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While a great deal of recent effort has focused on addressing a perceived 
reproducibility crisis within brain structural magnetic resonance imaging (MRI) 
and functional MRI research communities, this article argues that brain positron 
emission tomography (PET) research stands on even more fragile ground, 
lagging behind efforts to address MRI reproducibility. We begin by examining the 
current landscape of factors that contribute to reproducible neuroimaging data 
analysis, including scientific standards, analytic plan pre-registration, data and 
code sharing, containerized workflows, and standardized processing pipelines. 
We then focus on disparities in the current status of these factors between brain 
MRI and brain PET. To demonstrate the positive impact that further developing 
such reproducibility factors would have on brain PET research, we present a 
case study that illustrates the many challenges faced by one laboratory that 
attempted to reproduce a community-standard brain PET processing pipeline. 
We  identified key areas in which the brain PET community could enhance 
reproducibility, including stricter reporting policies among PET dedicated 
journals, data repositories, containerized analysis tools, and standardized 
processing pipelines. Other solutions such as mandatory pre-registration, 
data sharing, code availability as a condition of grant funding, and online 
forums and standardized reporting templates, are also discussed. Bolstering 
these reproducibility factors within the brain PET research community has the 
potential to unlock the full potential of brain PET research, propelling it toward 
a higher-impact future.
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1 Introduction

Science thrives on incremental progress, where the creation and organization of knowledge 
is driven by a cycle of developing theories and testing predictions made by those theories. 
When tests of a prediction have the same result repeatedly, confidence in the test result grows, 
especially when the tests are run by different scientists operating independently. Several terms 
have been introduced to describe different variants of this test repetition concept: a test result 
is considered “reproducible” when the same raw measurements and analytic methods are used 
by a different scientist; “replicable” when new measurements are recorded but the same 
methods are used as in a previous test; “robust” when the same raw measurements but different 
analytic methods are used, and “generalizable” when new measurements are recorded and new 
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methods are utilized (Nosek et al., 2022; Poldrack et al., 2019b). In 
recent years, low levels of reproducibility have been reported in a 
growing number of scientific disciplines, culminating in a so-called 
“reproducibility crisis” (Ioannidis, 2005; Munafò et  al., 2017). 
Neuroscience, and specifically in-vivo human neuroimaging, is no 
exception to this trend. Despite the increasing volume of neuroimaging 
publications, significant doubts about their accuracy and 
generalizability have emerged (Poldrack et al., 2017; Klapwijk et al., 
2021; Botvinik-Nezer et al., 2020). Three studies (Carp, 2012; Guo 
et  al., 2014; Poldrack et  al., 2017) of methodology reporting in 
functional Magnetic Resonance Imaging (fMRI) papers found that 
researchers often omit important details like interpolation methods, 
smoothness estimates, and multiple comparison correction 
techniques. Neuroimaging researchers have also suggested that low 
statistical power (Müller et al., 2017; Button et al., 2013; Hong et al., 
2019), hypothesizing after the results are known (Klapwijk et  al., 
2021), and publication bias (David et al., 2013) have contributed to 
reproducibility limitations (Bishop, 2019; Munafò et al., 2017). These 
shortcomings have highlighted the need to implement a set of specific 
factors that will encourage robust and reproducible findings in 
neuroimaging data analysis. The next section will explore these 
reproducibility factors and compare their current status between fMRI 
and brain PET fields.

2 Reproducibility factors relevant to 
brain PET

In neuroimaging research communities, a set of reproducibility 
factors have been proposed as a means to promote explicit 
documentation of methods, availability of research materials, 
pre-registration of hypotheses and analyses, and standardized analysis 
pipelines, with an end goal of enabling easier replication of findings 
(Jadavji et al., 2023). In subsequent sections, we define these factors, 
explore their current status within neuroimaging in general, and then 
describe how prevalent they are in both fMRI and brain 
PET communities.

