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Identifying natural inhibitors
against FUS protein in dementia
through machine learning,
molecular docking, and
dynamics simulation

Darwin Li*

Computer Science and Design Department, Upper Canada College, Toronto, ON, Canada

Dementia, a complex and debilitating spectrum of neurodegenerative diseases,

presents a profound challenge in the quest for e�ective treatments. The FUS

protein is well at the center of this problem, as it is frequently dysregulated in

the various disorders. We chose a route of computational work that involves

targeting natural inhibitors of the FUS protein, o�ering a novel treatment strategy.

We first reviewed the FUS protein’s framework; early forecasting models using

the AlphaFold2 and SwissModel algorithms indicated a loop-rich protein—

a structure component correlating with flexibility. However, these models

showed limitations, as reflected by inadequate ERRAT and Verify3D scores.

Seeking enhanced accuracy, we turned to the I-TASSER suite, which delivered

a refined structural model a�rmed by robust validation metrics. With a reliable

model in hand, our study utilized machine learning techniques, particularly the

Random Forest algorithm, to navigate through a vast dataset of phytochemicals.

This led to the identification of nimbinin, dehydroxymethylflazine, and several

other compounds as potential FUS inhibitors. Notably, dehydroxymethylflazine

and cleroindicin C identified during molecular docking analyses—facilitated by

AutoDock Vina—for their high binding a�nities and stability in interaction with

the FUS protein, as corroborated by extensive molecular dynamics simulations.

Originating from medicinal plants, these compounds are not only structurally

compatible with the target protein but also adhere to pharmacokinetic

profiles suitable for drug development, including optimal molecular weight and

LogP values conducive to blood-brain barrier penetration. This computational

exploration paves the way for subsequent experimental validation and highlights

the potential of these natural compounds as innovative agents in the treatment

of dementia.

KEYWORDS

dementia, FUS protein, machine learning, molecular docking, molecular dynamic

simulation

1 Introduction

Dementia represents the most prominent reason behind the defects associated
with the individual’s cognitive functions that are mostly related to aging making
them completely dependent to caretakers. Almost 55 million people are found to
be suffering from dementia, and this number is expected to be doubled by the
year 2050 (GBD 2019 Dementia Forecasting Collaborators, 2022). Patients suffering
from dementia face difficulties in controlling their emotions and social behavior and
interaction with other people (Emmady and Tadi, 2022). Certain neurodegenerative
disorders that are the closely linked to dementia include Alzheimer’s disease,
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lewy body dementia and frontotemporal dementia, where the most
significant cases arising due to Alzheimer disease i.e., 75% and
the other representing 5% to 10% of all dementia patients (Qiu
et al., 2009). Some other diseases contributing to dementia include
Parkinson disease, vascular dementia due to brain injury, alcohol,
and smoking affecting brain. The complex mechanism behind
the development of dementia remains largely unknown and the
only assumption behind the development of dementia include
deposition of certain proteins in affecting the normal functioning
of brain thus causing behavioral changes and speaking abnormality
(Zagórska et al., 2023).

Accumulation of α-synuclein in neuronal cells lead to the
development of lewy body dementia and the development
of dementia related psychosis and impairment in visuospatial
function (Garcia-Esparcia et al., 2017). Frontotemporal dementia
characterization has been made by the accumulation of subsequent
disordered proteins in gray and white matter of brain (De Conti
et al., 2017). Cerebral ischemia and hemorrhagic injury to the
certain tissue can lead to vascular dementia (Kalaria, 2016).

The diagnosis for dementia is based on the patient history
of impairment in daily activities and cognitive decline following
the investigation by close friend or family members along with in
detail examination by physician to get further confirmation. Brain
neuroimaging can also be referred for detection of changes in brain
structure (Arvanitakis et al., 2019).

There are certain FDA approved drugs to minimize the effects
of dementia related disorders in brain. Donepezil, galantamine,
and rivastigmine are the drugs that are currently being utilized in
treatment of dementia (Marucci et al., 2021). There is still no FDA
approved drug has been available for lewy body dementia. However,
the purpose of each medication is to treat the dementia related
symptoms and no drug particularly targets dementia (Zagórska
et al., 2023).

The target-based drug designing approach has been utilized
by most of the researchers to find the most probable drug targets
against a particular disease but with confounding increase in multi-
omics data there is need to bridge the gap between drug discovery
and development against a particular disease via machine learning
(Doherty et al., 2023). To explore the dementia linkage to the
genetic and abnormal changes in brain the most viable method is
to utilize machine learning based approaches for identification of
therapeutic targets against dementia.

The present study focuses on the identification of natural
inhibitors against FUS protein in dementia by utilizing machine
learning approaches then validating the potential targets by
molecular docking and dynamic simulation studies. Further studies
on the development of inhibitors against the FUS protein would be
increasingly helpful in near future to develop effective drugs.

2 Methods

2.1 Structure prediction of FUS protein

The FUS proteins three dimensional (3D) structure was
not present, in the RCSB Protein Data Bank (PDB). Hence
three different programs I-TASSER (https://zhanggroup.org/
I-TASSER/) (Zhang, 2008), SwissModel (https://swissmodel.

expasy.org/) (Schwede et al., 2003), and AlphaFold2 (https://
colab.research.google.com/github/sokrypton/ColabFold/blob/v1.
1-premultimer/AlphaFold2.ipynb) (Cramer, 2021) were used to
predict the proteins structure. These tools were chosen for their
proven effectiveness in predicting protein structures. Following
the predictions a thorough quality assessment was carried out to
gauge the reliability and accuracy of the models generated. The
assessment involved steps. Initially the overall structural quality
was evaluated using the ERRAT score, which measures alignment
with expected parameters quantitatively. Subsequently hydrogen
atoms were incorporated into the 3D structures using UCSF
Chimera (Huang et al., 2014) to improve accuracy for analyses.
Additionally, the proteins structural integrity was examined
through a Ramachandran plot to gain insights, into backbone
torsion angle distribution.

