform both the traditional 
and improved FCM algorithms.

Based on the experimental results presented in this study, the 
CNN algorithm outperformed on all three performance metrics—
precision, sensitivity, and specificity—demonstrating the best overall 
performance in lesion volume prediction. It not only achieved higher 
accuracy in detecting and predicting lesion areas but also excelled in 
minimizing false positives. The improved FCM algorithm showed 
significant advancements over the traditional FCM algorithm, 
particularly in sensitivity and precision, approaching the performance 
of the CNN algorithm. However, it still fell short of the CNN in terms 

of specificity. The traditional FCM algorithm performed poorly 
across all metrics, indicating a tendency for both missed detections 
of lesions and false positives in normal tissue. The introduction of the 
CNN algorithm substantially enhanced the accuracy and reliability 
of lesion volume predictions, underscoring its higher clinical value 
for practical applications. The improved FCM algorithm also 
demonstrated good performance but did not reach the level of the 
CNN algorithm. The traditional FCM algorithm, on the other hand, 
showed clear limitations in this task. The CNN algorithm excelled in 
segmentation performance, achieving the highest Dice similarity 
coefficient and the lowest RMSE, while also processing images at the 
fastest speed, highlighting its superiority in image segmentation 
tasks. Although the improved FCM algorithm showed significant 
improvement over the traditional FCM in terms of Dice similarity 
coefficient and RMSE, and also had reduced processing time, it still 
fell short compared to the CNN algorithm. The traditional FCM 
algorithm underperformed across all three metrics, particularly in 
processing time, indicating deficiencies in both efficiency and 
accuracy for practical applications. In image segmentation tasks, the 
CNN algorithm stands out as the best choice due to its higher 
accuracy and efficiency. The improved FCM algorithm offers 
enhanced performance but still lags behind the CNN algorithm. The 
traditional FCM algorithm remains relatively weaker across all 
metrics and is best suited for situations with less demanding 
requirements or limited resources.

In predicting small and medium volumes of ICH, the CNN 
algorithm demonstrated the best performance, with the lowest 
absolute and relative errors, indicating its strongest predictive 
capability within these volume ranges. The improved FCM algorithm 
slightly outperformed the CNN algorithm in predicting large volumes 
of hemorrhage but showed somewhat lower performance compared 
to CNN for small and medium volumes. Overall, the improved FCM 
algorithm represents a significant enhancement over the traditional 
FCM algorithm. The traditional FCM algorithm exhibited weak 
performance across all volume ranges, particularly with significantly 
larger errors in predicting large-volume hemorrhages, highlighting its 
inefficacy in handling complex or large-volume hemorrhages. For 
predicting hemorrhage volume, the CNN algorithm has a clear 
advantage for small and medium volumes, while the improved FCM 
algorithm shows slight superiority for large volumes. The traditional 
FCM algorithm performed relatively poorly, with prediction accuracy 
across all volume ranges falling short of the other two algorithms. In 
terms of computational efficiency and accuracy, the CNN algorithm 
also performs exceptionally well, making it particularly suitable for 
clinical environments with high real-time requirements. However, it 
does have a drawback in memory usage. The improved FCM 
algorithm, while more efficient than the traditional FCM algorithm, 
maintains a relatively balanced memory usage, making it suitable for 
scenarios with limited resources but requiring a certain level of real-
time performance. Although the traditional FCM algorithm has lower 

TABLE 2 Comparison of ICH volume between two algorithms.

ICH volume Absolute error in hemorrhage volume (mL)
FCM Improved FCM CNN

Relative error in hemorrhage volume (%)
FCM Improved FCM CNN

<5 mL (n = 70) 0.64 ± 0.34 0.51 ± 0.46 0.49 ± 0.35 0.31 ± 0.15 0.35 ± 0.37 0.34 ± 0.27

5–25 mL (n = 102) 2.67 ± 1.84 1.48 ± 1.34 1.45 ± 1.16 0.24 ± 0.13 0.17 ± 0.06 0.15 ± 0.05

>25 mL (n = 84) 18.26 ± 12.71 7.56 ± 5.19 7.61 ± 4.72 0.24 ± 0.16 0.10 ± 0.08 0.12 ± 0.06

TABLE 3 Comparative analysis of algorithm applicability and advantages.