2.1 Standards for writing and publishing 
scientific studies

Scientific papers serve as the primary means for sharing research 
findings. Accurate and complete descriptions of methods and data 
versioning allow fellow researchers to understand exact procedures, 
exact data/software versions and underlying rationale, facilitating 
error detection and incremental improvement in study design or data 
analysis (Munafò et  al., 2017; Gorgolewski and Poldrack, 2016; 
Aguinis et al., 2018). The Organization for Human Brain Mapping 
Committee on Best Practices in Data Analysis and Sharing 
(COBIDAS) actively advocates for journals to abide by best practices 
in the reporting of neuroimaging methods and data (Poldrack et al., 
2017). Specialized committees have developed reporting standards 
that are specific to structural MRI and fMRI (Nichols et al., 2017), 
Magnetoencephalography (MEG) (Pernet et  al., 2020), 
Electroencephalogram (EEG) (Styles et  al., 2021), and Positron 
Emission Tomography (PET) (Knudsen et al., 2020). Web-based apps 
like pyBIDS, bids-matlab, and fMRIPrep can help authors adhere to 

these guidelines by automatically generating reports and providing 
method templates (Niso et al., 2022a). Additionally, automatic tools 
like statcheck can help identify inconsistencies in statistical results 
reported in research papers by extracting the test statistic and degrees 
of freedom and recalculating p-values. This helps ensure the statistical 
results are accurate (Nuijten and Polanin, 2020; Epskamp and 
Nuijten, 2016).

2.1.1 Current state of fMRI
A recent review of 160 fMRI publications found that most of them 

had adopted reporting practices recommended in 2016 by COBIDAS, 
including clear descriptions of study design (85%), motion correction 
(77%), and registration to a standard space (80%) (Acar et al., 2023).

2.1.2 Current state of PET
Despite initial steps toward establishing reporting standards, 

including a panel discussion at the 2016 NeuroReceptor Mapping 
conference and a subsequent consensus paper (Knudsen et  al., 
2020), progress has been limited. Although a PET standardized 
reporting checklist project (eCOBIDS PET) was initiated, as of 
2024, it remains incomplete and still under development (COBIDAS 
Contributors, 2020).

2.2 Pre-registration

Pre-registration entails writing a study plan that includes information 
about planned data acquisition, inclusion and exclusion criteria, analytic 
methods, and depositing that study plan in a third-party repository prior 
to data acquisition (Poldrack et al., 2017). The goal is to ensure that after 
the data is collected, publications containing the data use the pre-registered 
study plan to prove which of their analyses were a priori hypothesis driven 
as opposed to exploratory and thus susceptible to analytic biases 
(Gorgolewski and Poldrack, 2016). There are three main platforms 
currently used by neuroimaging studies for pre-registration (OSF, 2011; 
NIH, 1997; Wharton-Upenn, 2017) and the Center for Open Science 
provides detailed forms and guidelines to support pre-registration (COS, 
2013). An alternative to the pre-registered study plan is the registered 
report (RRs), which allows authors to submit methodology text for peer 
review and conditional acceptance prior to data analysis. Initial studies 
suggest that RRs in neuroscience outperform traditional papers in 
methodological rigor, analysis quality, and overall paper quality 
(Soderberg et  al., 2021). Leading neuroimaging journals including 
Neuroimage have recently incorporated RRs as a new article type 
(NEUROIMAGE, 2024).

2.2.1 Current state of fMRI
A 2022 survey of 283 fMRI researchers worldwide revealed a 

mixed picture regarding pre-registration. Some 57.6% had 
pre-registered an fMRI study, and 14.1% had written an RR. In 
addition, out of those who have pre-registered their studies, only 55% 
expressed willingness to pre-register their next study, and 26% were 
hesitant to do so (Paret et al., 2022).

2.2.2 Current state of PET
The brain PET community does not appear to have embraced 

pre-registration yet. Of the 32 neuroimaging studies that were 
pre-registered on the OSF website between Aug 2019 and Jan 2022, all 

https://doi.org/10.3389/fninf.2024.1420315
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Naseri et al. 10.3389/fninf.2024.1420315

Frontiers in Neuroinformatics 03 frontiersin.org

involved structural MRI and/or fMRI, and none involved PET (OSF, 
2011). In addition, the main platforms for pre-registration include 
study plan templates tailored for fMRI, but not for PET.

