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The brain atlas, which provides information about the distribution of genes,

proteins, neurons, or anatomical regions, plays a crucial role in contemporary

neuroscience research. To analyze the spatial distribution of those substances

based on images from different brain samples, we often need to warp and

register individual brain images to a standard brain template. However, the

process of warping and registration may lead to spatial errors, thereby severely

reducing the accuracy of the analysis. To address this issue, we develop

an automated method for segmenting neuropils in the Drosophila brain for

fluorescence images from the FlyCircuit database. This technique allows future

brain atlas studies to be conducted accurately at the individual level without

warping and aligning to a standard brain template. Our method, LYNSU (Locating

by YOLO and Segmenting by U-Net), consists of two stages. In the first stage,

we use the YOLOv7 model to quickly locate neuropils and rapidly extract small-

scale 3D images as input for the second stage model. This stage achieves a

99.4% accuracy rate in neuropil localization. In the second stage, we employ

the 3D U-Net model to segment neuropils. LYNSU can achieve high accuracy

in segmentation using a small training set consisting of images from merely 16

brains. We demonstrate LYNSU on six distinct neuropils or structures, achieving

a high segmentation accuracy comparable to professional manual annotations

with a 3D Intersection-over-Union (IoU) reaching up to 0.869. Our method

takes only about 7 s to segment a neuropil while achieving a similar level of

performance as the human annotators. To demonstrate a use case of LYNSU,

we applied it to all female Drosophila brains from the FlyCircuit database to

investigate the asymmetry of the mushroom bodies (MBs), the learning center

of fruit flies. We used LYNSU to segment bilateral MBs and compare the

volumes between left and right for each individual. Notably, of 8,703 valid brain

samples, 10.14% showed bilateral volume differences that exceeded 10%. The

study demonstrated the potential of the proposed method in high-throughput

anatomical analysis and connectomics construction of the Drosophila brain.
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1 Introduction

Over the past few decades, neuroscience has evolved from
a discipline primarily dependent on experimental biology into
an interdisciplinary field of study (Bassett et al., 2020; Vázquez-
Guardado et al., 2020). Notably, breakthroughs in imaging
applications, such as high-resolution neural imaging techniques,
including fluorescent microscopy and electronic microscopy (Hwu
et al., 2017; Chu et al., 2019; Lin et al., 2019; Fu et al., 2021;
Werner et al., 2021; Fan et al., 2022; Peddie et al., 2022), have been
significant. These advancements have enabled us to observe neural
tissues and circuits with unprecedented speed and resolution. In
this context, analyzing variations in brain structures across different
individuals or the expression intensity of genes in various brain
regions has become a crucial research direction (Lee et al., 2015;
Wolff and Rubin, 2018; Kondo et al., 2020; Mehta et al., 2023).
Consequently, developing an automated and high-throughput
method for this analysis has become particularly important (Lecoq
et al., 2019; Balasubramanian et al., 2023; Qiao et al., 2023).

Indeed, several studies have developed brain region
segmentation algorithms for CT and MRI images (Dolz et al., 2018;
Roy et al., 2018; Billot et al., 2020; Tan et al., 2020; Ranjbarzadeh
et al., 2021; Zopes et al., 2021; Wang T. et al., 2022; Nour Eddin
et al., 2023; Wang et al., 2023). However, a similar method for
optical images of the Drosophila brain has not yet been developed.
The Drosophila brain contains 58 neuropils (Chiang et al., 2011),
and each neuropil, if segmented manually, would take up to
4 h on average. Therefore, manually segmenting every neuropil
for each optical image of the Drosophila brain is impractical.
Instead, a common practice is to warp and align optical brain
images obtained from different individuals to a standard brain
template (Jefferis et al., 2007; Lin et al., 2007), which contains
segmented brain regions, and perform the subsequent analysis in
the warped brain images. While this method facilitates subsequent
statistical analysis and interpretation, it also introduces spatial
errors (Peng et al., 2011; Bogovic et al., 2020; Court et al., 2023).
These inaccuracies could impact the precise understanding of
neural circuits, thereby reducing the reliability of research findings.
To address this issue, one should segment neuropils directly in the
original images to avoid errors introduced during the alignment
process.