2.2 Machine learning-based virtual
screening of natural compounds against
FUS protein

2.2.1 Data collection
After conducting an extensive literature review to gain insights

into the molecular interactions associated with FUS protein,
the resulting dataset described in binary format was obtained.
Overall, it included a set of 463 active molecules with distinct
activity toward FUS proteins considered as “1” and a set
of 575 decoys containing either inactive or undetermined for
FUS protein interaction molecules considered as “0.” Thus, the
compiled dataset includes a variety of 1,038 entity compendium.
The dataset consolidation process was carried out systematically
and was designed to support machine learning ML frameworks
and further use for prospective virtual drug screening. Thus,
the dement dataset comprises a wide scope of molecules
suitable for the development, configuration, and efficacy-testing
of predictive models associated with possible interactions of
FUS protein.

2.2.2 Molecular descriptor generation
Following the collection of the FUS-targeted chemical

compounds and proteins in Section 1.1, the dataset was processed
further in a Python computational environment where the
molecules were defined as pandas DataFrames structured around
a Simplified Molecular Input Line Entry System using a SMILES
notation. The SMILES were label “activity” as a descriptor for
each chemical entity depending on its effect on FUS protein.
In the course of different analysis, this data needed to be split
up into predictors and responses. For effective learning and
evaluation on algorithms which will follow the data was split
into training 80% of the all available entities and test 20%
datasets using Scikit-learn package’s train_test_split function.
The balance on the amounts of active and inactive entities
had to be maintained. The SMILES notations were converted
into characteristics. Using the RDKit library (Lovrić et al.,
2019) each entity was assigned a set of 33 molecular attributes,
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including properties, like LogP, Molecular Weight (MW) and
several others.

2.3 Implementation and evaluation of ML
models

In the study a thorough classification process was used on
the data to distinguish between inactive compounds. Various
machine learning algorithms, like Support Vector Machine (SVM)
(Pisner and Schnyer, 2020), K-Nearest Neighbors (KNN) (Zhang,
2016), Naive Bayes (NB) (Webb et al., 2010), and Random
Forest (RF) (Rigatti, 2017) were applied. The use of cross
validation and grid search methods, with Scikit learn played
a role in improving the models effectiveness. SVM’s various
applications involve regression, as well as linear and non-
linear classifications. We implemented the svm.SVC() function.
We set the “gamma” parameter value to ‘scale’ to align the
sensitivity of the model with the dataset’s features. A grid
search was initiated for both “linear” and “rbf” kernels. KNN
works on the principle of distances in the feature space.
We applied the neighbors.KNeighborsClassifier() function. We
tested different neighborhood sizes using a range of one
to ten.

The Naive Bayes model is based on Bayes’ theorem and
assumes that the features are independent of each other.
We incorporated the naive_bayes.GaussianNB() function. NB
does not require hyperparameter tuning. Random Forest is an
ensemble methodology, which integrates many decision trees.
We imported the ensemble.RandomForestClassifier(). Initially,
we set the number of trees in the random forest to 100. A
grid search was conducted to explore the potential range of
forest sizes, from 50 to 200, setting “random_state” to 1 for
reproducibility. Validation: After model implementation, model
training was validated using a 5-fold cross-validation to guarantee
the model’s performance stability irrespective of the data splits. For
hyperparameter optimization, GridSearchCV was used. Different
evaluation metrics such as recall, precision, F1-score, accuracy, and
AUC-ROC were used to analyze the model performance, whereas
AUC-ROC places more emphasis on the model’s discriminative
power in distinguishing active compounds from inactive ones.
The final model was serialized using Python’s pickle module. This
process converts the trained model to a file format that is storable
and can be used for future predictions, avoiding the unnecessary
retraining of the model.

2.4 Re-screening with FDA approve-drugs

On the basis of the serialized model, we aimed to validate
the model on a novel set of 12,903 phytocompounds, retrieved
from databases such as PubChem (Wang et al., 2009), ChEMBL
(Gaulton et al., 2012), and ZINC (Irwin and Shoichet, 2005). These
compounds underwent similar preprocessing as in our original
training set. The compounds were classified using the serialized
model. We further refined putative therapeutics by checking for

violation of Lipinski’s Rule of Five and focusing on compounds with
QED scores over 0.8 as potential FUS interactors.

2.5 Molecular docking analysis

In order to assess the affinity of drugs for target proteins,
molecular docking analysis was carried out. This approach verifies
the involvement of major target protein with drugs and thus
helps in identifying possible drug combinations that can have
synergetic effects in disease therapy. This study used AutoDock
Vina 1.1.2 tool in PyRx (Dallakyan and Olson, 2015) 0.8 to dock
hub proteins’ predicted x-ray crystal structures against drugs’
active ingredients as described by Dallakyan and Olson (2015).
The compound were obtained from Pubchem database in SDF
formats then processed through OpenBabel incorporated within
PyRx for energy minimization purposes; while maintaining a stable
conformation using Universal Force Field (UFF) and conjugate
gradient descent optimization algorithm. The energy minimization
procedure ran up to 2,000 steps after which it stopped when the
difference in energy was <0.01 kcal/mol After minimizing the
energy, the ligands were converted into pdbqt format for docking.
Online CASTp tool was applied to identify binding pockets of target
proteins. PyRx 0.8 was employed in performing afterwards the
target docking approach to determine the binding energies between
ligand molecules and target proteins. For evaluation of protein-
compound interactions, Autodock Vina provides an empirical
scoring function that sums up contributions from different factors.
The complex with the lowest RMSD was taken as the most
optimal one in terms of their ability to bind the protein. Energy
values were then calculated based on their affinities with <-
5.00 kcal/mol indicating strong binding and values below −7.00
kcal/mol signifying a very high affinity. Discovery Studio, PyMOL,
and ChimeraX are some of the software tools used for this purpose.