2.3 Data sharing

Sharing raw and/or processed data empowers researchers to validate 
published findings, explore new methodologies, and conduct meta-
analyses, boosting both transparency and research potential. Pooled data 
from multiple studies enables investigation of biases and heterogeneity, 
leading to more reliable findings. Increasingly, journals and funding 
agencies mandate data sharing, promoting scientific advancement. 
Numerous publicly available neuroimaging datasets (ADNI, 2004; HCP, 
2011; Openneuro, 2022; Marcus et al., 2007) underscore the value of these 
resources for researchers. In this context, the Brain Imaging Data 
Structure (BIDS) has established a consensus on organizing and sharing 
MRI and fMRI data (Gorgolewski et al., 2016). They later introduced 
extensions of BIDS to include MEG (Niso et al., 2018), EEG (Pernet et al., 
2019), and PET (Norgaard et al., 2022).

2.3.1 Current state of fMRI
In the current state of fMRI, data sharing practices vary, with 66% 

of participants sharing raw data but only 54% intending to share data 
from their next paper, citing barriers such as consent forms and 
institutional review boards (Paret et al., 2022).

2.3.2 Current state of PET
Data sharing in PET is limited. OpenNeuro (Markiewicz et al., 

2021) hosts 92 fMRI datasets compared to just 9 for PET. Even access 
to existing PET data faces hurdles: PET scans with newer radiotracers 
often face stricter limitations on data sharing, and some institutions 
limit sharing to only those researchers that collaborate with their 
investigators. While repositories like ADNI (Jagust et al., 2015) and 
A4 (Insel et al., 2020) host a large number of brain PET scans, there 
is still a relative lack of large datasets featuring recently-
developed radiotracers.

2.4 Codes, containers, and the cloud

Traditional publications necessarily provide abbreviated 
descriptions of computational methods applied to neuroimaging data, 
due to space constraints. Therefore, the most accurate source of 
information about every detail of computational procedures is the 
source code of the computer programs themselves (Niso et al., 2022a; 
White et al., 2022). Version control system repositories such as the 
GitHub and Brainlife offer platforms for open code sharing and 
preserving snapshots of specific versions (Kubilius, 2014), thus 
encouraging reproducibility by enabling differing labs to implement 
precisely the same computational steps. Beyond code that governs 
individual computational steps, the complexity of neuroimaging 
analysis workflows that assemble sequences of such steps presents 
challenges for reproducibility (Paninski and Cunningham, 2018). 
These workflows rely on intricate software dependencies (Merkel, 
2014), system-level resources (Abe et  al., 2022), and specialized 
packages (Poldrack et al., 2019a) which can lead to inconsistencies 
across computing environments and divergent results (Renton et al., 

2022; Halchenko and Hanke, 2012; Niso et  al., 2022a). Software 
containers such as Docker and Singularity have emerged as effective 
tools for capturing entire software stacks, ensuring reproducibility 
across different platforms (Kurtzer et al., 2017). Additionally, BIDS 
Apps enhance reproducibility by packaging existing neuroimaging 
pipelines in containers, resolving installation issues, and improving 
analysis reproducibility (Gorgolewski et al., 2017).

2.4.1 Current state of fMRI
An fMRI survey (Paret et  al., 2022) showed that out of 183 

participants, 66% have used containerized BIDS Apps dominated by tools 
like fMRIPrep (44%) and MRIQC (23%) highlighting a thriving 
ecosystem for code and software sharing. fMRIPrep generates visual 
reports to assess result quality and aids researchers in understanding each 
workflow step. The reports include comprehensive text descriptions of 
major pipeline steps, including exact software versions and citations.

2.4.2 Current state of PET
In contrast to the extensive support available for fMRI, there is a 

lack of dedicated PET software in containerized BIDS Apps and 
limited support for PET code sharing in platforms like Brainlife.

2.5 Optimizing and standardizing 
workflows

Quantifying brain activity requires complex analysis pipelines, 
and researchers have significant flexibility to customize each pipeline 
step. This flexibility, however, can lead to vastly different results from 
the same data, especially in fMRI studies (Loring et al., 2002; Eklund 
et  al., 2016; Botvinik-Nezer et  al., 2020). The choice of analytical 
methods also plays a crucial role in the variability of findings across 
neuroimaging techniques. For example, differences in approaches 
such as intensity-based versus feature-based coregistration (Li et al., 
2024), gradient descent-based versus trust region-based optimization 
methods (Zhao and Xie, 2016), or PET template-based versus 
MRI-based image processing (Kuhn et al., 2014) can each act as a 
distinct reproducibility factor, independent of the software package 
used to implement these methods. Studies in PET (Greve et al., 2016; 
Mukherjee et al., 2016; Samper-González et al., 2018) also demonstrate 
how variations in processing workflows can significantly impact 
results. This variability makes it difficult to distinguish between true 
effects and biases introduced by analytic choices.

