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Introduction: Brain diseases, particularly the classification of gliomas and brain

metastases and the prediction of HT in strokes, pose significant challenges in

healthcare. Existing methods, relying predominantly on clinical data or imaging-

based techniques such as radiomics, often fall short in achieving satisfactory

classification accuracy. These methods fail to adequately capture the nuanced

features crucial for accurate diagnosis, often hindered by noise and the inability

to integrate information across various scales.

Methods: We propose a novel approach that mask attention mechanisms

with multi-scale feature fusion for Multimodal brain disease classification tasks,

termed M
3, which aims to extract features highly relevant to the disease. The

extracted features are then dimensionally reduced using Principal Component

Analysis (PCA), followed by classification with a Support Vector Machine (SVM)

to obtain the predictive results.

Results: Our methodology underwent rigorous testing on multi-parametric

MRI datasets for both brain tumors and strokes. The results demonstrate a

significant improvement in addressing critical clinical challenges, including the

classification of gliomas, brain metastases, and the prediction of hemorrhagic

stroke transformations. Ablation studies further validate the e�ectiveness of our

attention mechanism and feature fusion modules.

Discussion: These findings underscore the potential of our approach to meet

and exceed current clinical diagnostic demands, o�ering promising prospects for

enhancing healthcare outcomes in the diagnosis and treatment of brain diseases.

KEYWORDS

brain tumor classification, HT prediction in stroke, deep learning, attention mechanism,

multi-scale feature fusion

1 Introduction

The brain, the most sophisticated organ in the nervous system with over a hundred

billion neurons, plays a pivotal role in controlling bodily functions. Aberrations in brain

function, particularly brain tumors and Hemorrhagic Transformation (HT) post-stroke

treatment, are critically detrimental to human health (Louis et al., 2016; Virani et al., 2021).

Brain tumors, classified into primary and secondary (metastatic) types, are a significant

health threat due to their potential to damage the nervous system and endanger lives

through tissue compression. Gliomas, constituting 40–50% of primary intracranial tumors,

are the predominant type of primary brain tumors. Secondary, or metastatic, brain tumors

occur when cancer cells spread from other body parts to the brain, manifesting symptoms

akin to primary brain tumors. Figure 1 illustrates schematic diagrams of gliomas and
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FIGURE 1

Schematic diagrams illustrating the brain structures of patients with glioma and brain metastasis across three MRI modals. The details of three modals

can be found in Section 2.1.

metastatic tumors under the three modalities of T1ce, T2,

and FLAIR. Differentiating between metastatic brain tumors

with unknown primary origins and gliomas presents a clinical

challenge, particularly when patients exhibit similar symptoms,

signs, and radiological features. Such diagnostic ambiguity may

delay treatment and increase the risk of further metastasis

or recurrence, underscoring the necessity for advancements in

differential diagnosis through imaging techniques (Tandel et al.,

2019).

Acute Ischemic Stroke (AIS), the second leading cause of global

mortality, can lead to HT—a condition where initially absent

bleeding in cranial scans appears in later examinations, significantly

raising disability and mortality rates. Figure 2 shows schematic

diagrams illustratingHT in patients with AIS, comparing cases with

HT and Non-HT. The use of intravenous rt-PA thrombolysis, a key

treatment for AIS, increases HT risks, complicating the decision-

making process for clinicians regarding its administration. This

uncertainty can hinder patient recovery and limit the effectiveness

of thrombolytic therapy. Thus, early identification of patients at

risk of developing HT post-AIS is crucial for guiding therapeutic

decisions and optimizing patient outcomes, highlighting the

importance of research and development in predictive diagnostics

(Vidal et al., 2013; Paciaroni et al., 2018).

Early attempts to resolve challenges in brain MRI classification

and HT prediction primarily utilized statistical analyses of clinical

data or employed radiomics, leveraging machine learning for

feature extraction and classification (Mazya et al., 2012; Chen et al.,

2021).

These methods, however, suffered from limited accuracy. The

advent of deep learning in 2012 marked a significant shift (LeCun

et al., 2015), with numerous deep learning-based approaches

being introduced for enhanced classification of brain MRI images

(Nielsen et al., 2018). Specifically, Convolutional Neural Networks

(CNNs) have been widely adopted for brain tumor classification,

demonstrating notable success across various datasets (Seetha and

Raja, 2018; Deepak andAmeer, 2019). For example, Seetha and Raja

(2018) achieved a classification accuracy of 97.5% in differentiating

tumor from non-tumor regions, while Deepak and Ameer (2019)

reported a 98% accuracy in classifying gliomas, meningiomas, and

pituitary tumors using GoogLeNet pre-trained on ImageNet (Deng

et al., 2009). In the context of HT following AIS, CNNs have

also shown promise in predicting tissue prognosis and identifying

penumbral tissue, with Jiang et al. (2023) developing a model

in 2021 that predicts HT post-thrombectomy with significant

accuracy.

The Attention mechanism, originating in visual imagery and

computer vision, emulates human attention by focusing on critical

details and ignoring irrelevant information (Vaswani et al., 2017).