2.6 Molecular dynamic simulations

Molecular Dynamic (MD) simulations are a complete atomic
representation of molecular dynamics and are essential for
understanding intricate biological interactions. GROMACS 2018
software (Van Der Spoel et al., 2005) were applied in this study
to simulate the dynamics of docked complexes. Specifically, the
GROMACS simulations were conducted with a time step of
2 fs, over a total duration of 100 ns. The temperature was
maintained at 300K using the Berendsen thermostat, and pressure
control was achieved through the Parrinello-Rahman barostat.
We selected the OPLS-AA/L force field due to its reliability
in accurately modeling protein-ligand interactions, especially for
systems like ours involving small molecules interacting with
proteins. The simulations started with initial structures obtained
from the protein’s 3D structure, which were optimized using
DockPrep. In beginningMD simulations, we used the complex that
exhibited highest binding affinity with their initial positions as per
docked states. SwissParam web server was used to parameterize
ligand molecules. These simulations followed protocols based on
previous studies over a 20 ns span. Various parameters such as
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radius of gyration, RMSD (Root Mean Square Deviation), Rog
(Radius of Gyration), and Root Mean Square Fluctuation (RMSF)
were employed to evaluate stability and interaction dynamics of
each complex.

3 Results

3.1 3D structure of FUS protein

The FUS protein structure was initially predicted using
AlphaFold2 and SwissModel, two well-established tools in the field
of protein structure prediction. AlphaFold2 is renowned for its
state-of-the-art performance in predicting protein structures with
remarkable accuracy, as demonstrated in the Critical Assessment
of protein Structure Prediction (CASP) competition (Cramer,
2021). It excels in predicting structures based on deep learning
algorithms, particularly when homologous sequences are available.
SwissModel, on the other hand, is a homology-based tool that
generates models by aligning the target protein with known
structures in the Protein Data Bank (PDB). It is highly reliable when
template structures are available, offering an easy-to-use interface
for structure prediction (Schwede et al., 2003).

However, in the case of the FUS protein, both AlphaFold2 and
SwissModel produced models with significant loop regions. While
loop regions are common in proteins, they often indicate areas
of flexibility or structural uncertainty that can compromise the
overall model accuracy, especially when homologous templates or
sufficient evolutionary data are lacking. The ERRAT and Verify3D
scores for these initial models were below acceptable thresholds,
raising concerns about the reliability of these predictions.
Specifically, the low Verify3D scores suggested that many residues
had improper 3D environments, and the ERRAT results indicated
deviations from the expected chemical environment for well-
folded proteins.

To overcome these limitations, we turned to I-TASSER
(Iterative Threading ASSEmbly Refinement), which uses a
more comprehensive approach to protein structure prediction.
Unlike AlphaFold2 and SwissModel, which rely heavily on
deep learning or homology-based modeling, I-TASSER integrates
multiple threading alignments with iterative structural assembly
simulations. This allows I-TASSER to refine predicted structures
by assembling fragments from similar proteins, even when
homologous templates are absent or incomplete (Zhang, 2008). For
the FUS protein, I-TASSER generated a model with significantly
improved structural features.

The Ramachandran plot of the I-TASSER model revealed that
80.0% of the residues were in the most favorable regions, with only
1 residue in a less favorable region and none in disallowed regions.
This contrasts sharply with the initial AlphaFold2 and SwissModel
predictions. Additionally, the ERRAT score improved to 79.12,
indicating a much higher degree of structural integrity. The
Verify3D assessment further confirmed that 98.08% of the residues
had favorable 3D-1D compatibility, suggesting that the protein’s
3D structure was well-aligned with its primary sequence (Figure 1,
Table 1). Thus, while AlphaFold2 and SwissModel are powerful
tools, they may struggle with proteins like FUS that exhibit highly
flexible or loop-rich regions. I-TASSER’s combination of threading,

structural assembly, and refinement yielded a superiormodel in this
case, making it the most suitable choice for downstream analyses.

3.2 ML-based virtual screening

3.2.1 Dataset compilation and refinement
The main dataset used for this study consisted of 1,038 unique

compounds (Supplementary Table S1). Out of these, 463 were
found to be active against the FUS proteins. The remaining
575 compounds were used as decoy molecules. We thoroughly
checked the dataset to ensure its accuracy, with no missing
values or duplicate entries, making it suitable for further analysis.
During the refinement stage, we examined the molecules in detail
by converting their SMILES representation into computational
descriptors using the RDKit software package. This allowed us to
extract 33 relevant features, which will form the basis of our future
research (Supplementary Table S1). The molecular descriptors
used in this study were key to predicting how compounds
interact with the FUS protein. LogP was included to assess the
hydrophobicity of each compound, with values below 5 indicating a
good balance for crossing the blood-brain barrier (BBB). Molecular
Weight (MW), kept under 500 Daltons, was crucial for ensuring
good bioavailability and cellular penetration. The number of
Hydrogen Bond Donors and Acceptors was minimized to improve
BBB penetration, as fewer hydrogen bonds generally enhance a
compound’s ability to enter the brain. Additionally, Topological
Polar Surface Area (TPSA) was used, with lower values (below 90
Å2) favoring better bioavailability and BBB permeability. Together,
these descriptors ensured that the selected compounds were not
only effective in interacting with the FUS protein but also possessed
favorable pharmacokinetic properties for drug development.

3.2.2 Analysis of active inhibitors against FUS
protein using machine learning

The transformed data was split into a training set and a
test set (Figure 2). In our effort to classify active inhibitors
targeting FUS proteins, we used various machine learning
methods: k-Nearest Neighbors (kNN), Support Vector Machines
(SVM), Random Forests (RF), and Naive Bayes (NB). These
models were built using the sklearn library in Python, with
data obtained from the Binding DB repository. Their efficacy
was critically assessed through a range of evaluative criteria,
such as accuracy, recall (or sensitivity), specificity, Matthews
Correlation Coefficient (MCC), and the Area Under the
Curve (AUC).

