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University of Novi Sad Faculty of Technical
Sciences, Serbia
Eric K. Neumann,
Independent researcher, Cambridge, MA,
United States

*CORRESPONDENCE

Marta Gaviraghi
marta.gaviraghi01@universitadipavia.it

RECEIVED 09 April 2024
ACCEPTED 29 May 2024
PUBLISHED 12 June 2024

CITATION

Gaviraghi M, Ricciardi A, Palesi F,
Brownlee W, Vitali P, Prados F, Kanber B and
Gandini Wheeler-Kingshott CAM (2024)
Finding the limits of deep learning clinical
sensitivity with fractional anisotropy (FA)
microstructure maps.
Front. Neuroinform. 18:1415085.
doi: 10.3389/fninf.2024.1415085

COPYRIGHT

© 2024 Gaviraghi, Ricciardi, Palesi, Brownlee,
Vitali, Prados, Kanber and Gandini
Wheeler-Kingshott. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Finding the limits of deep
learning clinical sensitivity with
fractional anisotropy (FA)
microstructure maps
Marta Gaviraghi1*, Antonio Ricciardi2, Fulvia Palesi1,
Wallace Brownlee2, Paolo Vitali3,4, Ferran Prados2,5,6,
Baris Kanber2,5 and
Claudia A. M. Gandini Wheeler-Kingshott1,2,7

1Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy, 2NMR Research Unit,
Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square
Institute of Neurology, University College London, London, United Kingdom, 3Department
of Radiology, IRCCS Policlinico San Donato, Milan, Italy, 4Department of Biomedical Sciences
for Health, Universitá degli Studi di Milano, Milan, Italy, 5Department of Medical Physics
and Biomedical Engineering, Centre for Medical Image Computing, University College London,
London, United Kingdom, 6E-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain, 7Brain
Connectivity Centre, IRCCS Mondino Foundation, Pavia, Italy

Background: Quantitative maps obtained with diffusion weighted (DW) imaging,

such as fractional anisotropy (FA) –calculated by fitting the diffusion tensor (DT)

model to the data,—are very useful to study neurological diseases. To fit this

map accurately, acquisition times of the order of several minutes are needed

because many noncollinear DW volumes must be acquired to reduce directional

biases. Deep learning (DL) can be used to reduce acquisition times by reducing

the number of DW volumes. We already developed a DL network named “one-

minute FA,” which uses 10 DW volumes to obtain FA maps, maintaining the

same characteristics and clinical sensitivity of the FA maps calculated with the

standard method using more volumes. Recent publications have indicated that

it is possible to train DL networks and obtain FA maps even with 4 DW input

volumes, far less than the minimum number of directions for the mathematical

estimation of the DT.

Methods: Here we investigated the impact of reducing the number of DW

input volumes to 4 or 7, and evaluated the performance and clinical sensitivity

of the corresponding DL networks trained to calculate FA, while comparing

results also with those using our one-minute FA. Each network training was

performed on the human connectome project open-access dataset that has

a high resolution and many DW volumes, used to fit a ground truth FA. To

evaluate the generalizability of each network, they were tested on two external

clinical datasets, not seen during training, and acquired on different scanners

with different protocols, as previously done.

Results: Using 4 or 7 DW volumes, it was possible to train DL networks to obtain

FA maps with the same range of values as ground truth - map, only when using

HCP test data; pathological sensitivity was lost when tested using the external

clinical datasets: indeed in both cases, no consistent differences were found

between patient groups. On the contrary, our “one-minute FA” did not suffer

from the same problem.
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Conclusion: When developing DL networks for reduced acquisition times, the

ability to generalize and to generate quantitative biomarkers that provide clinical

sensitivity must be addressed.

KEYWORDS

diffusion MRI, deep learning, fast sequence, clinical sensitivity, temporal lobe epilepsy,
multiple sclerosis, fractional anisotropy

1 Introduction

Diffusion weighted (DW) imaging is a non-invasive method
that allows to reconstruct quantitative maps sensitive to the
underlying architecture of the tissue: the microscopic random
diffusion of water molecules is exploited to obtain information
on the microstructure of the brain. Diffusion abnormalities can
reflect, at the macroscopic level, changes in microscopic tissue
organization (Le Bihan et al., 1991; Jones, 2011).

