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While standard polysomnography has revealed the importance of the sleeping

brain in health and disease, more specific insight into the relevant brain circuits

requires high-density electroencephalography (EEG). However, identifying and

handling sleep EEG artifacts becomes increasingly challenging with higher

channel counts and/or volume of recordings. Whereas manual cleaning is time-

consuming, subjective, and often yields data loss (e.g., complete removal of

channels or epochs), automated approaches suitable and practical for overnight

sleep EEG remain limited, especially when control over detection and repair

behavior is desired. Here, we introduce a flexible approach for automated

cleaning of multichannel sleep recordings, as part of the free Matlab-based

toolbox SleepTrip. Key functionality includes 1) channel-wise detection of

various artifact types encountered in sleep EEG, 2) channel- and time-resolved

marking of data segments for repair through interpolation, and 3) visualization

options to review and monitor performance. Functionality for Independent

Component Analysis is also included. Extensive customization options allow

tailoring cleaning behavior to data properties and analysis goals. By enabling

computationally efficient and flexible automated data cleaning, this tool helps

to facilitate fundamental and clinical sleep EEG research.

KEYWORDS
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1 Introduction

Sleep electroencephalography (EEG) is the primary method for investigating the
human sleeping brain in health and disease. EEG signals are the main component
of polysomnography (PSG), the gold standard for defining sleep and wake states
(Rechtschaffen and Kales, 1968; Berry et al., 2018). Beyond its fundamental role in sleep
staging, sleep EEG may undergo numerous signal processing and analysis steps to reveal the
complex dynamics and functions of sleep (Cox and Fell, 2020; Hermans et al., 2022). Both
lab- and home-based EEG systems with few channels (e.g., 2–10) are increasingly being
leveraged for large-scale examinations across hundreds or thousands of recordings (Purcell
et al., 2017; Kozhemiako et al., 2022). At the same time, many research and clinical labs
routinely acquire high-density EEG recordings (e.g., 32–256 channels) to reveal important
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topographical aspects of sleep dynamics, clinical disorders, and
sleep functions (Pisarenco et al., 2014). However, as sleep EEG
studies increase in scale, monitoring and safeguarding data quality
become more challenging.

Obtaining valid insights from sleep EEG requires analyses be
performed on signal portions minimally affected by non-neural
activity, as such artifacts can heavily influence results. Sleep EEG
artifacts can be physiological or technical in nature, and include eye
movements and blinks, sweat artifacts, muscle twitches, large body
movements, arousals, electrolyte evaporation and bridging, signal
discontinuities, amplifier saturation or disconnection, cardiac and
pulse activity, respiratory activity, swallow artifacts, and likely
others (Anderer et al., 1999; Attarian and Undevia, 2012). Note,
however, that some of these event types could themselves be targets
of inquiry (e.g., rapid eye movements, arousals). Although the
importance of data cleaning is generally acknowledged, identifying
and handling artifacts in sleep EEG is particularly challenging due
to data length and the many possible artifact types that may have
distinct or varying patterns of topographical expression across the
night.

To date, most cleaning approaches include a large manual
component, involving visually marking segments of fixed length
(typically 30-s epochs) for rejection, and/or marking entire
channels for rejection or repair. Besides being time-consuming,
subjective, and poorly reproducible, complete removal of channels
and epochs is wasteful given that artifacts are often expressed
in only a subset of channels or for a limited time. While
artifacts could conceivably be manually marked on a per-channel
basis, this is seldom done in practice even with low channel
or recording numbers, let alone for a large volume of high-
density EEG recordings.

Despite the drawbacks of manual cleaning, automated
approaches for handling sleep EEG artifacts are neither
commonplace nor consistent in sleep research. Although a
wide variety of signal processing algorithms exist for detecting
EEG artifacts during wakefulness (Jiang et al., 2019), many
of these detect artifacts globally (i.e., not channel-resolved)
and address only one or a few artifact type(s). As such, these
methods are generally not suitable for sleep EEG with its unique
physiological substates and numerous, spatially evolving, artifact
types. Moreover, many algorithms developed in the context of
wake EEG are computationally intensive, making unreasonable
memory demands or having impractically long runtimes for an
8-h overnight high-density recording. Perhaps most importantly,
low-level stand-alone detection algorithms are of little practical
use to most users in the absence of additional functionality for
data handling, repair, and visualization. On the other hand,
various high-level toolboxes suitable for EEG, such as FieldTrip
(Oostenveld et al., 2011), EEGLAB (Delorme and Makeig, 2004),
Brainstorm (Tadel et al., 2011), and MNE-Python (Gramfort,
2013), provide powerful data processing and analysis utilities,
including various artifact detection and repair options. However,
these platforms are also geared heavily towards wake EEG, which
is typically much shorter and homogeneous than sleep EEG, and
these tools contain very limited built-in solutions suitable for sleep.