Developing more accurate and efficient image analysis
algorithms becomes exceptionally crucial. This involves improving
the accuracy of segmentation and alignment and considering
computational costs and time efficiency to meet the needs of
large-scale, high-throughput studies. Simultaneously, segmenting
neuropils directly from the original data can avoid errors
introduced during the alignment process, thus enhancing the
accuracy and reliability of the analysis.

The present paper introduces a novel computational method,
LYNSU (Locating by YOLO and Segmenting by U-Net), specifically
designed for segmenting neuropils in Drosophila brain fluorescence
images. Our method is divided into two stages based on a detection-
led segmentation workflow. In the first stage, we detect the
location of the neuropil of interest using the YOLOv7 (Wang
C. Y. et al., 2022) model, renowned for its exceptional inference
speed and rapid convergence during training. These characteristics
make YOLOv7 particularly suitable for high-throughput tasks

required for large databases like FlyCircuit (Chiang et al., 2011),
significantly reducing computational time for detecting neuropils.
In the second stage, we segment the neuropil in the bounding
box defined by YOLOv7 using the 3D U-Net (Ronneberger et al.,
2015; Iakubovskii, 2019; Solovyev et al., 2022) model, a deep
learning model specifically designed for three-dimensional image
segmentation.

The innovation of this method lies in its combination of
advanced object detection technology with specialized image
segmentation algorithms, achieving efficient and accurate
segmentation. Through LYNSU, we anticipate more in-depth
and detailed analyses of Drosophila brain structures, bringing
new insights to neuroscience. This study demonstrates the
potential applications of computational methods in biomedical
image analysis and provides a reliable reference model for future
high-throughput image analyses.

2 Materials and methods

2.1 Dataset

The 3D fluorescence image data we used in this study were
obtained from the FlyCircuit database,1 which hosts images from
28,573 Drosophila brains. These Drosophila brain images were
acquired using high-resolution confocal microscopy. Each image
contains a channel of GAL4 signals for individual neurons and a
channel of anti-DLG staining for neuropils, and the signal of each
voxel is represented by a value ranging from 0 to 255. The calibrated
voxel size of the images is x:y:z = 0.32 × 0.32 × 1 µm, and the XY
plane resolution is 1024x1024.

Two datasets were created from the FlyCircuit database for
training purposes. For the first dataset, we randomly selected 1000
3D images from the FlyCircuit database to train the YOLOv7
model. We used the Labelimg tool to annotate the neuropil
bounding boxes, with 440 images going through this annotation
process. Afterward, we randomly selected 400 of these images to
serve as the training set, while the remaining 40 images were used
as the test set.

The second dataset was primarily prepared for the training
of the 3D U-Net model. We randomly extracted 18 Drosophila
brain images from our database, each representing a different type
of Gal4 Driver. This approach ensured that our study’s dataset
encompassed a variety of brightness characteristics. Next, the six
target neuropils or structures, AL, MB, CAL, FB, EB, and PB, in the
18 brains were manually segmented by trained annotators using
the ZEISS arivis Cloud tool. On average, the annotation of each
neuropil took about 4 h, meaning that we invested approximately
432 h in this annotation work. We specifically requested that
multiple annotators label the same brain to ensure consistency
among multiple annotators. We verified the consistency of the
human annotation and found that the 3D IoU scores among
different annotators for the same brain reached 0.85, effectively
ensuring the quality and consistency of our annotation work.

1 http://www.flycircuit.tw
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2.2 Neuropils detection and localization

We adopted a two-stage model training strategy to achieve
superior neuropil segmentation effects and efficient computational
speed. Focusing on smaller Regions of Interest (ROIs) for
segmentation significantly reduces the computational load, leading
to faster processing times and improved accuracy. This approach
allows us to maintain high-resolution details while enhancing speed
and performance. This strategy significantly enhances the accuracy
of segmentation and effectively reduces the GPU computational
resource consumption. We used the NVIDIA A100 40GB GPU
in the first stage for model training. These images were projected
into 2D images on the XY plane using two different projection
methods: summation of brightness along the Z-axis and maximum
brightness value along the Z-axis. We trained the YOLOv7 model
on the training set (400 images from the first dataset) through
100 iterations. On the test set (40 images), this model performed
excellently, achieving a mean Average Precision (mAP)@0.5 of
0.9955 and within the range of mAP@0.5:0.95 (different IoU
thresholds from 0.5 to 0.95 in steps of 0.05), it scored 0.8489. Note
that due to spatial overlap between neuropils or structures, some of
them share the same ROI. Specifically, MB and CAL share the same
ROI, while FB, EB, and PB share the central complex’s ROI, and
the AL neuropil has its own ROI. Therefore, in the recent study, we
only train YOLOv7 to detect three different ROIs.