On the test set, we evaluated four different models using a
metric called AUC (Area Under the Curve), which measures their
ability to classify data accurately. The RF classifier achieved an
impressive AUC of 0.9137, indicating a high true positive rate
across different thresholds while maintaining a relatively low false
positive rate (Figure 3). The kNN model performed well with an
AUC of 0.8535, followed by the SVM with an AUC of 0.7345.
However, the NB model had the lowest AUC of 0.6120, suggesting
it was less effective in accurately classifying the given data. When
we examined the training set, we found similar results with the
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FIGURE 1

Integrated analysis of protein dynamics and stability: (A, B) Residue-wise metric indicating local properties along the protein sequence. (C)

Three-dimensional ribbon representation of the protein structure highlighting secondary structural elements. (D) Ramachandran plot illustrating the

distribution of backbone dihedral angles (phi and psi), with dense regions indicating preferred conformational states.

TABLE 1 Comparative validation scores for FUS protein model.

Validation
metric

AlphaFold2 SwissModel I-TASSER

ERRAT score 59.8 65.3 79.12

Verify3D score (%) 82.5% 85.7% 98.08%

Ramachandran
favored (%)

70.0% 74.0% 80.0%

ProSA Z-Score
(recommended)

−2.5 −1.8 −3.0

QMEAN score
(recommended)

0.68 0.72 0.80

RF model outperforming the others with an AUC of 0.9967,
which is close to perfect. The kNN model also showed excellent
performance with an AUC of 0.9711, while the SVM had a lower
yet significant AUC of 0.8200. Again, the NB model had the lowest
AUC of 0.6148.

Based on these findings, RF model consistently performed
better than the other models in terms of AUC for both the training
and testing sets. This superior performance can be attributed to
RF’s ensemble nature, which reduces overfitting by combining
predictions from multiple decision trees. Additionally, RF handles
imbalanced datasets effectively and identifies the most important
features, making it well-suited for chemical datasets like ours.
In contrast, SVM relies heavily on tuning parameters, which
can limit its performance if not optimized. Naive Bayes assumes
feature independence, which is not ideal for chemical descriptors,
leading to lower accuracy. kNN was moderately successful but is
sensitive to the choice of neighbors and distance metrics, which
can affect stability in high-dimensional data. Thus, the Random
Forest model’s ability to accurately classify molecules based on
their properties makes it an ideal choice for virtual screening of
phytochemicals as natural inhibitors against FUS protein. By using
this model, researchers can efficiently identify potential candidates
from a large pool of compounds, saving time and resources in the
initial stages of drug development.
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FIGURE 2

Provides a multi-faceted graphical analysis of chemical compounds, comparing training and test data based on various molecular descriptor. Scatter

plots illustrate the relationship between molecular refractivity and polar surface area, and the correlation between valence electrons and aromatic

ring count, revealing trends and outliers in the dataset. A box plot details the distribution of rotatable bonds across di�erent ring counts, indicating

variability that does not strongly correlate with the ring count. Lastly, a scatter plot comparing the Chi0 and Balaban J indices suggests a complex

relationship between these molecular connectivity descriptors. (A) MoIMR vs. TPSA. (B) RingCount vs. NumRotatableBounds. (C)

NumValenceElectrons vs. NumAromaticRings. (D) Chi0 vs. Balaban J.

FIGURE 3

Performance comparison of four machine learning classifiers: k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Random Forest (RF), and

Naive Bayes (NB).

3.3 Screening of phytocompounds library

Using the power of the RF model, we carefully reviewed
FDA-approved drugs for neurodegenerative diseases to see if they
could be effective against the FUS protein. We screened a large
number of drugs and selected 9,583 based on specific criteria
(Supplementary File 3). The way a drug moves through the body,
including how it’s absorbed, distributed, metabolized, and excreted

(ADME), is influenced by its own molecular properties. Certain
factors like molecular weight (MW), number of hydrogen bond
donors, number of hydrogen bond acceptors, and the octanol-water
partition coefficient (LogP) play a crucial role in determining how
a drug works and how effective it can be. From our analysis, we
consistently found that the chosen drug candidates had Molecular
weights under 500 Daltons. This indicates an optimal size for
easy entry into cells and better availability in the body (Figure 4).
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FIGURE 4

A multi-panel display characterizes the physicochemical properties of drug-like and high-QED compounds. Histograms and density plots (A) reveal

the distribution of QED scores, while violin and bar plots (B, C, F) compare the molecular weights and counts of compounds in each category.

Swarm and strip plots (D, E) provide detailed distributions for hydrogen bond acceptors and lipophilicity (LogP) respectively, delineating the spread of

these properties within the dataset.

The selected compounds had <5 hydrogen bond donors: These
drugs have fewer components that can form hydrogen bonds with
other molecules. They also have fewer sites where they can accept
hydrogen bonds from other molecules. Lastly, the LogP values
under five shows a good balance between being soluble in both
water and fat, which helps with distribution in the body. All these
characteristics make these drugs more likely to interact effectively
with biological molecules and be absorbed well by the body. They
also have an ideal balance between hydrophilicity and lipophilicity,
which is important for their distribution in different parts of
the body.

The RFmodel then assessed these drugs, and intriguingly, 5,903
of them were predicted to have a potential active interaction with
the FUS protein, as detailed in Supplementary File 4. Further after
applying Threshold on QED value, a few were selected for docking
analysis. The prediction that nearly 6% of the screened drugs might
be effective against FUS is significant.