DW imaging has the major benefit of providing data that
can be used to derive quantitative maps. From the simplest
formalism used to describe water diffusion in tissue, i.e., the
diffusion tensor (DT) (Basser et al., 1994; Pierpaoli et al., 1996),
it is possible to calculate maps of fractional anisotropy (FA),
an index that is highly sensitive to microstructural damage of
brain tissue due to pathological processes (Alexander et al.,
2007). Mathematically, 7 DW volumes must be acquired to fully
characterize the DT: 6 DW measurements along noncollinear
directions and 1 with no DW, i.e., b-value = 0 (Tournier et al.,
2011). It has been noted that limiting the number of diffusion
directions to 6 can introduce directional biases in DT metrics.
Many studies have shown that to avoid this problem, it is necessary
to increase the number of DW directions that also contribute to
improving the signal-to-noise ratio of the obtained maps (Giannelli
et al., 2010; Zhan et al., 2011; Lebel et al., 2012). However,
increasing the number of acquired DW images inevitably increases
acquisition times. Some studies, therefore, have investigated the
possibility of reducing the number of DWs to obtain FA by
deep learning (DL) methods (Li et al., 2019; Aliotta et al., 2021;
Gaviraghi et al., 2022).

Aliotta et al. (2021) developed a specific network for assessing
FA in gliomas, without testing it on other clinical datasets nor on
datasets acquired on other scanners or with different acquisition
protocols. Li et al. (2019) developed a network by training it only
on healthy subjects and did not test it on clinical cases or on other
datasets. In our previous work (Gaviraghi et al., 2022) we optimized
a “one-minute FA” DL network, which has the architecture of
a U-net (Ronneberger et al., 2015) and requires 10 DW input
volumes to output the FA map. This network was able to give as
output FA maps that retained the quality of the FA maps obtained
with the high-resolution fully DW sampled human connectome
project (HCP) data (which has 288 DW volumes) (Van Essen
et al., 2012; WU-Minn Consortium Human Connectome Project,
2017) used for model training. Differently from the previously
mentioned papers, we also tested the generalizability of the network
and its sensitivity to pathology in independent temporal lobe
epilepsy (TLE) and multiple sclerosis (MS) datasets, acquired

with different protocols on different scanners, without the need
for retraining.

Recent work such as that of Aliotta et al. (2021) reconstructed
the FA map from 3 DW volumes plus one b-value equal to 0,
but did not show whether such network can be applied to unseen
data acquired with different protocols and in different pathological
cases. Moreover, given that the DT needs 6 DW directions to be
defined, one may question how generalized this method really is.
A fundamental characteristic of our “one-minute FA” DL network
was that it was generalizable, i.e., applicable to datasets other
than the one used to train the network. By reducing to extreme
situations the input DW volumes, here we wanted to assess whether
it was possible to retain output quality, sensitivity to pathology
and generalisability. Indeed, it is by ensuring preservation of this
fundamental characteristic of a DL network, i.e., generalisability,
where the network becomes applicable to other, unseen datasets,
where clinical translation becomes possible.

For medical images, data fidelity is essential, indeed it is
necessary to avoid that in the images reconstructed by the DL
networks there are pathological characteristics in the absence of the
pathology and, on the other hand, non-pathological characteristics
where there is pathology (Gassenmaier et al., 2021). Therefore,
the main aim of the present work was to determine the minimal
number of DW volumes required to maintain the clinical sensitivity
of the reconstructed FA maps, independently from the specific
pathology. More in detail, our goal here was to obtain a network
able to output an FA map with the lowest possible number
of DW volumes required as input, but at the same time able
to maintain the same characteristics of the ground truth (GT)
FA calculated with all volumes. The overall objective was to
find a compromise between reducing the acquisition time and
maintaining the original characteristics of the FA maps in healthy
and pathological test sets.

2 Materials and methods

2.1 Subjects

The studies involving human participants were reviewed and
approved by NRES Committee London–City Road and Hampstead
and the Local Ethic Committee of the IRCCS Mondino Foundation.
The patients/participants provided their written informed consent
to participate in this study.

This work we used three datasets with the following
characteristics:
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HCP dataset: Pre-processed data of 76 HCP healthy controls
(HC) (43 women, 29.41± 3.62 years)1 (Van Essen et al., 2013), used
to train the network.

Temporal lobe epilepsy (TLE) dataset: Retrospective dataset
used to test the performance of the network. 84 subjects: 34 HCs (16
women, 31.97± 7.73 years), 21 TLE patients with the epileptogenic
zone in the left hemisphere (LTLE; 13 women, 33.13± 11.28 years),
and 29 TLE patients with the epileptogenic zone in the right
hemisphere (RTLE; 17 women, 37.97± 9.86 years) (Gaviraghi et al.,
2021).