Next, we used YOLOv7 to detect the remaining 560 images that
were not involved in the training. We visually inspect the result
and label detection as a success if the resulting ROI (bounding
box) covers the entire neuropil. YOLOv7 achieves a high success
rate of 99.28%, and it takes only about ten milliseconds to detect a
neuropil in each image.

2.3 Neuropils segmentation

For neuropil segmentation, we had 18 manually segmented
brains (the second dataset) as the training and test set. We first
used YOLOv7 to detect the ROIs from these brains. Subsequently,
we extracted the corresponding 3D images from the ROIs. For
effective data augmentation, we implemented zero-padding along
the Z-axis, extending it to 124 layers while downscaling the XY
plane by reducing the resolution of the XY plane to 168× 168.

We adopted an overlapping sliding window strategy for data
augmentation by setting the window size to 64x128x128, with
a sliding distance of 20 each time. We performed a mirroring
process on the Z-axis to further increase data diversity. Taking
the MB as an example, we generated 144 cubes for each set of
neuropils, meaning that 16 brains can produce 2304 cubes as
the training data for the 3D U-Net. We independently trained a
3D U-Net model for each unique neuropil in the second stage.
The model’s architecture featured a robust six-layer ResNet-50
(He et al., 2015) for both the encoder and decoder, enhancing
the network’s feature extraction capabilities. To manage the
spatial dimensions effectively, the network underwent five rounds
of MaxPooling3D for downscaling and an equal number of
UpSampling3D operations for reconstruction, ensuring detailed
and accurate segmentation outputs. The final layer of the network
utilized a softmax activation function to classify each voxel

accurately. The learning rate of these models was set to 0.0001,
and Adam was chosen as the optimization algorithm. Regarding
loss function selection, we adopted a composite loss function,
combining Dice loss and Categorical Focal Loss.

Dice loss is a function specifically designed for image
segmentation problems and particularly suitable for scenarios with
class imbalances. The mathematical formula for Dice loss is:

Dice Loss = 1−
2 ×

∣∣Ytrue
⋂

Ypred
∣∣

|Ytrue| +
∣∣Ypred

∣∣
where Ytrue is the set of ground truth labels and Ypred is the set of
labels predicted by the model. This formula can also be represented
as:

Dice Loss = 1−
2 × TP

2 × TP+ FP+ FN

where TP represents true positive, FP false positive, and FN false
negative. We set the weight ratio for the background and neuropils
in the Dice loss as 0.4 and 0.6, respectively. We further incorporated
weighting on category by setting the background weight w1 and
neuropil weight w2. Thus, the weighted Dice loss function can be
expressed as:

Weighted Dice Loss =

1−
2 × (w1 × TP1 + w2 × TP2)

(w1 × TP1 + w2 × TP2)+ (w1 × FN1 + w2 × FN2)

+ (w1 × FP1 + w2 × FP2)

where TP1, FN1, FP1 are the true positive, false negative, and false
positive for the background category, while TP2, FN2, FP2 are
the corresponding quantities for the neuropil category. Through
this weighting approach, we increased the relative importance
of the neuropils (as opposed to the background) in the loss
function, thereby making the model more focused on accurately
segmenting neuropils.

Categorical Focal Loss (CategoricalFocalLoss) is primarily
suitable for addressing class imbalance in multi-class classification
problems. It’s defined by

L
(
gt, pt

)
= −gt · αt ·

(
1− pt

)γ
· log

(
pt
)

where t presents the class (neuropil or background), gt = 1 if t
is the ground truth class, gt = 0 otherwise, pt is the predicted
probability for the class t, αt is the balancing factor for t, and γ is
a parameter that adjusts the predicted probability.

For the background class, which accounts for the majority
of the voxels, the model tends to predict a high probability pt .
In this case, by increasing the γ parameter, we could reduce
the loss contribution of these easily classified voxels. Conversely,
for minority classes (neuropils), since pt was generally lower,
CategoricalFocalLoss did not excessively reduce the loss for these
samples. This operation balanced the loss between the background
class and neuropils, reducing the impact of a higher number of
predicted background class instances on the neuropil category,
thereby enhancing the model’s ability to recognize imbalanced data.