3.4 Molecular docking analysis

Molecular docking analysis were conducted by using software
AutoDock Vina through the PyRx virtual screening tool to

determine the interaction between the different compounds with
the FUS protein. The CASTp tool was used to determine the
binding pocket, as shown in Figure 5 and Table 2. The docking
results revealed the binding efficiencies and stabilities of different
compounds with the FUS protein. Compound nimbinin showed
a high binding affinity i.e., 9.74 kcal/mol with RMSD 1.42 Å
implies a consistent docking pose. Dehydroxymethylflazine
was even found to have a higher binding affinity i.e., 10.17
kcal/mol with RMSD 1.59 Å suggested a high interaction with
slightly higher structural deviation upon binding. The complex
molecule [2-(9H-pyrido[3,4-b]indol-1-yl)furan-3-yl]methanol
presented a binding affinity of 9.13 kcal/mol and an RMSD
of 1.85 Å, which may reflect a secure yet less defined binding
conformation. 4-methoxydianthramide B demonstrated a
binding affinity of 8.95 kcal/mol and exhibited the lowest
RMSD at 1.02 Å among the tested compounds, indicating
a highly congruent fit within the FUS protein’s active site.
Cleroindicin C identified with a substantial binding affinity
of 10.12 kcal/mol and the smallest RMSD value of 0.77 Å,
implying an exceptionally precise interaction with the protein’s
binding pocket. In summary, the docking studies suggest that
Dehydroxymethylflazine and Cleroindicin C have significant
potential as FUS protein inhibitors, given their strong binding
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FIGURE 5

Showcases molecular docking poses of various compounds within the binding sites of the FUS protein, as predicted by the CASTp tool. (A–E) Depict

the molecular interactions between FUS and the compounds nimbinin, dehydroxymethylflazine, [2-(9H-pyrido[3,4-b]indol-1-yl)furan-3-yl]methanol,

4-methoxydianthramide B, and cleroindicin C, respectively, with each compound rendered in a distinct color and the amino acid residues involved in

the interaction labeled. (F) Highlights the binding pockets on the FUS protein surface as determined by CASTp, emphasizing the potential sites of

interaction for the displayed compounds.

affinities and low RMSD values, which are indicative of stable and
precise binding.

3.5 MD simulation analysis

The FUS protein’s MD simulations in the presence of
cleroindicin C provide many insights into the complex’s stability
and binding affinity. A comparison of the structural deviations of
the protein with and without the ligand bound is demonstrated
by the analysis of the protein RMSD (Root Mean Square
Deviation) across the 100 ns simulation period, as shown in
Figure 6A. Following an initial equilibration period, the ligand-
bound FUS protein’s RMSD values appear to oscillate between
around 2.0 and 4.5 Å, indicating a stable complex. On the
other hand, the unbound protein exhibits larger variations,
which may indicate decreased stability when cleroindicin C is
not present.

The RMSF for the C-alpha atoms across the residue index
are shown in Figure 6B. The graph’s peaks indicate areas of the
protein structure that are more flexible. Multiple peaks above
4.0 Å RMSF may indicate flexible loops or domains that are

important for the protein’s interaction with cleroindicin C or for
the protein’s function. Figure 6C shows a steady percentage of
SSE during the simulated time frame, with largely unchanged α-
helix and β-sheet content. The stability observed in secondary
structural elements may indicate that the protein retains its
original shape when it binds to the ligand. The frequency of
interactions between the FUS protein residues and cleroindicin
C is displayed in the residue-wise interaction plot shown in
Figure 6E. The bars show the percentage of the simulation time
that every residue spends with the ligand within a certain
interaction distance. Remarkably, some residues show a greater
interaction frequency, suggesting important contact sites that
probably support cleroindicin C’s strong affinity for binding the
FUS protein.

Lastly, the molecular structure of cleroindicin C, as shown
in Figure 6D, implies that the compound has functional groups
that can form hydrophobic contacts, hydrogen bonds, or pi-pi
stacking, which could further support the binding affinity found
in the MD simulation results. Together, these results suggest a
stable interaction between FUS and cleroindicin C, with potential
implications for the protein’s function and the therapeutic utility
of the compound. The MD simulation demonstrates not only the
stability of the complex but also identifies critical residues that
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TABLE 2 Binding a�nity and RMSD values of top five phytocompounds against FUS protein.

Compound names Binding a�nity (kcal/mol) RMSD (Å) 2D structure

Nimbinin 9.74 1.42

Dehydroxymethylflazine 10.17 1.59

[2-(9H-pyrido[3,4-b]indol-1-yl)furan-
3-yl]methanol

9.13 1.85

4-methoxydianthramide B 8.95 1.02

Cleroindicin C 10.12 0.77
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FIGURE 6

MD Simulation Analysis of FUS Protein Interaction with Cleroindicin C. (A) After 100 ns of simulation, the RMSD of the C-alpha atoms of the FUS

protein with (blue) and without (red) cleroindicin C. (B) Flexible areas are highlighted by the FUS protein residues’ RMSF. (C) The percentage of

structural stability with time for β-sheets (orange) and α-helices (blue) is shown by the SSE. (D) Chemical structure of cleroindicin C. (E) The

frequency of interactions between cleroindicin C and FUS protein residues; the height of the bars indicates the proportion of simulation time along

ligand’ contact.
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could be essential for the high affinity binding of cleroindicin C to
the FUS protein.

After an initial period of equilibration, the RMSD values for
the FUS protein in the presence of 4-methoxydianthramide B
show a trend of stabilizing, according to MD simulation. As can
be observed in Figure 7A, the protein-ligand complex’s RMSD
trajectories fluctuate within a range that implies a stable association
throughout the simulation. Compared to the broader oscillations
seen in the absence of the ligand, the ligand-bound protein RMSD
values fluctuate around a more compact band, indicating that the
ligand’s presence may add extra stability to the protein structure.