A relatively small number of dedicated sleep EEG cleaning
approaches have been reported (although it is likely that various
“in-house” pipelines have gone unpublished). Two of these
approaches are limited to the detection of pre-specified global

artifact types and lack the functionality for further handling
these events [FASST (’t Wallant et al., 2016); Riemannian Potato
(Saifutdinova et al., 2019)]. In contrast, High-Density-SleepCleaner
offers channel- and epoch-resolved artifact detection, including
important visualization and epoch-wise interpolation options
(Leach et al., 2023). A drawback of this approach is that it relies
on experienced users to visually screen each recording multiple
times. The Luna toolbox (Kozhemiako et al., 2022) includes fully
automated epoch- and channel-resolved flagging of outliers and
several artifact detection and repair options, including epoch-
wise interpolation. Finally, SleepEEGpy (Belonosov et al., 2023)
enables visual annotation of bad channels and temporal intervals,
but specific artifact detection routines are not included. Table 1
compares various features for the aforementioned toolboxes.

Blind source separation methods, such as independent
component analysis (ICA), represent another approach to
removing artifacts from sleep data (Romero et al., 2003;
Crespo-Garcia et al., 2008; Demanuele et al., 2017). Rather
than detecting individual events with specific start and end times,
these approaches decompose multichannel EEG time courses
into component time courses, some of which usually correspond
strongly to observable artifacts (e.g., ocular, cardiac) and may
be mathematically subtracted from the original signal. However,
manual component selection requires additional human expertise
and is difficult to replicate, while the resulting data invariably
contain residual artifacts that require handling. Hence, while ICA
may be considered a useful preliminary cleaning step, it rarely
yields analysis-ready data.

In sum, limited practical solutions exist for users wishing to set
up automated artifact handling for sleep EEG, particularly when
cleaning is to be tailored to specific data properties or analysis goals.
Drawing inspiration from existing tools and algorithms, we here
introduce a flexible approach to automated cleaning of overnight
sleep recordings as part of SleepTrip (Weber et al., 2021), a toolbox
suitable for large-scale sleep EEG analyses. Functionality includes
channel-resolved detection of various artifact types encountered
in sleep EEG, followed by both the marking of data segments for
complete rejection (i.e., ignore or remove), and temporally resolved
repair of artifactual channels via interpolation. In addition, pre-
cleaning ICA may further improve data quality. The approach
is computationally efficient, suitable for all channel counts, and
offers extensive customizability to align cleaning behavior with
analysis goals. Finally, this tool may serve as a basis for creating
standardized cleaning pipelines, thereby improving data analyses
and interpretation.

Methods and results

Overview

The present cleaning functionality is part of the free Matlab-
based toolbox SleepTrip,1 allowing artifact handling to be
integrated into a large suite of functions for data handling
and process pipelining, preprocessing, and analysis (e.g., sleep

1 https://github.com/coxroy/sleeptrip
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TABLE 1 Feature comparison of various toolboxes and algorithms relevant for sleep EEG artifact processing.

Toolbox/
algorithm

Language
(dependency)

Suitable for
high-density
sleep EEG

Artifact
type(s)

Artifact
detection

Artifact
visualization

Interpolation
functionality

high-level toolboxes

EEGLAB Matlab Yes Many, customizable Global Global Recording-wise

FieldTrip Matlab Yes Many, customizable Global Global Recording-wise

Brainstorm Matlab (standalone) Unknown Limited,
customizable

Global Global Recording-wise

MNE-Python Python Unknown Limited,
customizable

Global Unknown Recording-wise,
epoch-wise

Low-level toolboxes

Luna C/C++/R Likely Many, customizable Channel-wise Unknown Epoch-wise

FASST Matlab Possibly Fixed Global No No

Riemannian potato Python Possibly Fixed Global No No

High-Density-
SleepCleaner

Matlab Yes Fixed Channel-wise Channel-wise Epoch-wise

SleepEEGpy Python
(MNE-Python)

Yes Unknown Unknown Unknown Recording-wise,
epoch-wise

current Matlab (SleepTrip) Yes Many, customizable Channel-wise Channel-wise Epoch-wise

Information compiled from publications and other available documentation, and may not reflect current functionality.

architecture, spectral power, sleep spindle and slow wave detection).
As SleepTrip is a branch of FieldTrip (Oostenveld et al., 2011),
the present approach relies on and repurposes various FieldTrip
functions, as well as some EEGLAB functionality (Delorme and
Makeig, 2004) including the IClabel plugin (Pion-Tonachini et al.,
2019). Tutorial scripts to get started with artifact detection
(tutorial_cleaning.m) and ICA (tutorial_ica.m) are included within
SleepTrip. Three accompanying 64-channel recordings can be
downloaded from within SleepTrip (download_tutorial_data.m) or
accessed directly from Zenodo.2

Requirements

SleepTrip runs under Matlab (development versions:
R2022a and R2022b for Windows) with access to the Signal
Processing Toolbox. Hardware requirements depend on recording
characteristics: a 8-h 251-channel recording sampled at 250 Hz has
a peak memory usage of ∼128 GB RAM and a runtime of ∼45 min
on a 3.60 GHz 4 core machine, with these values scaling roughly
proportionally with channel count, recording length, and sample
rate. Approximate runtimes using our setup for individual cleaning
components and ICA are reported in the respective sections.