Multiple sclerosis (MS) dataset: Retrospective dataset used to
test the performance of the network. 123 subjects: 29 HCs (19
women, 34.58 ± 10.23 years), 18 patients with clinically isolated
syndrome (CIS; 12 women, 49.01 ± 7.16 years), 63 patients with
relapsing–remitting MS (RRMS; 48 women, 47 ± 7.58 years),
and 13 patients with secondary progressive MS (SPMS; 9 women,
47.83± 7.79 years) (Brownlee et al., 2019).

2.2 MR acquisition and pre-processing

The acquisition protocols, for each dataset, are summarized
below:

HCP dataset: Siemens 3T Connectome Skyra scanner with
a dedicated gradient insert. Sequences included: DW spin-
echo EPI sequence with TR = 5520 ms and TE = 89.5 ms,
resolution = 1.25 mm3

× 1.25 mm3
× 1.25 mm3 and matrix

size = 145 × 174 × 145, 288 DW volumes (18 with b-value
b = 0 s/mm2 and 270 with b = 1000/2000/3000 s/mm2,
i.e., 90 noncollinear DW directions for each b-value). 3D T1-
w data with 0.7 mm3

× 0.7 mm3
× 0.7 mm3 resolution

and co-registered to the DW data (to obtain a resolution of
1.25 mm3

× 1.25 mm3
× 1.25 mm3).

TLE dataset: Siemens 3T MAGNETOM Skyra
scanner with standard gradients. DW spin-echo EPI
sequence with TR = 8,400 ms and TE = 93 ms,
resolution = 2.24 mm3

× 2.24 × 2.2 mm3, and matrix
size = 100 × 100 × 96, 109 DW volumes (13 with b-value
b = 0 s/mm2 and 96 with b = 1000/2000 s/mm2, i.e., 48
noncollinear DW directions for each b-value). 3D T1-w data
with 1 mm3

× 1 mm3
× 1 mm3 resolution.

MS dataset: 3T Philips Achieva MRI scanner with 80
mT/m maximum gradient strength. DW spin-echo EPI with
TR = 14,000 ms and TE = 82 ms, resolution = 2.286 mm3

×

2.286 mm3
× 2.5 mm3, and matrix size = 96 × 96 × 60, 60

DW volumes (7 with b-value b = 0 s/mm2 and 8/15/30 with
b = 300/711/2000 s/mm2). 3D T1-w data with 1 mm3 resolution.

For the clinical datasets, TLE and MS, the pre-processing steps
included denoising, Gibbs ringing artifact, EPI distortion, eddy
current, and subject motion correction (Gaviraghi et al., 2022).

For each dataset, the FA used as GT was obtained by fitting
the diffusion kurtosis model to all acquired DW data (i.e., using
the maximum number of DW volumes available), to obtain greater
accuracy than with the tensor fitting model (Veraart et al., 2011).
This will be referred to as the STANDARD method for calculating
FA as opposed to using the DL network trained for the purpose.

1 http://db.humanconnectome.org

2.3 Data preparation

Each DL network was based on the U-net architecture
(Figure 1). The training of each DL network was conducted using
the hyperparameters defined in “one-minute FA” (Gaviraghi et al.,
2022). As in the previous work, of the 76 healthy controls of the
HCP dataset, 54 were used for the training set, 11 for the validation
set and 11 for the test set. The only difference is the number of input
DW images, thus the number of input channels of the network.

2.4 Training design

Several combinations of N input, namely N = 4, 7 and 10 DW
volumes, were explored. A network was trained on each of these
input data set that were divided into subsets. In previous work
(Gaviraghi et al., 2022), different subsets of DW were tested to
create a generalized network, i.e., that is less dependent on the
encoding directions of the diffusion data used for training. By
using 7 out of 10 subsets, the best performance was achieved. Each
network, therefore, was trained on the HCP data and the number of
DW input subsets used for training was set to be 7/10th of the total
number of subsets possible for all combinations, so that the training
sets had a similar amount of data (Figure 1). In each experiment,
the Camino toolkit (Cook et al., 2005) was used to divide the DW
volumes into subsets of N volumes with DW weighting equally
distributed on the sphere.

In the case of N = 4 DW volumes, the 90 volumes with
b-value equal to 1000 s/mm2 were divided into 30 subsets of 3
volumes each. The network was trained using 21 subsets of 3 DW
volumes plus one b0.