It has been increasingly integrated with deep learning, employing

masks to highlight essential features in images and enable networks

to identify areas of interest. Recently, the integration of Attention

mechanisms with deep learning has been explored in medical

imaging tasks, enhancing feature detection and segmentation

capabilities (Gou et al., 2020; Zhang et al., 2021). For instance, Sinha

and Dolz (2020) introduced self-attention mechanisms to improve

contextual dependency capture, yielding superior performance in
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FIGURE 2

Schematic diagrams of cerebral Hemorrhagic Transformation (HT) and non-HT in stroke patients. The details of five modals can be found in Section

2.1.

medical image segmentation by enhancing relevant features and

suppressing noise.

Integrating features across multiple scales is crucial for

enhancing segmentation accuracy. Modern detection and

segmentation networks leverage CNNs for hierarchical feature

extraction, transitioning from low-level, detailed features to

high-level, semantic features as network depth increases. While

low-level features are rich in detail and position information,

they suffer from low semantic content and noise due to minimal

convolutional processing. High-level features, in contrast, contain

valuable semantic information but lack resolution and detail

perception. Recent research has aimed at improving segmentation

and classification by merging features from various scales (Lin

et al., 2017).

To address these challenges, we have introduced a novel

classification technique that leverages multi-scale feature fusion

and attention mechanisms for Multi-modal brain disease

classification tasks, termed M3. Unlike conventional approaches,

M3 begins by segmenting the original images and their associated

disease-related region labels, utilizing a segmentation network

that integrates multi-scale features with attention mechanisms to

precisely extract features from regions associated with the disease.

Subsequently, Principal Component Analysis (PCA) (Wold et al.,

1987) is applied to refine these features, isolating those with

the greatest discriminatory power. These selected features are

then classified using a Support Vector Machine (SVM) classifier

(Chang and Lin, 2011), culminating in the final classification

outcomes. This method has undergone rigorous validation across

Multi-modal brain tumor and AIS datasets, demonstrating robust

classification capabilities in both contexts. Furthermore, extensive

ablation studies have further confirmed the effectiveness of the

proposed modules, highlighting their contribution to enhanced

classification performance.

TABLE 1 Patient information for glioma and metastasis, including source,

number of patients, age distribution, and utilized modals.

Category Source #
Cases

Age Modals

Metastases
Department 1 87 58.4± 11.2

T1ce, T2, FLAIR
Department 2 45 57.1± 10.2

Gliomas
Department 2 43 53.0± 11.7

BraTS2020 369 61.2± 11.8

2 Materials and methods

2.1 Datasets

2.1.1 Dataset 1
Table 1 shows the multicenter trial data of brain tumor used in

this study. The magnetic resonance imaging (MRI) data of gliomas

and solitary brain metastases from Department 1 and Department

2 were obtained from the Linyi People’s Hospital Affiliated to

Shandong Second Medical University. The MRI data of brain

metastases from Department 1 include 87 patients with solitary

brainmetastases (48males, 39 females, mean age 58.4± 11.2 years),

which were collected from GE (23), SIEMENS (35), and Philips 3T

MRI systems (29). All patients underwent MRI imaging with T1

contrast-enhancedmodal (T1ce), T2, and FLAIR (Fluid Attenuated

Inversion Recovery) modals. The MRI data of gliomas and brain

metastases from Department 2 were also acquired from the GE

3T MRI system, comprising 88 brain tumor patients, including 45

cases of solitary brain metastases (32 males, 13 females, mean age

57.1 ± 10.2 years) and 43 cases of gliomas (25 males, 18 females,

mean age 53.0 ± 11.7 years). MRI images of all patients included
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TABLE 2 Stroke patient information, including source, number of

patients, age distribution, and utilized modals.

Category Source #
Cases

Age Modals

HT
Department 3

11 64.00± 13.20 ADC, CBF,

CBV, MTT,

TTPNone-HT 60 62.07± 11.24

T1ce, T2, and FLAIR modals. The MRI data from Department 1

and 2 were annotated by three clinical doctors, each with over ten

years of experience and holding intermediate or senior professional

titles to identify tumor regions. Considering the limited quantity

of glioma data, we also utilized glioma MRI data publicly available

from the BraTS 2020 Challenge. This challenge provided data with

T1, T1ce, T2, and FLAIR modals, along with segmentation labels of

tumor regions. To align with our private data, we only used T1ce,

T2, and FLAIR modals.