Index FCM Improved FCM CNN

Computation Time 

(s/image)

1.46 1.07 1.01

Latency (s) 1.50 1.12 1.05

Throughput (FPS) 0.68 0.93 0.95

Memory usage (MB) 524 618 640
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memory usage, it underperforms in computation time and 
throughput, making it more appropriate for clinical tasks where real-
time performance is less critical. These evaluations enable more 
targeted algorithm selection in clinical environments, aligning with 
the specific needs of different application scenarios.

By comparing with advanced CNN algorithms, it can be analyzed 
that the improved FCM algorithm proposed in this study still requires 
further enhancement in several aspects and exhibits some gaps 
relative to the CNN algorithm. The CNN algorithm possesses 
powerful feature extraction capabilities, enabling it to automatically 
extract multi-layered, high-dimensional features from images. In 
contrast, both the traditional FCM and the improved FCM algorithms 
primarily rely on manually designed features and clustering strategies. 
This disparity results in the CNN algorithm achieving higher 
accuracy in handling complex image tasks, particularly in capturing 
subtle structures and intricate shapes. To further enhance the feature 
extraction capabilities of the FCM algorithm, incorporating more 
sophisticated feature extraction methods or integrating some feature 
extraction layers from deep learning models to create a hybrid model 
could address these limitations. Due to its deep learning architecture, 
the CNN algorithm demonstrates strong generalization ability, 
maintaining high performance across different image datasets. In 
contrast, the FCM algorithm and its improved version may exhibit 
less stability when confronted with variations in datasets or noise 
interference. To enhance the generalization capability of the improved 
FCM algorithm, strategies such as data augmentation, regularization 
methods, and the integration of other types of learning algorithms 
can be  employed to improve model performance across various 
datasets. The CNN algorithm is particularly effective at handling 
complex structures in images, such as edges and textures, and 
performs exceptionally well in processing multimodal medical 
images. In contrast, the improved FCM algorithm may rely on 
parameter tuning and empirical rules when dealing with complex 
image structures, demonstrating less flexibility and adaptability. To 
address these limitations, adaptive parameter adjustment mechanisms 
could be introduced into the FCM algorithm, or multi-scale analysis 
methods could be integrated to enhance its capability in processing 
complex image structures. Although the improved FCM algorithm 
might outperform CNN in terms of computational efficiency and 
resource consumption, it may reveal shortcomings under high-
precision requirements, especially during large-scale data processing. 
CNN’s advantage in parallel computing allows it to handle vast 
amounts of data more efficiently without significant loss of accuracy. 
To bridge this gap, efforts could be  made to optimize the 
computational workflow of the FCM algorithm by incorporating 
parallel computing techniques or GPU acceleration, while preserving 
its resource efficiency. Additionally, exploring the design of 
lightweight models could further improve computational efficiency 
while maintaining accuracy.

In other research, Balakrishnan et al. focused primarily on the 
early detection and diagnosis of cardiovascular diseases, particularly 
leveraging medical image processing techniques (Balakrishnan and 
Ambeth Kumar, 2023). The study utilized Internet of Things (IoT)-
based devices to collect patient health records and echocardiogram 
images. The research involved preprocessing and segmenting these 
images, followed by classification and cardiac risk prediction using 
deep learning techniques. Specifically, image segmentation was 
performed using the FCM algorithm, while classification employed a 

pre-trained recurrent neural network (PRCNN). The results 
demonstrated that the proposed method achieved an accuracy of 
99.5%, surpassing current state-of-the-art technologies. This 
underscores the extensive application of clustering algorithms, 
particularly FCM, in medical image segmentation. However, with 
advancements in medical imaging technology and increasing data 
complexity, traditional clustering algorithms face several challenges, 
including sensitivity to noise, high computational complexity, and 
limited ability to handle complex structural shapes. Therefore, 
researchers have sought to enhance these algorithms through various 
approaches to improve their application effectiveness in medical 
imaging. Scholars have improved traditional clustering algorithms by 
integrating spatial information of pixels, enabling them to handle 
noise and local inconsistencies in medical images more effectively. 
This approach can enhance both the accuracy and robustness of 
segmentation. Additionally, combining clustering algorithms with 
deep learning techniques can further improve medical image 
segmentation performance. For instance, integrating FCM with CNN 
to create a hybrid model can leverage CNN’s feature extraction 
capabilities to enhance the segmentation performance of the 
clustering algorithm.