The RMSF for the C-alpha atoms in the FUS protein is
shown in Figure 7B. The smaller frequency of variations across
most residue indices indicates a protein structure that is solid
and sustained upon ligand binding. This could indicate that 4-
methoxydianthramide B binds closely within the binding site. A
few peaks can be seen, indicating certain flexible areas that may be
crucial for the dynamic character of the protein-ligand interaction.
Over the course of the simulation, the FUS protein’s SSE, as seen in
Figure 7C, remained rather constant. The preservation of α-helices
and β-sheets indicates that the protein’s overall secondary structure
remains intact upon ligand interaction.

Figure 7D shows the highlighted chemical structure of 4-
methoxydianthramide B. Annotations (shown as dotted lines)
suggest possible hydrogen bond interactions that may be
important for the binding process. Potential hydrogen bonds
imply that the protein and ligand bind at certain high-
affinity locations. Finally, Figure 7E shows the frequency of
contact between 4-methoxydianthramide B and the residues
of the FUS protein. The bars in this Figure 7 indicate the
percentage of the simulation period that the residues are
in close proximity to the ligand. A notable frequency of
interaction is displayed by certain residues, suggesting that
these residues may serve as important points of contact within
the ligand-binding domain. Therefore, a scenario where 4-
methoxydianthramide B shows a good binding affinity with the
FUS protein is supported by the MD simulation data. This
conclusion is supported by the protein-ligand complex’s stability,
the retention of protein secondary structure, the specificity of
ligand-residue interactions, and the possibility of strong hydrogen
bonding.

Further, insights into the interaction between the FUS
protein and nimbinin was gained through simulation of the
protein complex on a 100 nanosecond timescale. The RMSD
for the FUS protein alone and in association with nimbinin is
shown in Figure 8A. Following an initial phase of adjustment,
the protein-ligand complex, represented by the blue line,
exhibits RMSD values indicating a stable connection. When
compared to the protein without nimbinin, the overall RMSD
values stay below 5.5 Å and show fewer deviation spikes,
indicating that the ligand helps to maintain the protein’s
structure. The RMSF for the protein residues’ C-alpha atoms
in Figure 8B demonstrates a variation that varies across
the protein chain. Less flexibility and greater rigidity are
indicated by lower RMSF values, which tend to occur when
nimbinin is present. There are multiple peaks in the Figure 8,
which represent areas where the protein’s structure is more

flexible by nature or where nimbinin binding may cause
conformational changes.

As shown Figure 8C, the SSE % does not change much
throughout the course of the simulation, suggesting that nimbinin
does not substantially alter the FUS protein’s overall secondary
structure. This shows that the substance may stabilize the current
structure rather than denature the protein. The molecular structure
of nimbinin is depicted in Figure 8D, highlighting possible
hydrogen bonding positions that are necessary for potent and
targeted interactions with the protein. Finally, the interaction
proportion of nimbinin with individual FUS protein residues is
shown in Figure 8E. The graph shows which residues interact
with nimbinin most frequently; these residues may represent
important binding sites. Remarkably, a few residues exhibit
an exceptionally high interaction proportion, suggesting their
potential significance in nimbinin’s binding affinity to the FUS
protein. As a result, the MD simulation results suggest that the FUS
protein and nimbinin have a persistent and possibly robust binding
relationship. Sustained RMSD values, steady SSE percentages,
and particular residue interactions with nimbinin are among the
evidence that lend credence to the theory that nimbinin has a good
binding affinity for the FUS protein, which may have consequences
for the compound’s potential therapy.

Throughout the course of 100 nanoseconds, a complete
understanding of the FUS protein in complex with [2-(9H-
pyrido[3,4-b]indol-1-yl)furan-3-yl]methanol is provided by the
MD simulation. The RMSD of the protein is shown in Figure 9A
both with and without the ligand (blue and red). Following an
initial rise, the ligand-bound protein’s RMSD shows a stabilization
tendency, with values primarily staying below 3 Å, indicating a
stable protein-ligand combination following equilibration. On the
other hand, the protein lacking the ligand exhibits larger swings
in RMSD values, which would indicate reduced stability in the
ligand-free state.

The RMSF across the residues of the protein shows diversity
with a few conspicuous peaks in Figure 9B. These peaks show areas
of the protein that are more dynamic or flexible, which may be
important for protein function or ligand binding.

The SSE %, as shown in Figure 9C, does not change throughout
the course of the simulation, indicating that the protein’s overall
secondary structure is preserved when the ligand is present. This
structural stability is important because it indicates that the native
shape of the protein is not considerably perturbed by ligand
interaction. The chemical structure of the ligand is depicted in
Figure 9D, emphasizing possible sites of interaction like donors and
acceptors of hydrogen bonds. These positions most likely play a
crucial role in important interactions that support the stability of
the binding with FUS protein residues.

Last but not least, Figure 9E’s interaction fraction plot illustrates
how frequently distinct protein residues bind with the ligand.
It is possible that some residues are essential for the ligand’s
binding affinity to the FUS protein since they show a greater
interaction fraction, which denotes a stronger or more consistent
interaction with the ligand. Together, the simulated results point
to a successful binding of [2-(9H-pyrido[3,4-b]indol-1-yl)furan-
3-yl]methanol to the FUS protein, as demonstrated by the stable
RMSD, the maintained secondary structure, and the interactions
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FIGURE 7

4-methoxydianthramide B binding insights into the FUS protein by MD simulation. (A) The FUS protein’s RMSD across a 100 ns simulation, with (blue)

and without (red) the ligand 4-methoxydianthramide B, demonstrating the stability of the protein-ligand interaction. (B) RMSF across residues of the

FUS protein, demonstrating a constant sti�ness with particular flexible areas. (C) The percentage of SSE in the FUS protein during the simulation,

showing how the structure is preserved when a ligand is bound. (D) The chemical structure of 4-methoxydianthramide B with dotted lines indicating

potential hydrogen bonding interactions. (E) A residue interaction frequency map showing the interaction between the 4-methoxydianthramide B

and the FUS protein.
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FIGURE 8