Data cleaning requires three primary variables as input:

1) data: a FieldTrip structure containing sleep EEG data,
with underlying data requiring 64-bit precision (Matlab’s
double type) for signal processing. data should contain
only continuous signal (no trials/epochs) provided in the
shape desired for further processing (e.g., desired channel
and time range, reference, filter). Unless otherwise required,

2 https://zenodo.org/doi/10.5281/zenodo.10256036

sample rates above 250/256 Hz are discouraged to ensure
acceptable runtimes.

2) elec: a structure containing electrode/channel coordinates, in
FieldTrip format. elec should match the channels contained
within data. elec is used for determining neighboring channel
pairs, as used by several artifact detectors, and for making
topographical plots.

3) scoring: a structure containing sleep stage information, in
SleepTrip format.

Various SleepTrip and FieldTrip resources and functions assist
in preparing these variables as required.

Dataset

The cleaning tool was developed in conjunction with an
existing dataset consisting of 560 256-channel overnight recordings
from 371 individuals (47.4 ± 13.7 y, 261 female), with each
individual contributing between 1 and 5 recordings. Data stems
from different study protocols, with individual study protocols
approved by the ethics committees of either VU Medical Center
or University of Amsterdam. Participants gave written informed
consent in accordance with the Declaration of Helsinki, and
were paid for participation. Participants were patients diagnosed
with insomnia disorder (N = 245), healthy sleepers (N = 120),
unclassified pilot participants (N = 5), and a patient diagnosed with
advanced sleep phase disorder (N = 1). Based on previous data
examination, this sizable and heterogeneous sample was known
to harbor large variability regarding artifact type, severity, and
spatiotemporal expression. EEG was sampled at 1,000 Hz with an
online Cz reference, along with several physiological bipolar signals
(Electrical Geodesic Inc., Eugene, OR, USA). Offline, EEG was
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FIGURE 1

Overview of data cleaning steps.

downsampled to 250 Hz, rereferenced to digitally linked mastoids,
and filtered (high-pass at 0.5 Hz, notch at 50 Hz). Final channel
count was 251, but recording variants with fewer channels were also
examined. Separately, recordings were converted to a PSG montage
of standard EEG, electrooculography (EOG) and electromyography
(EMG) for manual scoring of sleep stages and arousals
(Berry et al., 2018).

Artifact detection and repair

Figure 1 illustrates the conceptual workflow of the main
artifact detection and repair functionality. Optional ICA-based
pre-cleaning is described later.

Artifact detection
To enable artifact detection of various types, the user supplies a

so-called detector set comprised of individual detectors. A default
detector set, presently containing nine individual detectors, may
be used as a starting point (Table 2). Default detectors’ settings
may be altered or new detectors may be constructed to build a
custom detector set optimized for the data at hand. Each individual
detector contains low-level instructions regarding data to consider
(sleep stages and channels), how data should be processed (e.g.,
filtering, Hilbert transform, smoothing, z-scoring), and detection
criteria (e.g., amplitude and duration thresholds, merging rules).
When running a detector set, each individual detector is applied
either separately to each channel, or to designated channel pairs,
depending on detector type. Specifically, channel-wise detectors
identify signal portions meeting the specified requirements
separately on each channel (e.g., the default highamp detector).
In contrast, pairwise detectors operate on fixed-length windows
(typically 30 s) and calculate a pairwise metric (e.g., correlation) for
all channel pairs involving a particular target channel. The target
channel is then labeled artifactual if a sufficient proportion of values
meets criteria (e.g. for the default deviant detector: unrealistically

low correlation with the majority of local neighbors). Channel pairs
to consider are specified by a customizable neighborhood structure
(e.g., local neighbors or all-to-all).

All detectors return event tables with event start and end times
by channel, to be used both for downstream processing (see Artifact
processing) and event visualization (seeArtifact visualization). Total
runtime using the default detector set is approximately 1, 10, and
45 min for channel counts of 6, 64, and 250, respectively.

Artifact processing
For each detector, its event table is converted into a binary

channel-by-segment artifact grid (default segment length: 5 s).
Here, a grid element is labeled artifactual if the corresponding
continuous data segment is artifactual for more than a certain
proportion of time (default: 0). The discrete grid format simplifies
further processing, while the short segment length results in limited
loss of granularity.