The study by Liao et  al. primarily focused on analyzing 
ultrasound images of Duchenne muscular dystrophy (DMD) 
patients using deep learning and clustering algorithms (Liao et al., 
2024), aiming to predict patients’ mobility and assess the severity of 
the disease. The research employed k-means and FCM clustering 
algorithms to reconstruct texture features of the DMD dataset, and 
various classification models were used to evaluate the accuracy of 
disease stage and mobility function recognition. The results 
demonstrated that deep CNNs VGG-16 and VGG-19 achieved an 
accuracy of 98.53% in classifying mobility function, with VGG-19 
achieving an accuracy of 92.64% in classifying disease severity. The 
study indicated that reconstructing texture features with clustering 
algorithms, combined with machine learning and deep learning 
techniques, can effectively assist in identifying DMD symptoms and 
tracking disease progression. Similarly, our study can explore the 
application of clustering algorithms to the segmentation of ICH 
lesions in CT images by reconstructing texture features of the CT 
images to enhance the clarity and separability of the lesion regions. 
This approach may assist in more accurately identifying and 
segmenting ICH lesions, particularly in cases where boundaries are 
unclear or noise levels are high. The study can draw upon these 
ideas by attempting to integrate various features of CT images—
such as density, texture, and shape—using clustering algorithms to 
classify and aggregate different features, thereby improving the 
segmentation of ICH lesions. Additionally, it may be beneficial to 
introduce deep learning models to refine the preliminary 
segmentation results based on the improved FCM algorithm, 
further enhancing the accuracy and robustness of the segmentation. 
The combination of deep learning and clustering algorithms could 
provide a more powerful tool for the automatic segmentation of 
ICH lesions.

It is important to note that in practical applications, the sources 
and quality of medical images may vary. Therefore, when the methods 
proposed in this study are applied to new clinical scenarios, additional 
tuning and validation may be  required to ensure the algorithm 
continues to perform well on new data. This limitation serves as a 
reminder to researchers and clinicians to carefully evaluate the 
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algorithm based on specific application contexts to avoid misjudgments 
or misdiagnoses due to insufficient generalization ability. In addition 
to using a broader dataset, researchers could explore cross-domain 
validation or test image data from different hospitals and equipment. 
This approach helps to verify the robustness and generalization 
capability of the algorithm, ensuring its reliability under different 
imaging conditions. Additionally, the complexity of the proposed 
algorithm implies that its implementation in actual clinical settings 
may face challenges. Clinical personnel may need a high level of 
expertise and technical background to properly understand and apply 
the algorithm. Additionally, implementing the algorithm may require 
additional computational resources and technical support, such as 
high-performance computing devices or specialized software 
environments, which could pose a barrier for some medical 
institutions. Furthermore, this study primarily focused on improving 
and enhancing the algorithm’s performance rather than extensive 
clinical validation. Although the algorithm demonstrated good results 
on the utilized dataset, there is a lack of broad clinical validation across 
diverse patient datasets. This means that the applicability of the 
research findings to other clinical scenarios or different patient types 
remains uncertain, potentially limiting the credibility of widespread 
application. Future plans include developing user-friendly software 
tools or interfaces that encapsulate the complex algorithm into 
straightforward operational workflows, allowing clinical personnel to 
use the tool without needing a deep understanding of the technical 
details. Detailed technical guidelines and training resources will 
be  provided to help clinical technicians acquire the necessary 
knowledge and skills. Exploration of optimized versions of the 
algorithm will aim to reduce computational resource requirements, 
enabling it to operate on standard medical equipment. Concurrently, 
multi-center studies should be  conducted, utilizing datasets from 
different hospitals and diverse patient populations to perform extensive 
clinical validation of the algorithm. Collaboration with clinicians and 
radiology experts will be  essential to evaluate the algorithm’s 
performance in real clinical environments and make improvements 
based on feedback. Expanding the algorithm’s application to more 
disease types or imaging modalities will be crucial for validating its 
generalizability and reliability across different clinical adoptions.