In the case of N = 7 DW volumes, the 90 volumes with b-value
equal to 1000 s/mm2 were divided into 15 subsets of 6 volumes
each. The network was trained using 10 subsets of 6 DW volumes
plus one b0 volume. From theory, 7 is the minimum number of
noncollinear DW volumes required to estimate the diffusion tensor
using the standard method.

In the case of N = 10 DW volumes, the 90 volumes with
b-value equal to 1000 s/mm2 were divided into 10 subsets of 9
volumes each. The network was trained using 7 subsets of 9 DW
volumes plus one b0.

Once the network parameters were set for each of the N input
volumes, each network was applied to the HCP test subjects and
clinical datasets i.e., TLE and MS.

2.5 Performance assessment

For each subject, white matter (WM) FA was calculated twice:
with the STANDARD method using all volumes and with the
network using a reduced set of volumes. For MS subjects, normal
appearing WM (NAWM) was considered, i.e., the WM mask
without lesions. To compare the WM FA calculated using the
standard method with the WM FA calculated with the network for
each subject, three different performance metrics were calculated:
the root mean square error (RMSE), mean absolute error (MAE)
and structural similarity index measure (SSIM) (Wang et al., 2004).
We compared histograms of each single subject WM FA values
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FIGURE 1

Details of the network input are shown in the top left-hand corner. Three experiments with different numbers of DW volumes as input (N = 4, 7 and
10) were considered. Training always used 7/10th of all subsets for each experiment. Network architecture is shown, with the color legend for the
layers shown in the box (Conv, convolution). Adapted from Gaviraghi et al. (2022).

obtained with the two methods. Heatscatters were plotted with the
WM FA STANDARD values on the x-axis and the WM FA values
of the network on the y-axis, and the R2 coefficient was calculated
using the following formula:

R2
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳi)2

where n = number of voxels that belong to the brain mask, yi is the
desired output (GT FA) and ŷi is the network output.

In addition, at the single-subject level, Bland–Altman plots
were displayed, considering the FA of all WM voxels extracted from
both maps, which allowed us to check the outliers distribution for
each case. At group-level the values were compared using boxplots
and the Mann–Whitney U-test (p < 0.05) was performed to assess
group differences using either GT WM FA or the network WM FA.
Bland–Altman plots, for the clinical datasets, were also performed
at group-level, considering the average WM FA of each subject
(Supplementary Figure 1).

3 Results

For each number of N DW inputs, FA was successfully obtained
for all HCP subjects of the test dataset and for all subjects
belonging to the TLE and MS datasets. Table 1 show three
performance metrics (RMSE; MAE; SSIM) for each network, and
for each dataset.

Figures 2–4 show plots for each experiment, i.e., with N = 4,
7 and 10 input DW volumes, respectively. In each figure, the
first row refers to a representative HCP test subject, the second

row to the TLE dataset and the last row to the MS dataset.
Each figure for each dataset reports, from left to right, the
histogram, heatscatter plot (single level analysis) and the boxplot
(group level analysis), all reporting WM FA values obtained with
each method. The statistically significant group differences are
reported as asterisks (p < 0.05). The R2 coefficients are shown
in Table 2.

TABLE 1 For each metric [root mean square error RMSE, mean absolute
error MAE, structural similarity index measure (SSIM)] the mean and
standard deviation across all subjects is shown.

HCP TLE MS

RMSE

10 DW 0.046± 0.002 0.1± 0.005 0.1± 0.011

7 DW 0.05± 0.002 0.117± 0.023 0.113± 0.02

4 DW 0.069± 0.003 0.137± 0.021 0.139± 0.019

MAE

10 DW 0.035± 0.002 0.079± 0.005 0.078± 0.009

7 DW 0.039± 0.002 0.088± 0.017 0.086± 0.014

4 DW 0.052± 0.002 0.104± 0.015 0.107± 0.014

SSIM

10 DW 0.9± 0.008 0.743± 0.016 0.698± 0.05

7 DW 0.89± 0.009 0.645± 0.092 0.57± 0.096

4 DW 0.82± 0.014 0.544± 0.081 0.419± 0.073

Each column represents a dataset (HCP, TLE, MS) and each row represents a different
network varying the number of diffusion weighted volumes as input (10, 7, 4 diffusion
weighted volumes).
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FIGURE 2

Comparison of the white matter (WM) fractional anisotropy (FA) for the experiment using 4 diffusion weighted (DW) volumes. Each row shows a
different dataset, from top to bottom: human connectome project (HCP), temporal lobe epilepsy (TLE) and multiple sclerosis (MS). From left to right,
columns show histograms, heatscatter plots and boxplots of WM FA (normal appearing WM—NAWM—for the MS case). Significant differences
between clinical groups are indicated in the boxplots with an asterisk.