The FUS Protein and Nimbinin MD simulation’ results. (A) RMSD trajectories of the FUS protein over 100 ns showing a stable protein-ligand

combination with (blue) and without (red) nimbinin. (B) Regions of flexibility are highlighted by the RMSF for C-alpha atoms across the protein

residues. (C) The simulation timeline’s consistency in the proportion of secondary structure elements (SSEs) demonstrates the structural integrity of

the FUS in the presence of nimbinin. (D) Nimbinin’s chemical structure, showing possible hydrogen bonding positions with annotations. The

interaction frequency plot (E) illustrates the fraction of interaction between particular residues of the FUS protein and nimbinin.
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FIGURE 9

MD Simulation of the Interaction Between FUS Protein and [2-(9H-pyrido[3,4-b]indol-1-yl)furan-3-yl]methanol. (A) RMSD analysis of FUS protein

with the ligand (blue) and without (red) over 100 ns, indicating a stable complex. (B) RMSF profile for C-alpha atoms of FUS protein residues,

identifying flexible regions. (C) Percentage of secondary structure elements of FUS protein, showing the preservation of structure upon ligand

binding. (D) Chemical structure of [2-(9H-pyrido[3,4-b]indol-1-yl)furan-3-yl]methanol with potential hydrogen bonding interactions marked. (E)

Interaction fraction of FUS protein residues with the ligand, with significant interactions highlighted, suggesting key residues involved in binding.
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between certain residues. These results suggest that the compound
has a promising binding affinity for the FUS protein, which may
indicate its potential therapeutic relevance.

TheMD Simulation results for the FUS protein complexed with
Dehydroxymethylflazine over a 100 nanosecond period provide
substantial evidence of interaction and stability. From Figure 10A,
the RMSD analysis for the protein both with and without the
ligand indicates a period of stabilization post-initial equilibration.
The protein-ligand complex RMSD levels off after about 20 ns,
suggesting that Dehydroxymethylflazine may contribute to a stable
conformation of FUS. Notably, the complex shows a similar RMSD
range to the unbound protein, which might imply that the ligand
does not cause significant conformational stress.

The RMSF depicted in Figure 10B reveal specific regions of the
FUS protein that exhibit increased mobility. These fluctuations,
particularly those with higher RMSF values, might indicate regions
of the protein that are involved in the binding or are affected by the
presence of the ligand. Further, the percentage of SSE throughout
the simulation, displayed in Figure 10C, remains consistent for
the protein, showing no significant loss of structural elements
like alpha helices or beta sheets. This constancy suggests that the
protein’s secondary structure is not adversely affected by binding
with Dehydroxymethylflazine.

In Figure 10D, the chemical structure of
Dehydroxymethylflazine is presented, highlighting the functional
groups that could be involved in key interactions with the
FUS protein, such as hydrogen bonds, indicated by the dashed
lines. Figure 10E shows the interaction fraction of FUS protein
residues with the ligand. Certain residues show higher interaction
frequencies, denoting that these are likely to be the critical
contact points within the binding pocket of the protein where
Dehydroxymethylflazine may form stable interactions. Overall,
the MD simulation results suggest that Dehydroxymethylflazine
exhibits a potential for good binding affinity with the FUS protein.
This is based on the ligand’s ability to maintain a stable RMSD, the
absence of disruptive effects on the protein’s secondary structure,
and specific interactions with key protein residues. These factors
are promising for considering Dehydroxymethylflazine as a
compound that can effectively interact with the FUS protein.

4 Discussion

Dementia encompasses a family of neurodegenerative diseases
with multifactorial and largely poorly understood origin with
substantial social impact. FUS (Fused in Sarcoma) is a nuclear
protein with a strong RNA binding capacity and a crucial
regulator of many processes of RNA metabolism within neural
cells. Mutations in the gene and its transport to the cytoplasm
lead to formation of pathological aggregates of FUS which
are linked to neuronal toxicity in vivo. These insights indicate
that FUS holds a potential to become a therapeutic target
for dementia related disorders. In this study, we analyzed of
the partial structure of the FUS protein using AlphaFold2 and
SwissModel. The model revealed a primarily loop heavy tertiary
protein structure. Loops represent regions of the protein which
potentially sample a large number of possible conformations
and therefore cannot always be well determined spatially by

structural modeling. Our analysis of the ERRAT and Verify3D
scores for the initial protein structure raised concerns of the
reliability of the predicted structure. Subsequently more advanced
models of protein structure were generated using the more
reliable I-TASSER suite yielding a model with much better Rao-
Z score, ERRAT, and Verify3D scores. This powerful model
was then used as a basis for the following docking studies. To
further improve our approach, we turned to machine learning
methods to screen through a large set of potential inhibitors.
Using the Random Forest (RF) algorithm, which proved itself
a better performer than other tested methods in predicting
the efficacy of the compounds, we finally selected nimbinin,
dehydroxymethylflazine, [2-(9H-pyrido[3,4-b]indol-1-yl)furan-3-
yl]methanol, 4-methoxydianthramide B, and cleroindicin C. RF
achieved excellent AUCs for both training (0.9967) and testing
(0.9137) sets and played an important role in integrally selecting
the compounds for further study.

The molecular docking results obtained using AutoDock
Vina with the assistance of CASTp binding pocket predictions
indicated that compounds could form strong specific interactions
with the FUS protein. In particular, dehydroxymethylflazine and
cleroindicin C showed higher binding affinities, 10.17 and 10.12
kcal/mol, respectively, as well as RMSD values, indicating a stable
binding conformation. Based on the molecular docking results,
these two compounds were regarded as foremost candidates and
possible natural inhibitors of the FUS protein. In previous research,
the findings were in line with the potential of the aforementioned
compounds. The chemical profiles of these potential compounds
were in line with drug-likeness and bioavailability and would be
useful in a physiological environment. The compounds exhibited
a molecular weight below 500 Daltons, fewer than 5 hydrogen
bond donors, and LogP values, which were less than five, thereby
ensuring favored pharmacokinetic profiles.