Following the conversion to a grid-based representation,
additional processing proceeds in five steps. First, individual
detector grids are pooled (default: logical OR across all detector
grids) into a basic artifact grid, indicating whether channel-
segment elements contain artifact of any kind. Grid merging
may also be performed on a subset of available detector grids.
Second, a spatial expansion grid is created: at each segment,
channels not containing basic artifact are set to artifactual if a
sufficient proportion of neighboring channels is artifactual. This
step is particularly suitable for high-density recordings, marking
channels surrounded by artifactual channels but failing to reach
detection thresholds themselves. By default, no spatial expansion
is performed. Third, a rejection grid is created: segments where the
proportion of artifactual channels is deemed too high are marked
for rejection (i.e., downstream removal). By default, no segments
are rejected. Fourth, a temporal expansion grid is created by
identifying channels where the proportion of artifactual segments
is deemed too high, and extending artifacts to all segments of the
affected channels. Hence, this step essentially functions as a bad
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TABLE 2 Overview of individual artifact detectors contained within the default detector set.

Detector Artifact type(s) Entity Method Minimum
duration (s)

Padding (s) Merge
interval (s)

Runtime
6/64/250 (min)

Notes

Highamp Excessive positive/negative
amplitude

Channel-wise,
continuous

Absolute
amplitude > 300 µv

0 0.1 1 <1
<1
∼2

Lowamp Implausibly low amplitude Channel-wise,
continuous

Absolute amplitude < 5
µv

30 0.1 1 < 1
<1
∼2

Lowfreq Excessive low-frequency activity
(e.g., ocular, sweat)

Channel-wise,
continuous

0.3–15 Hz signal
envelope; z > 8

0 3 1 <1
∼2
∼8

Highfreq Excessive high-frequency
activity (e.g., muscle)

Channel-wise,
continuous

60–120* Hz signal
envelope; z > 3

0 0.1 1 <1
∼2
∼8

*:lowered to nyquist if sample
rate < 240 Hz; dropped at
80 Hz

Jump Signal jumps (e.g., channel
pops)

Channel-wise,
continuous

Median filter (order 9);
absolute gradient;

Z > 25

0 0.1 1 <1
<1
∼2

Filter order for 250 Hz

Flatline Unchanging signal (e.g., no
connection, saturation)

Channel-wise,
continuous

Absolute gradient < 1 µv 1 0.1 1 <1
<1
∼2

Threshold adjusted based on
sample rate (e.g, 2 µv for
125 Hz)

Deviant Channel deviates strongly from
local neighbors (e.g., poor/no
connection)

Pairwise (local), window
(30 s)

R with neighbor < 0.3
for > 0.5 of neighbors

[window length] 0 60 <1
<1
<1

Only if > 2 channels

Similar Channel highly similar to local
neighbors (e.g., gel bridging)

Pairwise (local), window
(30 s)

Maximum absolute
difference between
neighbors < 0.5 µv

[window length] 0 60 <1
<1
∼15

Only if > 2 channels

Similar2 Channel highly similar to
majority of channels (e.g., poor
reference)

Pairwise (global),
window (5 s)

High-pass 2 Hz, R of
chan pair > 0.9 for > 0.5

of neighbors

[window length] 0 5 <1
<1
∼2

Default detectors and their algorithmic details may be subject to change.
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FIGURE 2

Event visualization. (A) An epoch of N2 (indicated by large 2) both preceded and followed by six N2 epochs (sequence of small 2 s). Raw artifacts of
various types are highlighted in different colors (legend in top-right), including instances of high-amplitude, low-frequency, high-frequency, jump,
deviant-channel, and similar-channel artifacts. Note that different artifact types may overlap, thereby building in some redundancy. Also note the
two channels marked as similar (green-blue): these channels were numerically identical across the entire recording but would likely not be flagged
manually. (B) The same epoch as in (A), now showing channel-segment elements marked for repair (blue) and segments marked for rejection (red).
Note that the top channel labeled for repair does not contain artifacts within this epoch, but it is marked due to its poor quality throughout the rest
of the recording. Artifact detection run on 251 channels but only 70 shown for visualization purposes.

channel detector. Note that this step occurs after the rejection grid
has been created, such that bad channel detection is not driven
by segments already marked for rejection. By default, no temporal
expansion is performed. Finally, and fifth, the repair grid marks
channel-segment elements for downstream repair. It is created by
combining all grids except the rejection grid (i.e., basic artifact
grid, spatial expansion grid, temporal expansion grid). The rejection
grid is then subtracted from the repair grid, as segments marked
for rejection typically contain too many noisy channels to allow
meaningful repair.

Next, various summary statistics are calculated from the grids,
including percentage of data marked artifactual for individual

artifact grids, and overall percentages marked for repair and
rejection. Statistics are also provided by sleep stage. This
information can be used to identify recordings requiring additional
review or to discard entirely. Grids are also converted back to
event tables for viewing them in relation to EEG traces (see Artifact
visualization). Artifact processing runtime is typically < 1 min.