To address this, the neuroimaging community has proposed 
solutions such as “multiverse analysis” where data is processed 
through multiple pipelines and all results are combined to identify 
convergent findings (Dafflon et  al., 2022), “pipeline optimization 
tools” that automatically find the best suited pipeline for a given 
problem domain to maximize reproducibility (Churchill et al., 2012), 
and “gold standard pipelines” that become the expected workflow for 
a specific research task (Niso et al., 2022a). These strategies aim to 
limit a researcher’s ability to bias the outcome of a study through 
careful pipeline adjustment.

2.5.1 Current state of fMRI
FMRI reproducibility has been boosted by established pipelines 

like fMRIPrep (Esteban et al., 2019) and initiatives like HALFpipe 
(Waller et  al., 2022) which promote consistent analysis across 
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studies. However, researchers still navigate complex analysis 
choices. Multiverse analysis studies (Demidenko et  al., 2024; 
Kristanto et al., 2024) explore the impact that these choices have 
on results.

2.5.2 Current state of PET
Achieving standardization of analysis pipelines in PET lags 

behind fMRI. In one study, 14 international groups were asked to 
analyze the same simulated brain PET dataset using their own 
methods. Despite controlling for several preprocessing steps using 
the simulated data, the results were consistent but not identical 
across the groups. This highlights the significant impact of analytical 
and statistical choices on PET neuroimaging findings (Veronese 
et  al., 2021). A recent review (Niso et  al., 2022a) highlights the 
limited number of dedicated PET pipelines compared to those for 
MRI/fMRI. To our knowledge, the development of gold standard 
pipelines and multiverse analysis is extremely limited in brain PET.

2.6 Summary

In summary, while pressure is growing from funding bodies, 
research institutions, and publishers to implement reproducibility factors 
within neuroscience (Frank et al., 2017; Niso et al., 2022a), fMRI is 
currently leading the way and brain PET is struggling to catch up. The 
following section aims to demonstrate the real-world impact of brain 
PET’s position as a straggler in reproducibility. We describe how difficult 
it was to implement a prominent PET analysis pipeline based on available 
descriptions, to demonstrate that the relative lack of brain PET 
reproducibility infrastructure has real effects on the conduct of science.

3 Case study

To give an example of the real-world experience of PET image 
processing reproducibility, we  tried to reproduce the processing 
pipeline of a large public dataset from the ADNI study. ADNI offers 
pre-processed PET scans for 18F-FDG and 18F-Florbetapir (AV45) 
with incremental levels of processing. Figure  1A illustrates the 
pre-processing steps for both FDG and AV45 PET scans. A detailed 
listing of acquisition parameters and description of the pre-processing 
pipeline can be found on (ADNI, 2004). The original scans include 
six 5 min FDG and four 5 min AV45 dynamic frames. In step 1 of 
pre-processing, coregistered dynamic frames are generated, using the 
first frame as the reference, to correct for head motion. Step  2 
averages coregistered dynamic frames to reduce noise. Step 3 spatially 
reorients the averaged image to a standard grid (160 × 160 × 96 
voxels, 1.5 mm3). The re-gridding corrects for inter-individual 
differences in brain size and shape while also providing a consistent 
baseline across individuals for measuring longitudinal change. The 
FDG scans are re-grided using an FDG PET Talairach atlas template, 
while the AV45 scans are coregistered to either the baseline FDG 
scan (FDG-Based) or the MRI scan of the participant when FDG is 
not available (MRI-based). Re-gridded, coregistered, dynamic 
images are then generated by co-registering the original frames to 
this baseline scan, followed by averaging. Then intensity 
normalization is applied. The final preprocessing step is to smooth 
images to ease cross-scanner comparability (Jagust et al., 2015). In 
the ADNI pipeline, NeuroStat is the software that handles 

coregistration, re-gridding, and frame co-registration (NeuroStat, 
2000), while ADNI’s in-house software performs smoothing, 
averaging, and intensity normalization. In our replication of the 
ADNI pipeline, we  employed SPM12 (MATLAB, 2020b) for 
smoothing and averaging. We  skipped the initial intensity 
normalization in step 3 because this simply put voxel values on a 
uniform scale, and the subsequent analyses involve their own 
normalization. ADNI uses a separate in-house intensity 
normalization for amyloid scans, so we focused on replicating the 
core pre-processing steps and this omission did not affect the 
final results.