Conclusion and suggestions

Conclusion

This work primarily focused on the segmentation of brain CT 
images and proposed a comprehensive and effective segmentation 
method. However, it lacked detailed processing and did not include a 
thorough data comparison. Future research could explore additional 
aspects and integrate insights from various fields. Regarding the 
follow-up research work of the paper, it intended to improve the 
segmentation theory in this work to further improve the accuracy of 
the segmentation results. To enhance the neighborhood spatial 
information, adjustment factors can be introduced for optimization, 
taking into account pixel correlations. Additionally, combining 
complementary segmentation methods can improve the algorithm’s 
efficiency and accuracy. The improved FCM algorithm and its 
hemorrhage region segmentation technique successfully achieved the 
separation and delineation of unclear and incomplete hemorrhage 

edges in CT images. This approach significantly enhanced noise 
resistance and accelerated the segmentation process.

Based on a comprehensive review of existing literature and 
research findings, this study focused on developing a computer-aided 
diagnostic system for CT images. The system encompasses the 
segmentation of hemorrhage regions and the quantification of 
hematoma volumes. These advancements assist clinicians in rapidly 
and accurately assessing patient conditions, particularly in 
determining hematoma volumes, thereby facilitating the formulation 
of effective treatment plans. This study holds significant practical value 
for clinical applications.

Innovations and advantages

This work mainly introduced the whole process from ICH CT 
original image to final ICH lesion segmentation. First, the DICOM file 
was converted into a BMP image. Then, the images were preprocessed. 
To reduce the interference of other tissues such as the skull on the 
extraction of the lesion area, the intracranial structure extraction 
operation was performed. Finally, the intracranial structure was 
clustered, and the ICH lesion was extracted by the region growing 
algorithm on the classified images.

This work proposed two improvements: first, addressing the issue of 
identical boundary weights selected by the LOG operator during image 
preprocessing; and second, incorporating a boundary intensity detector 
into the LOG operator to measure the intensity of selected edge points at 
each zero-crossing. By employing the enhanced LOG operator for edge 
extraction in this study, false edge points can be effectively filtered out, 
resulting in clear and accurate edge delineation.

The second improvement point was that the FCM algorithm did 
not consider the spatial information of pixels in the clustering process 
to improve. A significant improvement in this study is the 
incorporation of spatial information into the definitions of the 
membership function and the objective function. This method can 
perform accurate and efficient segmentation of ICH lesions without 
prior manual intervention, and was insensitive to noise.

According to the ICH lesion segmentation workflow proposed in 
this study, ICH CT images were processed. Experimental results 
indicated that the algorithm can accurately segment ICH lesions even 
when the hemorrhage regions are adjacent to surrounding tissues. The 
algorithm demonstrated effective segmentation and can offer essential 
technical support for the subsequent measurement of bleeding 
volume, thereby exhibiting notable clinical value.

Suggestions

This study has several areas that require further improvement. 
Firstly, the analysis primarily focused on traditional image 
processing algorithms within the context of algorithm research. 
Looking ahead, future research aims to integrate lesion 
segmentation with machine learning methods to enhance both 
the speed and accuracy of the segmentation process. Second, 
learning three-dimensional (3D) reconstruction technology can 
reconstruct the extracted lesions in 3D, which is more helpful for 
the quantification of lesion volume, diagnosis, and pathological 
localization research.
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Medical image segmentation plays a vital role in many medical 
imaging applications. The methods for medical image segmentation 
are primarily categorized into automatic and semi-automatic 
approaches. In future study and research, we  should focus on 
researching automated algorithm segmentation to make the 
processing of medical images more accurate and intelligent.
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