When using 4 DW volumes (Figure 2) as input to the network,
it is possible to appreciate that for the HCP test subjects the
FA maps have similar characteristics to those calculated with
the STANDARD method using all volumes. Conversely, the TLE
dataset shows that statistical significance is lost between HC and
LTLE and between HC and RTLE when using the network FA.
For the MS dataset, between group differences are maintained, but
NAWM FA values calculated with the network are much lower than
with the STANDARD method.

Similar considerations can be made for FA values obtained with
the 7 DW network (Figure 3) where for the HCP test subjects,
FA maps have comparable characteristics to those calculated with
the STANDARD method using all DW volumes. In contrast, for
the TLE dataset, the statistically significant difference between
HC and LTLE WM FA mean values was not reached when
using WM FA values obtained using the network. For the

MS dataset, the statistically significant difference between the
HC and CIS was not reached when using WM FA values
from the network.

This behavior was not detected in the case of network FA
values obtained when inputting 10 DW volumes to the network
(Figure 4); indeed, for all three datasets FA maps displayed
similar characteristics as the FA calculated with the STANDARD
method using all volumes and the clinical dataset displayed the
same statistically significant differences (p < 0.05) between groups
when using either the STANDARD method WM FA or the
network WM FA.

Considering the Bland–Altman plots for each dataset
(Figures 5–7), by increasing the number of DW volumes
from 4 to 10, the number of outliers decreases. The outliers are
almost all distributed at the interface between white matter and
gray matter or between white matter and cerebrospinal fluid (CSF).
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FIGURE 3

Comparison of the white matter (WM) fractional anisotropy (FA) for the experiment using 7 diffusion weighted (DW) volumes. Each row shows a
different dataset, from top to bottom: human connectome project (HCP), temporal lobe epilepsy (TLE) and multiple sclerosis (MS). From left to right,
columns show histograms, heatscatter plots and boxplots of WM FA (normal appearing WM—NAWM—for the MS case). Significant differences
between clinical groups are indicated in the boxplots with an asterisk.

4 Discussion

As the number of input DW volumes decreased, performance
worsened evaluated using each performance metric (Table 1). All
networks (4 DW, 7 DW and 10 DW) performed well on the test
HCP data demonstrating the ability of the network to learn the
mapping between a very reduced DW input dataset and GT FA.
Conversely, for the clinical datasets, the sensitivity to pathology was
partially lost with extremely reduced input datasets to the networks,
i.e., 4 and 7 DW volumes.

Indeed, when using the 4 DW network FA no statistical
differences were detected between HC and TLE patients;
statistically significant differences between HC and MS patients
were still detected, but NAWM FA values were much lower than
those calculated with the STANDARD method. Interestingly, the
standard deviation of the network FA in the SPMS group was

increased compared to the STANDARD one, possibly due to a
greater level of tissue heterogeneity typical of this group, due to
severe pathological damage, not fully captured by training the
network on limited input volumes of healthy subjects. When
using 7 DW input volumes to the network, a similar drawback
was observed: indeed, in the TLE dataset, the network FA did not
identify differences between HC and LTLE, and in the MS dataset,
differences were not found between HC and CIS patients.

In the experiments with 4 and 7 DW input volumes, the same
hyperparameters of the network calculated with 10 DW were used
(Gaviraghi et al., 2022). The fact that the performance is excellent
on the HCP test subjects suggests that retraining hyperparameters
would not provide an improvement of performance on the
validation of unseen clinical datasets.

On the other hand, when the network is trained on more
than the minimum number of DW volumes required to define the
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FIGURE 4

Comparison of the white matter (WM) fractional anisotropy (FA) for the experiment using 10 diffusion weighted (DW) volumes. Each row shows a
different dataset, from top to bottom: human connectome project (HCP), temporal lobe epilepsy (TLE) and multiple sclerosis (MS). From left to right,
columns show histograms, heatscatter plots and boxplots of WM FA (normal appearing WM—NAWM—for the MS case). Significant differences
between clinical groups are indicated in the boxplots with an asterisk.

diffusion tensor, clinical sensitivity is maintained as it was the case
for the 10 DW network (our proposed “one-minute” FA network).