Artifact visualization
To examine whether detected events reflect visually

apparent artifacts, SleepTrip offers low-level event visualization
functionality. Specifically, event tables generated by both raw
artifact detection and subsequent grid-based artifact processing
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FIGURE 3

Data quality plot for the recording containing the epoch shown in Figure 2. The data quality plot shows descriptive information on rejection, repair,
and artifact percentages (left), a hypnogram (top), a central grid indicating channel-segment elements marked as artifact (gray: basic artifact,
magenta: spatial expansion, gold: temporal expansion) and segments marked for rejection (red), marginal summaries of the central grid across
channels (bottom) and across segments (right), and a topography (bottom-right) of basic artifact percentages (white-black gradient) and channels
marked for complete interpolation (red).

may be used to overlay events on top of EEG traces and scroll
through the recording for visual review. As an example, Figure 2A
highlights raw artifacts of various types for an epoch of N2.
Figure 2B shows the same data while highlighting the grid elements
marked for repair (blue) and rejection (red). Event tables produced
by different detectors may be combined or shown in isolation,
results from detectors with different settings may be compared,
and events may be overlaid on pre- or post-cleaning data. Event
tables are not strictly limited to artifacts and could also contain
other events (e.g., spindles, slow waves, eye movements). Color and
marking style for each event type are customizable.

A second visualization tool provides a high-level data quality
plot containing the most important aspects of artifact detection,
including many of the aforementioned grid-based summary
statistics, various overlaid grids, a topography, and a hypnogram
(Figure 3 and Supplementary Figures 1–6). This information can
be helpful to provide an immediate impression of data integrity
without scrolling through an entire recording. At the same time,
it can signify parts of the data requiring more detailed review.

Data repair
Data may be repaired in several ways, typically by making

use of the repair grid. The primary repair method is by
interpolating artifactual channels using the weighted spherical
spline approach (Freeden, 1984; Oostenveld et al., 2011).
Importantly, data repair proceeds segment-wise, such that at
each segment only those channels labeled artifactual are repaired,
using exclusively information from non-artifactual channels.
Discontinuities arising from this approach are minimized by

smoothing affected segment boundaries. Figure 4 illustrates data
repair for a 251-channel epoch of REM sleep. Alternatively,
the repair grid can be used to replace affected channel-segment
elements with a fixed value (zero or not-a-number). It is
also possible to base data repair on any of the other built-in
grids, or on a custom grid (e.g., calculated from existing grids
and/or including manual edits). The data repair routine typically
takes < 1 min.

Data rejection and selection
A data selection routine allows excluding data marked for

rejection. Data may be returned in trial format (i.e., separating each
uninterrupted data bout) or pseudocontinuous (i.e., concatenated
trials). Moreover, data selection may be restricted to one or
more specific sleep stage(s), and returned trials may be requested
to have a minimum duration. Hence, the user may select e.g.
all > 1 min bouts of clean N2 for further analysis. This is further
illustrated in Figure 5, where the data quality plot (Figure 5A)
shows a large block between 5.5–6 h of the recording marked
for rejection, primarily scored as N2 sleep. Correspondingly, the
N2 power spectrum of the raw data (i.e., including segments
marked for rejection and prior to any channel interpolation) does
not show expected sigma peaks (Figure 5B). Rejection of bad
segments leads to a large reduction in total power while clear
sigma peaks become apparent, though some channels remain
noisy (Figure 5C). Finally, spectral appearance further improves
following segment-wise data repair via channel interpolation
(Figure 5D).
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FIGURE 4

Data repair using segment-wise channel interpolation in 251-channel data. (A) An epoch of REM sleep (R, both preceded and followed by mostly
REM) in the last quarter of the night, when various channels have become noisy or disconnected entirely. (B) The same epoch with detected artifacts
highlighted. (C) The same epoch after segment-wise channel interpolation. Note the overall improvement in signal appearance, although some data
disturbances remain.
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FIGURE 5

Data quality and spectra. (A) Data quality plot showing substantial artifact during late N2, which is marked for rejection (black oval). Power spectra of
selected channels during N2 for raw (B), segment-rejected (C), and segment-rejected plus channel-interpolated data (D).

Application to data

We applied the default detector set to our dataset of 251-
channel lab-based recordings (N = 560). For grid-based artifact
processing, we set the spatial expansion threshold to 0.75, the
segment rejection threshold to 0.25, and the temporal expansion
threshold to 0.25. Resulting distributions of artifact percentages
by detector type (Figure 6A) had relatively low medians with
values < 5%, but were skewed with most detector types flagging
some highly anomalous recordings, which was later confirmed
by visual review of several recordings. The overlap of all artifact
types (basic) yielded a median percentage of 10%. Median
percentages of data marked for repair and rejection were around
5% and 8%, respectively, with the rejection distribution being
particularly skewed (Figure 6B). Pooling across all detectors,
artifact percentages were strongly modulated by sleep stage
(Figure 6C), with largest values for W, followed by N1, R, N2, and
N3, as might be expected. Note that all preceding values depend
importantly on included detectors and their thresholds, as well as
parameters for grid-based artifact processing.