Quantification of fully preprocessed scans involved region of 
interest (ROI) based analyses using ADNI’s method for FDG and 
AV45 (Figure 1B). Both scans were spatially normalized to MNI 
space in SPM12 using its default FDG template (Della Rosa et al., 
2014) and a specialized florbetapir template (Joshi et  al., 2015). 
Standard uptake value ratios (SUVRs) were calculated for specific 
ROIs. The FDG ROIs are comprised of the right/left angular gyrus, 
right/left inferior temporal gyrus, and bilateral posterior cingulate in 
reference to pons/cerebellar vermis region (Landau et al., 2011). The 
AV45 ROIs are comprised of the medial orbital frontal, temporal, 
parietal, anterior cingulate, and posterior cingulate cortices as well 
as the precuneus, with the entire cerebellum as a reference region 
(Joshi et al., 2015). Finally, a global SUVR is computed from the 
average of the individual ROI SUVRs. The dataset we  validated 
included 11 subjects with diagnoses ranging from cognitively normal 
(n = 6) to mild cognitive impairment (n = 5). All participants had 
FDG, AV45, and T1-weighted MRI scans, and for all participants, 
both their FDG and AV45 PET scans were included in this 
replication study.

For FDG PET pipeline validation, the SUVRs provided publicly 
by ADNI were used as the gold standard and compared against our 
in-house calculated SUVRs. For AV45 PET validation, we could not 
use the ADNI SUVRs because for some part of the ROI-based 
analysis, they had used SPM2, an outdated software version that is no 
longer widely available and easy to deploy. Instead, we downloaded 
the fully pre-processed AV45 PET scans from ADNI and performed 
ROI-based analysis. These calculated SUVRs on the fully 
pre-processed ADNI AV45 images were used as the gold standard 
against our in-house calculations using the unprocessed images of the 
same AV45 scans. Gold-standard SUVRs were compared to in-house 
calculated SUVRs using R-squared values from linear regression, and 
intra-class correlation coefficients (ICCs). Our results demonstrated 
strong linearity for FDG, AV45 FDG-based, and AV45 MRI-based 
global SUVRs, with R-squared of 0.99, 0.99 and 0.98, and ICCs of 
0.998, 0.996, and 0.998, respectively (Figure 1C).

4 Challenges in replicating ADNI PET 
processing pipeline

While our experimental study ultimately showed strong 
correlation between in-house and gold standard SUVRs for both 
tracers, replicating ADNI’s preprocessing and processing pipeline 
presented significant hurdles. Despite achieving high linearity and 
ICCs, incomplete documentation and ambiguous implementation 
details delayed our replication process. These challenges can 
be categorized into the following areas:
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Standards for Writing and Publishing Scientific Studies:

 • Lack of specification for intermediate steps, design choices, and 
software parameters and settings in ADNI documentation.

 • Undocumented sub-steps in the ADNI pipeline, such as 
pre-smoothing frames before coregistration in step  1 and 
re-gridding AV45 scans using MRI when FDG scans are unavailable 
in step 3.

Data Sharing:

 • Compatibility issues arose with NeuroStat requiring ECAT 
format files not available from the ADNI website.

 • Obtaining undocumented, crucial information necessitated 
direct contact with the ADNI PET group.

Codes, Containers, and the Cloud:

 • Transitioning between different software tools (e.g., NeuroStat 
and SPM) presented challenges due to varying data 
format requirements.

 • Irreproducibility of ADNI’s normalization approach for AV45 
scans due to the utilization of specific ADNI in- 
house software.

 • Inability to use ADNI Avid SUVRs as the gold standard for AV45 
pipeline validation due to outdated SPM2 version.