Varying the number of inputs volumes to 4 and 7 showed
us how an extreme reduction of the input information passed to
the network may affect the network capability of generalization.
Our previously proposed “one-minute FA” network can, therefore,
extract FA from a reduced set of 10 DW volumes, not only

TABLE 2 R2 coefficients are shown for a random subject for each dataset.

4 DW 7 DW 10 DW

HCP 0.7818 0.8820 0.9062

TLE 0.6113 0.4557 0.8205

MS 0.3888 0.6611 0.7682

HCP, Human connectome project; TLE, temporal lobe epilepsy; MS, multiple sclerosis. Each
column shows a different experiment i.e., 4, 7 and 10 diffusion weighted (DW) volumes.

on test data with identical acquisition properties as the training
data, but also on test data with different diffusion-encoding
directions and, most importantly, on data acquired on different
scanners, with different DW directions and different b-values
(Gaviraghi et al., 2022).

The WM FA values obtained from the network, as can be seen
from the boxplots, are always lower than in the standard method
with all volumes, except in the case of the HCP test set. This could
be due to the fact that only the HCP dataset was used for training
the network, or it could be a partial volume effect with gray matter
or even CSF due to the fact that the voxel size of the clinical datasets
(> 2.2 mm) is larger than that of the HCP training data (1.25 mm)
(hence reducing the number of voxel with high FA). Interestingly,
our data shows that the number of outliers, i.e., the voxels that
behave differently than the FA calculated with all data available,
decreases as more DW volumes are used for the deep learning
network. Moreover, the outliers seem to be distributed exactly in
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FIGURE 5

From top to bottom, for a randomly chosen HCP test subject, Bland–Altman plots of all WM FA voxels are shown, with increasing the number of
diffusion-weighted (DW) volumes given in input to the deep learning network, i.e., from 4 to 10. On the right, an axial image of the brain shows the
location of the outliers (red voxels).

regions of greater partial volume effect (between WM and gray
matter or CSF or between crossing fibers). This could be further
tested by acquiring data with the same voxel resolution as the HCP
data, but using a different scanner (Fujiwara et al., 2008).

In this work we did not change the resolution of the training
dataset to match the clinical dataset because we wanted to assess
whether the network could learn the non-linear relationship
between the low and high quality scans and consequently be applied
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FIGURE 6

From top to bottom, for a randomly chosen temporal lobe epilepsy (TLE) subject, Bland–Altman plots of all WM FA voxels are shown, with
increasing the number of diffusion-weighted (DW) volumes given in input to the deep learning network, i.e., from 4 to 10. On the right, an axial
image of the brain shows the location of the outliers (red voxels).

to any dataset, independently of the acquisition parameters, we
believe that as FA is derived from the DT model, training the DL
network on data with lower DW directions than the minimum
required for its mathematical definition, it cannot capture in

full signal changes caused by different underlying microstructure
scenarios. Nevertheless, in future, to investigate how much the
resolution impacts on the network’s performance, training could be
performed again by resampling the diffusion images of the HCP
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FIGURE 7

From top to bottom, for a randomly chosen multiple sclerosis (MS) subject, Bland–Altman plots of all WM FA voxels are shown, with increasing the
number of diffusion-weighted (DW) volumes given in input to the deep learning network, i.e., from 4 to 10. On the right, an axial image of the brain
shows the location of the outliers (red voxels).

dataset to different resolutions. In this way, it could be understood
whether performance improves by training the network at the
resolution of the clinical images.

In future work, different architectures could also be explored,
such as CycleGAN (Zhu et al., 2017), to investigate whether the
performance improves. In addition, as future work, the number
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of subjects used for training could be expanded, including also
subjects with different pathologies to investigate whether the
performance improves, without compromising generalizability.

In conclusion, here we investigated the dependency of DL
network FA maps on the number of DW volumes used as input.
With 4 or 7 DW volumes, clinical sensitivity of the network FA
decreases compared to that of the GT FA. Reducing the data
required as input to DL networks trained to obtain quantitative
maps such as FA is an appealing proposal in term of scan time
and cost/benefit evaluations, but reducing the input data to extreme
cases can have a detrimental effect on obtaining a network capable
of generalization. When developing DL methods for clinical
adoption it is important to reach a good compromise between
data acquisition time, generalizability, and clinical sensitivity of
the network output.
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