Comparison to manual artifact
annotation

For comparison purposes, artifacts were manually annotated
by an experienced sleep EEG researcher (RC) for three 18-
channel recordings. Annotation was done channel- and segment-
wise (i.e., similar to the automated approach) and blindly (i.e.,
without reference to automatically detected events). Criteria were
subjective: a channel-segment element was labeled artifactual
whenever the rater deemed the signal too noisy or non-
physiological for standard sleep EEG analyses. Exceptions were
made for eye blinks during wakefulness and eye movements
during REM, since the default automated approach was not set
up for these particular events either. Annotating a single 18-
channel recording in this manner took about 8 h. Considering
manual annotations as the reference, Table 3 details performance
of the automated approach using several metrics. Score ranges
were high for accuracy (0.92–0.95), sensitivity (0.79–0.90), and
specificity (0.93–0.95). However, as the automated approach labeled
approximately twice as many channel-segment pairs as artifactual
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FIGURE 6

Distributions of artifact percentages and medians across 560
recordings. (A) Percentage by artifact type, and their combination
(“basic”). (B) Repair and reject percentages. (C) Percentage of
pooled artifacts by sleep stage.

relative to manual annotation, scores were lower for Cohen’s kappa
(0.51–0.60), precision (0.39–0.48), and F1 score (0.53–0.62).

Pre-cleaning ICA

The default detector set detects many visually apparent
artifacts, but other events, such as certain eye- and heart-
related waveforms, are not routinely recognized. While this could
potentially be addressed by optimizing or adding detectors, the ICA
technique is another useful approach for reducing such artifacts,
which should typically be done prior to regular artifact detection
and data repair. SleepTrip’s ICA approach relies on the same
Infomax module used by EEGLAB and FieldTrip, but offers various
additional options to make it more suitable for sleep EEG.

First, the user designates the sleep stages that should be
included for ICA training. Although ICA can be run on an entire
recording in principle, this can be unnecessarily time-consuming.
An alternative approach is to run ICA exclusively on the sleep
stages most likely to contain artifact (recommended: W, N1, R).
Later, selected artifactual components may be subtracted from
the entire recording, often with qualitative improvements even
for stages not part of the training data (i.e., N2, N3). Second, to
prevent ICA from allocating valuable components to extremely
noisy data segments or channels, the data supplied to the ICA
algorithm may itself undergo some pre-cleaning. Specifically, the T
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default highamp and deviant detectors are used to a) identify
and interpolate anomalous channels and b) identify and remove
noisy segments from the data. Third, Infomax runica is run,
including optional initial PCA (principal component analysis) to
reduce the number of returned components. The PCA option
is also automatically invoked when the data are not full rank
(i.e., incomplete linear independence between channels), which is
always the case when channels have been interpolated. Fourth,
returned components are automatically classified using the IClabel
functionality (Pion-Tonachini et al., 2019) along with classification
probabilities. Fifth, the user manually specifies components to
remove from the data. Runtimes for ICA decomposition of 251-
channel data are approximately 4 h when using the full recording
and ∼45 min when limited to stages W, N1 and R.

Figure 7 shows an example of the aforementioned approach
applied to 64-channel data, with the ICA algorithm being trained
exclusively on stages W, N1 and R. Raw channel data (Figure 7A)
shows clear ocular activity during R and N1, as well as subtle
repetitive cardiac-related activity during N1 and N2 (red channel
and ovals). The latter may be easily missed as it is obscured on most
channels by higher amplitude brain activity. ICA decomposition
(Figure 7B) returns several components capturing these eye- (blue)
and heart-related (red) activities, which may be subtracted from
the original data (Figure 7C). Clear improvements in signal quality
are apparent, including the removal of cardiac activity from N2,
even though the ICA algorithm was never exposed to data from
this stage. We note that numerous artifacts typically remain after
this process, which could then be handled using the previously
described cleaning process.

Discussion

This paper introduces an efficient and flexible approach to
automated cleaning of multichannel sleep EEG. Core features
include the ability to detect and repair artifacts channel-wise,
accommodate artifacts of various types, customize and extend
detection options, and visualize detected events and overall data
quality. In addition, pre-cleaning ICA may further enhance
data quality for high-density recordings. Importantly, once final
parameter settings have been selected, cleaning may proceed
without user intervention.

Artifact detection and repair

While many specialized algorithms exist for wake EEG
artifact detection and/or repair (Jiang et al., 2019), approaches
geared specifically towards sleep EEG with its unique physiology
are much less prevalent (’t Wallant et al., 2016; Saifutdinova
et al., 2019; Leach et al., 2023). Regardless of wake/sleep state,
many proposed signal-processing algorithms make unreasonable
computing demands when faced with long-duration and/or high-
density EEG recordings, both in terms of memory usage and
runtime. In addition, most available sleep cleaning tools have
a restricted focus, such as handling only a limited number of
artifact types, detection without visualization, detection without
repair functionality, minimum/maximum channel counts, and so

on. Consequently, it is often left to the user to select, reimplement,
and integrate different tools into a coherent cleaning approach.
These limitations are shared by various high-level toolboxes
(e.g., FieldTrip, EEGLAB, MNE Python), which include powerful
artifact-related functionality in the context of wake EEG, but
require considerable and often advanced user effort to make them
minimally suitable for sleep EEG. The current approach addresses
these issues by integrating several convenient data cleaning, repair,
and visualization functions into the SleepTrip platform, thereby
offering the tools for setting up a complete and customizable
pipeline for data handling, preprocessing, cleaning, and analysis.