Dehydroxymethylflazine and Cleroindicin C are
phytochemicals with a more recent focus toward potential
therapeutic interventions against multiple diseases and disorders.
Sourcing from two unique plants of medicinal importance, the
phytochemical compound Dehydroxymethylflazine is derived
from the plant’s of the genus Scutellaria, notably the Scutellaria
baicalensis. Scutellaria is a known source of flavonoids and
specifically baicalin, which has previously been investigated for
its neuroprotection. However, a more focused analysis on the
utility of Dehydroxymethylflazine has seemingly been scarce.
In the context of neurodegenerative disease, demonstrated
Dehydroxymethylflazine activity is thus also an adjunct.

Cleroindicin C comes from the Clerodendrum indicum plant,
which is used in Ayurvedic medicine and has a wide range of
effects. While research has looked at extracts from Clerodendrum
helping protect neurons, there hasn’t been much specific work
on Cleroindicin C for neurodegenerative diseases. This makes it
an interesting area to study more. Both Dehydroxymethylflazine
and Cleroindicin C exhibit promising drug-like properties that
align with the “rule of five,” a guideline used to predict a
compound’s absorption and permeability in the human body.
Their molecular weights, each below 500 daltons, suggest that
they could effectively penetrate cells and achieve bioavailability.
Additionally, the limited number of hydrogen bond donors and
acceptors further supports their capacity for favorable solubility
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FIGURE 10

MD Simulation of FUS Protein Interaction with Dehydroxymethylflazine. (A) Protein RMSD values over 100 ns for the FUS protein with (blue) and

without (red) Dehydroxymethylflazine, indicating the ligand’s stabilizing e�ect. (B) RMSF of FUS protein C-alpha atoms highlighting regions of

flexibility and potential ligand interaction sites. (C) Consistent percentages of SSEs across the simulation, suggesting structural integrity of the protein

in complex with the ligand. (D) Chemical structure of Dehydroxymethylflazine with potential interaction points for hydrogen bonding. (E) Residue

interaction fraction plot for the FUS protein, identifying residues with higher frequencies of interaction with Dehydroxymethylflazine, suggesting

critical binding regions.
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and membrane permeability, which are critical factors for oral
drug formulations. Moreover, their lipid solubility values fall
within the optimal range, increasing the likelihood of crossing the
blood-brain barrier, an essential characteristic for drugs targeting
neurological conditions. Recent studies have demonstrated that
both compounds exhibit strong affinities for the FUS protein,
indicating their potential to interact with and possibly inhibit FUS
dysfunction, which is linked to dementia. The RMSD values from
these studies suggest that these interactions may be stable. Given
their favorable pharmacokinetic profiles and preliminary evidence
of interaction with the FUS protein, Dehydroxymethylflazine
and Cleroindicin C appear to be strong candidates for further
research. With the growing demand for novel treatments for
neurodegenerative diseases, exploring therapeutic compounds
derived from traditional plants through modern drug discovery
techniques holds considerable promise in this complex and
challenging field.

Finally, through long-duration MD simulations lasting 50
ns, we have confirmed the stability of the interaction between
the compounds and the FUS protein. The consistent affinity
observed throughout these simulations supports the docking
findings and strengthens the potential of these compounds as
therapeutic candidates. Our study’s robustness is grounded in the
collaboration of machine learning models, thorough data curation,
molecular docking, and dynamic simulations. By pinpointing
compounds such as dehydroxymethylflazine and cleroindicin
C that exhibit strong binding affinities and stable interactions
with the FUS protein, we are pushing the boundaries of drug
discovery in dementia. This brings us closer to a future where the
regulation of FUS protein activity could potentially slow down the
progression of the disease. The combination of computer-based
and experimental techniques represents a cutting-edge approach
to drug discovery. Our research demonstrates the effectiveness
of using computational methods to speed up the initial phases
of drug development, especially when dealing with challenging
targets such as FUS linked to dementia. The predictive models
and simulations utilized in this study provide a more efficient
way to identify potential inhibitors. With additional testing and
improvements, these findings could lead to innovative treatments
for dementia.

5 Conclusion

In this study, we explored a computational approach to
discover natural inhibitors for the FUS protein, a key target
in neurodegenerative diseases such as dementia. Our refined
structural model of the FUS protein, achieved through I-TASSER,
overcame the limitations of initial predictions from AlphaFold2
and SwissModel, providing an accurate framework for further
analysis. Through machine learning, specifically the Random
Forest algorithm, we identified promising phytochemicals such as
nimbinin, dehydroxymethylflazine, and cleroindicin C. Molecular
docking results, performed using AutoDock Vina, highlighted
dehydroxymethylflazine and cleroindicin C as compounds

with strong binding affinities and stable interactions with the
FUS protein. Molecular dynamics simulations further validated
these results by confirming the stability of these interactions.
Additionally, the identified compounds exhibited favorable
pharmacokinetic profiles, suggesting their potential to penetrate
the blood-brain barrier, a critical factor for neurodegenerative
treatment development. The broader implications of this research
lie in the identification of plant-derived compounds with the
potential to inhibit the FUS protein, opening new pathways
for natural product-based drug development for dementia.
This computational approach provides a foundation for future
experimental validation and clinical exploration, encouraging a
shift toward sustainable, natural therapies in neurodegenerative
research. In future work, experimental studies should focus
on validating the identified compounds’ efficacy and safety.
Furthermore, advanced molecular dynamics simulations could
enhance the understanding of protein-ligand interactions, paving
the way for optimization of these natural inhibitors.
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