In summary, the total loss function (Total Loss) is given by

Total Loss = Weighted Dice Loss+
(
λ × CategoricalFocalLoss

)
where λ is a hyperparameter used to balance the impact of the
two loss functions, with a default value of 1, indicating equal
consideration of both loss functions.
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During the model training process, we set the batch size
to 2 and the number of training epochs to 10. This ensured
the model had sufficient data to learn from while avoiding
overfitting. Additionally, to capture the model’s performance more
accurately at different stages of training, whenever a lower loss
value was observed on the validation set, we saved the model’s
current state. Such a strategy allowed us to retain the best model
during training and reduced the risk of model overfitting. By
combining our chosen loss function, batch size, training epochs,
and checkpoint monitoring strategy, we successfully designed a
model training framework that converges quickly and has high
generalization capabilities.

2.4 Comparative evaluation of
segmentation algorithms

In our comparative evaluation, LYNSU was benchmarked
against three other mainstream segmentation algorithms: Fully
Convolutional Networks (FCN) (Long et al., 2014), 2D U-Net, and
3D U-Net. To ensure a fair comparison, all algorithms were trained
and tested using the same dataset, implemented with identical
training setups including the Adam optimization algorithm and
the ReLU activation function for convolutional layers. The output
layers across all models utilized a Softmax activation function
to classify each pixel. For the architecture specifications, the
FCN model was configured as FCN8s, which included five
MaxPooling2D operations and three Conv2DTranspose layers
for upsampling. The 2D U-Net architecture comprised four
MaxPooling2D steps and UpSampling2D operations. Both 2D
segmentation algorithms were trained using the Dice loss function.
The training protocol was standardized across the FCN and 2D
U-Net, with a batch size of 16 and a total of 5 epochs, balancing
the need for sufficient training to capture complex features without
overfitting given the limited epoch count.

For 3D U-Net, the training strategy mirrored the second stage
of LYNSU, maintaining the same parameters and methods to
ensure comparability. The primary difference lies in the initial
approach: unlike LYNSU, 3D U-Net does not utilize the neuropil
detection and localization stage. Instead, it directly processes the
3D images for segmentation. We applied the same Adam optimizer,
ReLU activation in convolutional layers, and softmax output
function as used in LYNSU’s second stage. This direct approach
allows for a straightforward comparison of LYNSU and 3D U-Net
segmentation efficacy, specifically focusing on their ability to
delineate neuropil boundaries with or without the detection and
localization stage.

2.5 Volume analysis and consistency
assessment

To demonstrate a use case of the proposed LYNSU method,
we analyzed the volume of left and right MB for 22,835 female
Drosophila brains in the FlyCircuit database. We noted that many
brain images in the database only cover partial brains. Therefore,
for the purpose of the analysis, we implemented an automated
filtering algorithm to select the images that had left and right

MB being successfully segmented. Specifically, the algorithm used
the measure module from the skimage library and scanned the
segmented images to select those with exactly two closed 3D objects
where the largest did not exceed twice the volume of the second.
This condition effectively filtered our dataset to 10,337 brains
suitable for manual verification. Note that this algorithm did not
guarantee the selection of images with complete left and right
MB. Images with partial left and/or right MB might be selected
as well at this stage. In a later stage of the analysis, we visually
inspected subsets of the images to ensure the completeness of the
segmentation (see Results). For each selected brain, the volumes of
the left and right MBs were calculated by counting the total number
of voxels in the segmented volumes. The relative volume difference
between the left and right MBs was computed using the formula:

Percent volume difference

=

(
Volume of Right MB− Volume of Left MB

Average Volume of Left and Right MB

)
A negative value indicates a larger left MB, whereas a positive value
indicates a larger right MB. In the present study, we also analyzed
the volume difference between the left and right hemispheres. We
used a similar formula but replaced “MB” with “hemisphere.” The
boundary between the left and right hemispheres was defined by a
manually annotated midline in each brain image.