Default artifact detectors and their settings were chosen
following extensive visual examination of individual events, data
quality plots, and spectral plots across several dozen lab-based
251-channel EEG recordings (and lower-density variants). Here,
particular attention was paid to both the detection of visually
apparent artifacts, and the non-detection of neural events at risk
of being flagged (e.g., large slow waves/K-complexes). Although
provided defaults are deemed reasonable for our data, qualitative
detection performance still varied across individual recordings.
Consequently, it is likely that the default detector set continues to
evolve. For example, each default detector is currently set up to be
applied to the entire recording, whereas stage-specific parameter
settings might lead to improved specificity and sensitivity. While
our focus during software development and in this paper has been
on high-density EEG, the approach also appears to work well
on low-density or even single-channel EEG (though this was not
systematically evaluated).

More broadly, we emphasize that default cleaning settings
are intended as a useful starting point rather than an out-
of-the-box solution to blindly apply to new data. Different
study populations (e.g., clinical, pediatric), recording setups (e.g.,
cap, amplifier), and data properties (e.g., channel number and
location, reference location, sample rate, preprocessing steps)
likely necessitate different detectors and parameter settings. For
example, amplitude thresholds set in µV may need to be altered
depending on reference location. Similarly, thresholds based on
z-scores require consideration of the underlying data: for example,
the minimum z-score for low-frequency artifacts needs to be
comparatively high for an overnight recording rich in slow waves
in order to avoid false positive detection of slow waves, but
could be lowered for an afternoon nap without slow waves.
Moreover, detection parameters should consider analysis goals.
For instance, topographical analyses may require relatively strict
segment rejection thresholds to allow meaningful interpolation
for the remaining non-rejected segments, whereas other analyses
might proceed as long as a minimal number of useable channels
are available. Finally, it deserves mention that certain types of
events, such as rapid eye movements and arousals, may be
considered artifacts for some purposes (e.g., spectral analysis), but
in other cases could be targets of investigation that should not
be removed. While not formally analyzed in the current work,
some of the default detectors return events largely overlapping
with eye movements or arousals, suggesting that detectors (or
entire detector sets) may be optimized to flag various event types
of interest. Hence, beyond custom artifact processing optimized
to specific datasets and analysis goals, the current approach
may also enable the detection and handling of other (non-
artifactual) event types.

Frontiers in Neuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2024.1415512
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-18-1415512 August 6, 2024 Time: 16:2 # 12

Cox et al. 10.3389/fninf.2024.1415512

FIGURE 7

ICA example showing 10 s of data for stages R, N1, and N2. (A) Pre-ICA channel data for selection of channels. Note clear ocular activity on several
channels during R and N1, and cardiac activity during N1 and N2 (red channel and red ovals). (B) Selection of components capturing ocular (blue)
and cardiac (red) activity. (C) Same channels as in (A) following removal of the 7 components shown in (B).

The ability to set up data cleaning without user intervention is
an important feature of the current approach, particularly as large-
volume data analyses become more commonplace (Purcell et al.,
2017; Kozhemiako et al., 2022). However, it is up to the user to
decide whether and when fully automated cleaning is desirable.
In particular, for limited datasets it may be feasible to visually
review and adjust detection settings on a per-recording basis.
In contrast, larger datasets may be more conveniently handled
by automated cleaning supported by strategically placed visual
evaluation. A potential workflow for cleaning a new dataset might
be: i) apply default settings to several example recordings and
perform detailed inspection of detected events, ii) adjust settings
until detection performance for example recordings is deemed
adequate, iii) review data quality plots and summary tables across
full sample to identify outliers for additional detailed inspection, iv)
repeat preceding steps until satisfied. While the process of detector
building, parameter tweaking, and visual exploration still requires a
substantial time investment, in most cases with larger datasets this
will still be more time-efficient than manual cleaning. Moreover,
performing visual examinations instills confidence that subsequent
automated cleaning results will be acceptable. Finally, automated
cleaning offers the benefits of reproducibility and makes it possible
to examine the impact of different cleaning strategies on final
results (e.g., do results using stricter versus more lenient parameter
settings converge?).