FIGURE 1

(A) The ADNI preprocessing pipeline steps for FDG and AV45. In step 1 original FDG and AV45 frames are coregistered to the reference frame, in step 2 
coregistered FDG and AV45 frames are averaged, in step 3 the averaged image is re-grided into 160  ×  160  ×  96 grid with voxel size of 1.5  mm3 to create 
the baseline FDG and AV45 scans and further intensity normalized, in step 4 the resampled images are smooth using a non-isotropic gaussian filter; 
(B) The ADNI ROI-based analysis pipelines for FDG and AV45; The fully preprocessed (output of step 4) images are spatially normalized into the MNI 
standard space and pre-defined ROI are applied in respect to the tracer, finally a global SUVR is calculated from the average of the individual ROI 
SUVRs relative to a reference region of choice; (C) The SUVR linear regression plots for the validation dataset. The Y-axis represents ADNI’s calculated 
global SUVR as the gold standard, while the X-axis represents our in-house calculated global SUVRs for FDG (left), AV45 FDG-based (center), and AV45 
MRI-based (right) pipelines. ADNI, Alzheimer’s Disease Neuroimaging Initiative; florbetapir, AV45; ROI, Region of interest; MNI, Montreal Neurological 
Institute; SUVR, standard uptake value ratio.
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Optimizing and Standardizing Workflows:
 • The use of ADNI’s in-house software for normalization made it 

difficult to replicate their exact approach, highlighting the need 
for standardized techniques.

5 Discussion

Our perspective and case study showed that PET neuroimaging 
research faces a concerning reproducibility gap compared to fMRI and 
MRI. While the sheer volume of research using fMRI and MRI contributes 
to this disparity, other factors are also at play. PET data often presents 
unique challenges due to lower signal-to-noise ratios, partial volume 
effects, and specialized reconstruction techniques. Additionally, the 
diverse clinical and research applications of PET contribute to a more 
heterogeneous research landscape compared to fMRI. The rapid evolution 
of PET technology further complicates standardization efforts.

Efforts within the PET community to address these challenges are 
ongoing. For instance, Greve et al. highlight how variations in partial 
volume correction methods can significantly impact results, underscoring 
the need for standardized approaches (Greve et al., 2016). Initiatives like 
the NeuroReceptor Mapping conference and the consensus paper also 
aim to develop guidelines and frameworks for PET research, although the 
field still lacks comprehensive and universally adopted standards 
(Knudsen et al., 2020). Pfaehler et al. also point out that the lack of publicly 
available data, heterogeneity in metrics, and insufficient reporting details 
hinder reproducibility in radiomic studies. They call for standardized 
preprocessing steps to improve comparability and reproducibility across 
studies (Pfaehler et al., 2021). A recent review emphasizes that while 
various organizations have developed harmonization strategies for 
quantitative PET, international methodology harmonization is still 
needed to ensure comparability across global clinical studies (Akamatsu 
et al., 2023).

Compared to PET, EEG and MEG (MEEG) have made strides in 
standardization, particularly regarding acquisition protocols, reporting, 
and analysis pipelines (Niso et al., 2022b; Gross et al., 2013). However, all 
these neuroimaging fields encounter obstacles related to data sharing, 
consistent analysis methods, and collaborative culture. As highlighted by 
the LiveMEEG 2020 conference (Niso et al., 2022b), a collaborative 
mindset is essential for advancing reproducibility in neuroimaging.

The MEEG community has demonstrated the value of shared 
efforts, emphasizing the importance of resource sharing, knowledge 
exchange, and joint problem-solving. While PET research has begun 
to embrace open science principles, there is a need for a more 
concerted and collaborative approach. The PET community must 
embrace open science practices like comprehensive documentation, 
open-source software, detailed pipeline descriptions, and dedicated 
communication platforms. Implementing stricter standards and data 
sharing policies across PET journals is crucial for fostering a cultural 
shift toward open science. The limited standardized reporting 
checklists, pre-registration, containerized tools, and standardized 
processing pipelines exacerbates the issue. Initiatives like OASIS and 
ADNI have made strides in accumulating PET scans, but sharing 
data from newer radiotracers, such as flortaucipir, is crucial for 
advancing PET research. Promoting the development of 
standardized pipelines and tools should be a top priority. Solutions 
like incentivizing open practices by designating funding for long-
term maintenance of code and data repositories, as well as, offering 

promotions, tenure, and influencing funding decisions based on data 
reuse can drive progress.
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