3 Results

The proposed method, LYNSU, is designed based on a two-
stage approach with the aim of achieving high-precision and high-
speed brain segmentation (Figure 1). The goal of the first stage
is to locate the target neuropils quickly and accurately. We first
convert a 3D brain image stack into a 2D image by calculating
the maximum and average brightness along the Z-axis direction,
resulting in two 2D images. This ensures that the YOLOv7 model
is exposed to a variety of brightness information in the images,
enhancing its ability to identify the target neuropil. In the training
phase, the YOLOv7 model is trained on human-labeled bounding
boxes encompassing the target neuropil. In the test phase, the
YOLOv7 model can rapidly generate a ROI containing the target
brain neuropil for each 2D image. The goal of the second stage
is to segment the target neuropil from the 3D image stack within
the ROI generated from the first stage. In the graining phase,
the 3D U-Net model is trained on human-segmented 3D image
stacks. These 3D stacks are sliced into multiple cubes through an
overlapping sliding method for data augmentation. We chose the
3D U-Net model for this delicate segmentation task, as this model
can accurately capture the complex three-dimensional structure
of neuropils and further enhance segmentation precision. Finally,
the workflow achieves extremely high operational efficiency and
accuracy in the testing phase.

We first demonstrate the result of mushroom body (MB)
segmentation with brain samples from three test sets: Gad1-F-
400041, VGlut-F-800014, and Trh-F-200069. It is important to note
that these three samples are 3D images not previously used by
the model and come from different random splits of the dataset.
We successfully achieved high-precision segmentation through
the model’s inference process (Figure 2). These two-dimensional

Frontiers in Neuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2024.1429670
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-18-1429670 July 24, 2024 Time: 17:33 # 5

Hsu et al. 10.3389/fninf.2024.1429670

FIGURE 1

The LYNSU workflow. In Stage 1, rapid localization of neuropils is achieved using 2D brain projections and YOLOv7, resulting in the generation of
ROIs encompassing complete neuropils. In Stage 2, 3D images are extracted from these ROIs and precisely segmented using the 3D U-Net model.
The testing phase only required the workflow in the dashed box.

sections, compared to the corresponding ground truth, clearly
demonstrate that the MB in three different brain samples were
precisely segmented by LYNSU. We further demonstrate the
segmentation results of five other neuropils or brain structures,
AL (Antennal Lobe), CAL (Calyx), FB (Fan-shaped Body), EB
(Ellipsoid Body), and PB (Protocerebral Bridge), from different
sample brains in the test set (Figure 3).

We systematically compare LYNSU to three other mainstream
segmentation algorithms without using YOLO: FCN, 2D U-Net,
and 3D U-Net. First, visual inspection of the 2D slices indicates
that LYNSU produces more precise neuropil boundaries than
other algorithms (Figure 4A). Next, we conducted a quantitative
evaluation and using four commonly used metrics: Recall,
Precision, F1 score, and 3D-IoU. The LYNSU model outperformed
the other three algorithms (Figure 4B). Specifically, the LYNSU
model performs much better than FCN and 2D U-Net by a large
margin in all metrics and is also much better than 3D U-Net in
three out of four metrics. We conducted ten random splits of the
dataset, with 16 brains assigned as the training set and two brains
as the test set. We test the performance of LYNSU against 3D U-net
(without YOLO) for all six neuropils or brain structures (AL, MB,
CAL, FB, EB, PB), and LYNSU achieve a higher 3D IOU score than
3D U-net for all neuropils or brain structures (Figure 4C) with an
average 3D IOU exceeding 0.833 compared to 0.763 for 3D U-net.
These results strongly validate the capability of LYNSU to segment
various brain regions of the Drosophila brain.

We further demonstrate one potential application of LYNSU
by studying the asymmetry of Drosophila brains. We ask whether
the left and right mushroom bodies are of the same size at the
population level. Without the automated segmentation algorithm,
answering this seemingly simple question requires an unrealistic
amount of human labor for manual segmentation. Here, we applied

LYNSU to the entire dataset of female Drosophila brains in the
Flycircuit database, which hosts 22,835 female brains. To evaluate
the segmentation accuracy, we employed an automated filtering
algorithm to quickly select 10,337 brain images that contain both
left and right MBs. From this subset, we randomly sampled
1,000 brains for manual verification and revealed an accuracy
of 98.8% in segmenting the MB neuropil; only 12 brains were
identified as segmentation failures. We further calculated the
volumes (number of voxels of the segmented region) of the left
and right MBs in each brain and identified 2,404 brains that possess
large bilateral differences (> 10% difference between left and right).
We noted that some of these large bilateral differences are caused
by incomplete left and right MB coverages in the images. These
images are considered invalid samples and have to be excluded from
the analysis. Manual verification identified 883 out of the 2,404
brains as valid (Figure 5A). Note that the original 10,337 brains also
contain invalid samples, but the number is too large for manual
inspection. Instead, we manually inspected the aforementioned
1000 random samples and identified that 84.2% (842 of 1,000) of
them are valid. By assuming that 84.2%, or 8,703, of the 10,337
brains are valid, we can conclude that 10.14% (883/8,703) of the
fly brains have MB volumetric asymmetry exceeding 10%.