We elected not to formally validate the current approach
against human detection, as this would require extensive manual
channel- and segment-wise artifact annotation, ideally across
many high-density recordings. Moreover, given that such detailed
annotations are rarely, if ever, performed in the course of typical
manual cleaning, it is unclear whether they would serve as a
meaningful ground truth. Nevertheless, in order to provide a

rough indication of performance, we manually annotated three
recordings for comparison with the default automated approach.
Relative to manual annotation, the automated approach detected
about twice as many artifacts. However, upon visual review this
higher artifact prevalence did not seem unreasonable. Additionally,
alignment between automatic and manual artifact detection can
be improved rather trivially by relaxing automatic detection
thresholds. Given the ultimately inherent ambiguity regarding what
constitutes a true artifact, we consider the performance values
of Table 3 adequate. We did not compare the present approach
to other (semi-)automatic sleep EEG cleaning tools (’t Wallant
et al., 2016; Saifutdinova et al., 2019; Leach et al., 2023), mainly
because these tools do not generate the channel-resolved artifact
information required for direct comparison (but see the approach
by Leach and colleagues for epoch-wise marking of bad channels).
Consequently, it is not claimed that the current approach performs
better than manual or other automated approaches. However,
we emphasize that the current tool’s primary contribution lies in
providing the means to efficiently and flexibly prepare large datasets
for analyses, rather than establishing performance metrics for a
specific combination of detectors, parameter settings, and data
characteristics.

Data repair presently occurs through weighted spherical spline-
based interpolation (Freeden, 1984; Oostenveld et al., 2011) or
replacement with a fixed value (not-a-number or zero), though
other interpolation or repair approaches may be added in the
future. While having different channels interpolated at each
segment has drawbacks (e.g., different data rank at each segment,
small residual discontinuities at segment edges), these concerns
are preferred over the data loss that occurs with conventional
interpolation across the entire recording. Currently implemented
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detection options are limited to relatively straightforward low-
level signal processing steps (e.g., filter, Hilbert transform,
rectify, z-score, signal gradient, correlation) in conjunction with
simple detection criteria (e.g., minimum/maximum amplitude
and duration thresholds). Indeed, we have deliberately avoided
algorithmic steps that make unrealistic computational demands in
the context of multichannel sleep EEG, even if they could assist
artifact detection in principle. It is currently not possible to add
or remove individual artifact events based on visual exploration, as
this would require substantial new interactive functionality. While
this and other functionality may be added in the future, currently
available signal processing options, combined with the various grid-
based processing options and repair/selection routines, will likely
accommodate a large part of custom cleaning wishes.

ICA

Given ICA’s proven utility in reducing various artifact types
that are otherwise difficult to repair, SleepTrip also includes ICA
functionality, which should typically be applied prior to standard
artifact detection. While the low-level algorithm is identical to that
offered by e.g. FieldTrip and EEGLAB, several high-level options
particularly useful to sleep EEG are available. First, a simplified
version of the artifact detection and repair functionality is run prior
to ICA to avoid supplying overly noisy data to the ICA algorithm.
Second, ICA training may be restricted to specific sleep stages,
reducing computational burden while still allowing artifact removal
across the entire recording.

Several caveats regarding pre-cleaning ICA should be
mentioned. First, the assumption of data stationarity does not hold
for sleep EEG with its distinct substates, even when excluding
particular sleep stages from the ICA algorithm. Second, it is often
recommended for wake EEG to high-pass filter data at 1 Hz to
prevent ICA’s attention from being drawn to slow dynamics and
wasting valuable components on them. However, this suggestion
is difficult to follow in the context of sleep EEG where it would
remove substantial parts of physiological slow wave and delta
activity, complicating visual assessment of returned components.
Third, component removal reduces data rank, meaning that any
downstream channel interpolation - as part of standard data
repair – represents a second round of rank reduction. Despite
these considerations, the implemented ICA approach often returns
clearly artifactual components that, when subtracted from the
original data, yield substantial improvements in signal appearance
(Figure 7). In light of our overall objective of improving data
quality for subsequent analyses, we deem these deviations from
recommended practices acceptable and in line with previous sleep
ICA approaches (Romero et al., 2003; Crespo-Garcia et al., 2008;
Demanuele et al., 2017). We emphasize that it is up to the user
whether specific components should be considered artifactual
and/or removed from the data, as components could also be used
to directly quantify features of interest (e.g., rapid eye movements,
heart rate or its variability).

For convenience, ICA components are returned with
probabilities of belonging to each of seven classes (brain, muscle,
eye, heart, line noise, channel noise, other), as provided by the
IClabel functionality (Pion-Tonachini et al., 2019). IClabel provides
classification information by comparing components to templates,

which in turn are based on human annotation of many thousands
of components. Importantly, however, IClabel’s templates are
trained exclusively on wake data, and classification of sleep EEG
components is therefore far from perfect. Nonetheless, labeling
of ocular and cardiac components often appears quite reasonable
and may assist manual selection of components to remove. While
class probabilities could be used to automate component removal
in principle, preliminary efforts suggest that manual component
selection leads to better results and is the recommended approach
for the time being.

Conclusion

This paper introduces an approach for customizable automated
detection and repair of multichannel sleep EEG artifacts, integrated
in a widely used framework for EEG analysis. This tool may help
improve sleep EEG cleaning practices and could serve as a basis
for creating standardized cleaning pipelines, ultimately accelerating
fundamental and clinical sleep EEG research.
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