We ask whether the large volume differences between the left
and right MBs are due to unexpected unilateral deformation of
the brain during the sample preparation and imaging processes.
Although most of the brain images in the FlyCircuit database
do not cover the whole brain, we still identified several images
that contain the complete brain volume. We visualize three
of these sample brains that have large MB volume asymmetry
(> 10%) (Figures 5B, C). By analyzing the volume of the left
and right hemispheres of these brains, we found that they are
highly symmetric, and the volume differences between the two
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FIGURE 2

Segmentation of the MB (Mushroom Body) in three brain samples: Gad1-F-400041, VGlut-F-800014, and Trh-F-200069 (from top to down). (A) a
slice of the anti-DLG image from the sample brain, (B) human segmentation as the ground truth, (C) segmentation by the proposed method
(LYNSU), (D) 3D reconstruction of the ground truth segmentation, (E) 3D reconstruction of the LYNSU segmentation with the slice as shown in panel
(C) and (F) the side view of the LYNSU segmentation. The red frames indicate the location of the slice. The display of different layer slices from these
three MB samples showcases the precision of our segmentation method.

FIGURE 3

The segmentation results for five neuropils or brain structures: AL, CAL, FB, EB, and PB. From left to right: a slice of the anti-DLG image from the
sample brain, the ground truth (GT), LNYSU segmentation, 3D reconstruction of GT and 3D reconstruction of LNYSU segmentation.
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FIGURE 4

Performance comparison between LYNSU, FCN, 2D U-Net, and 3D U-Net based on the images from the FlyCircuit dataset. (A) Selected 2D slices
from two sample brains (top and down) demonstrate superior boundary delineation by LYNSU. Orange: ground truth. Blue: predicted boundaries by
each algorithm. (B) Quantitative metrics, including Recall, Precision, F1, and 3D-IoU, indicate that LYNSU’s performance is much better than that of
other algorithms. (C) 3D IOU scores for the segmentation of six neuropils or brain structures, compared between LYNSU and 3D U-net (without
YOLO) on the test set. The former outperform the latter in all tests.

FIGURE 5

The volumetric asymmetry of the MB was revealed by LYNSU. (A) The distribution of volume differences between the right and left MB for which the
differences are larger than 10%. These brains account for 10.14% of the parent group under analysis. (Left) Left volume > right volume. (Right) Right
volume > left. (B) Analysis showing that the large left and right MB volume differences cannot be attributed to the bilateral brain volume difference.
We analyzed three sample images, Tdc2-F-100020, fru-F-100023, and VGlut-F-500851, which cover the complete brain volume. The left and right
hemisphere volumes of the sample brains do not exceed 6.4%, while the MB volume differences are all larger than 13%. (C) (Left) The whole brain
images for the three brains listed in (B). Note the symmetry between the left and right hemispheres. The yellow vertical lines are the midlines. (Right)
The MBs segmented by LYNSU from the brain shown in the left. Note the apparent asymmetry between the left and right MBs. (D) The highly
consistent inference of the volume by LYNSU. We compare the left-right MB volume difference inferred by Model 1 (x-axis) and Model 2 (y-axis).
Both are LYNSU but are only trained with different training sets. Each data point (blue dot) on the plot corresponds to a brain image. The red line
(slope = 0.97) depicts the linear regression of the data.

hemispheres are merely 1.2% to 6.4%. The result showed that
the MB volume asymmetry is not simply the reflection of the
asymmetry of the entire brain.

Finally, we would like to make sure that the MB asymmetry
is not a model-specific artifact. To this end, we trained another
LYNSU model (Model 2) with a different training set and analyzed
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the 883 brain images with large MB asymmetry selected by
the original model (Model 1) described above. The volumetric
discrepancies between the segmented results from the two models
and the Ground Truth were minimal, at 1.19% and 2.16%,
respectively. This finding substantiates that differences in the
volume of left and right MB greater than 3% are not likely
attributable to modeling errors. To further validate the stability
and consistency of our models, we compare the inferred left-right
MB volume differences of the 883 brains between the two models.
We found that the volume differences inferred by the two models
are highly consistent, and a linear regression of the data yields a
slope of 0.97, suggesting strong correlation and model reliability
(Figure 5D). This evidence underscores our models’ capability to
reliably segment complex neural structures with high precision.

4 Discussion

This study successfully developed a novel, efficient, and
accurate LYNSU segmentation workflow, specifically for neuropil
segmentation in fluorescence images of Drosophila brains.
By combining YOLOv7 and 3D U-Net, LYNSU substantially
outperformed FCN and 2D U-Net, which were inadequate for the
task. LYNSU also exhibited marked improvement over 3D U-Net
by up to 15.5% in 3D IoU. It efficiently segmented a neuropil in just
7 s, demonstrating its suitability for large-scale databases.

In the present study, we trained and validated individual
YOLO models for each type of neuropil. However, to improve the
efficiency, it is possible to integrate the localization labels of all
neuropils to train a single YOLO model. We have performed a
preliminary test on this idea. We first balanced the training set to
ensure the model did not favor specific object labels. We integrated
the localization labels of all neuropils to train a single model. The
training set was balanced to ensure the model did not favor any
specific object labels, allowing it to simultaneously detect AL, MB,
and the Central Complex regions (including FB, EB, and PB). Our
preliminary test achieved 100% accuracy on the test set for these
regions. This approach not only maintained a high level of accuracy
but also significantly reduced the computational time required for
inference. We may implement the YOLO model integration in the
next version of LYNSU.

A recent study (Iriawan et al., 2024), demonstrated a similar
concept by employing YOLOv3-v4 and 2D U-Net to segment the
MRI images of human brains. It was a relatively small-scale study
with a total of 346 2D MRI images for training/validation and
merely 14 images for testing. We tested YOLOv4 and 2D U-Net
and FCN in the early stage of the study [presented on September
3rd, 2022 at the Taiwan Society for Neuroscience International
Conference: (Poster Number: P2-41)]2 and were not satisfied with
the performance. Therefore, we changed to YOLOv7 and 3D U-Net
as described in the present study for better performance. We also
performed a larger scale training/validation with 2,060 image slices
(from 18 brains) and a much more thorough and rigorous test with
∼100,000 slices from 1,000 brains.

This new method can potentially solve pressing issues in
current connectomics, especially regarding spatial errors and

2 https://tsfn.neuroscience.org.tw/pastMeetingIn/2022

computational efficiency in image alignment and registration.
Previous methods often required aligning images using a standard
brain template. Although convenient, these methods unavoidably
introduce spatial errors. Alternatively, one can segment neuropils
or brain structures manually for individual images without using
the standard brain template to achieve higher spatial accuracy.
However, manual segmentation is extremely time-consuming and
is not suitable for large-scale studies. In contrast, our algorithm
combines the advantages of both approaches and achieves high
spatial accuracy and temporal efficiency. Specifically, our algorithm
can complete a neuropil segmentation task in just 7 s, which
would take a human expert 4 h. This breakthrough is significant
considering the need for high-throughput connectomics research
and will significantly accelerate the entire research process.

LYNSU has the potential to be generalized to brain images
of other insect species captured using confocal microscopy with
fluorescent anti-DLG staining. However, new species and neuropils
would require the preparation of corresponding labeled data,
which can be time-consuming and resource-intensive. Applying
LYNSU on mammalian brains with different staining technologies
is possible, but it may require extensive testing and tweaking due to
the distinct anatomical features between mammals and insects.

LYNSU offers several important applications, enhancing our
understanding of neuroanatomy at an individual level. Using
LYNSU, we have identified that over 10% of female Drosophila
exhibit significant volumetric differences between the left and
right MB neuropils—a phenomenon that was previously difficult
to quantify accurately in large-scale studies due to limitations
associated with image warping and registration. Our findings pave
the way for future studies to explore the variability of neuropil
morphology among individuals more accurately. Furthermore,
LYNSU enables more precise quantification of gene distribution
across different neuropils, which is not feasible with traditional
methods that rely on warping and registering images to a standard
brain template. This capability is crucial for advancing our
understanding of functional neuroanatomy and could lead to
significant breakthroughs in connectomics research, facilitating
a deeper exploration of individual differences and their genetic
underpinnings in neuropil structure and function.
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