2.1.2 Dataset 2
Table 2 shows the trail data of AIS used in this study.

We selected a total of 136 patients with AIS admitted to the

Linyi People’s Hospital Affiliated to Shandong Second Medical

University from February 2016 to September 2018 as the dataset

for stroke. After screening for inclusion, 71 cases met the criteria

for the trial, including 11 cases with HT and 60 cases with

None-HT. Both the initial and follow-up MRI images were

acquired using an 8-channel head coil on a Siemens 3.0T MR

imaging system (MAGNETOM Verio; Siemens Medical Solutions,

Germany). The initial examination modals included T1w, DWI,

PWI, and SWI modals for clear detection of hemorrhage, or

CT examination. No intracranial bleeding was detected in the

initial examination of all cases. All patients received intravenous

thrombolysis treatment and underwent follow-up examinations

within 1–3 days. After acquisition at the scanning workstation,

the Siemens MR Syngo medical image post-processing workstation

automatically generated images of ADC, SWI_MIP, CBF, CBV,

MTT, TTP, and other parameter modals based on DWI, SWI, and

PWI images. We selected ADC (Apparent diffusion coefficient),

CBF (Cerebral blood flow), CBV (Cerebral blood volume), MTT

(Mean transit time), and TTP (Time to peak) as the five modals for

inclusion in the study.

2.1.3 Delineation protocols
The data annotations were conducted by three senior clinical

experts, each with over ten years of experience. Unlike annotations

performed by junior or general practitioners, the annotations by

these highly experienced experts are more reliable and accurate.

The experts followed a specific protocol for delineation: (1)

Each expert independently annotated three different parts of the

data. (2) The annotations were then reviewed by the other two

experts. (3) For data where there were significant differences in

opinion, the three experts discussed the discrepancies together and

made a decision based on the majority rule. (4) All annotated

data were finalized only after achieving consensus among the three

experts.

The software used for creating the tumor delineations was ITK-

SNAP (version 3.8), available from the official website (http://www.

itksnap.org).

2.2 Methodology

The entire network framework of M3 is depicted in Figure 3.

Initially, we trained a segmentation network with the input

being preprocessed original images from each modal and their

corresponding segmentation labels. These segmentation labels,

which are manually delineated by doctors, correspond to regions

that are highly relevant to the disease or are tumor areas.

During the training of the segmentation network, the network’s

output is multiplied with the feature maps from each layer

in the downsampling process. Subsequently, the feature maps

obtained after three downsampling operations are concatenated

to integrate multi-scale features for classification. After training

the segmentation model, we transferred the weights of the

segmentation network’s encoder for extracting high-level semantic

features for classification. Once the feature extraction is completed,

we reduced the dimensionality of the extracted features using

PCA. We then utilized a SVM for classification prediction to

obtain the classification results for each modal. Additionally, we

conducted a control experiment formulti-modal fusion, combining

the results from multiple modals for classification, and compared

their predictive performance.

2.2.1 Preprocessing
For brain tumor and stroke data, we conducted meticulous

image preprocessing. Each brain tumor patient’s T1ce, T2, FLAIR

images, and AIS patient’s T1WI, DWI, and PWI images were saved

in DICOM format, which can be converted to NIFTI format using

MRICron software.

For private data from departments 1 and 2, the specific

processing steps are as follows:

• We used ANTs-N4 (Tustison et al., 2010) for bias field

correction on all images.

• FSL-FLIRT (Smith et al., 2004) was employed to register the

multimodal data of each patient, aligning T2 and FLAIR data

to the T1ce images.

• FSL-BET (Smith et al., 2004) was applied to remove non-brain

tissues from the T2 images of each patient, using a threshold

of 0.5, and obtaining a brain tissue mask for each patient. This

mask was then used to remove non-brain tissues from other

modalities.

Since the data is from multiple centers, all images underwent

intensity normalization, standardizing the grayscale histograms

of all images from each modal. It should be noted that for the

glioma MRI provided by BraTS2020, which has already undergone

preprocessing such as skull stripping and cross-modal registration,

we only performed normalization on its grayscale histograms.

For AIS images, we first used ANTs-N4 (Tustison et al.,

2010) software for bias field correction and performed grayscale
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FIGURE 3

The overall framework of M3. Firstly, we train a segmentation model for the tumor areas or abnormal areas related to bleeding transformation

marked by our doctors. After the segmentation network is trained, we multiply the probability prediction map with the features extracted from

downsampling to form an attention mechanism to eliminate interference from irrelevant area features. Then, we concatenate the three layers of

features extracted from downsampling, fuse multi-scale features, use PCA for feature dimensionality reduction, and finally use SVM for classification.

histogram normalization. Subsequently, we used FSL (Smith et al.,

2004) software to align the DWI (b = 0) and PWI images to

the T1WI image space, and applied the transformation matrices

generated to the DWI (b = 1,000) images (and their associated ADC

images) and PWI images (and their associated CBF, CBV,MTT, and

TTP images) to ensure alignment with the T1WI space. Finally, we

used FreeSurfer (Fischl, 2012) software to automatically segment

each patient’s T1WI images based on a brain template, obtaining

brain region labels and brain tissue masks, and used the obtained

masks to remove non-brain tissues from the images.

2.2.2 Feature extraction
We first train a segmentation network by inputting the original

images along with their corresponding annotations. Once training

is complete, we transfer the weights of the encoder to another

network for extracting classification features. During this process,

we multiply the probability maps obtained after training with

each layer’s feature maps to form an attention mechanism. Then,

we concatenate the feature maps obtained after three times of

downsampling to fuse multi-scale features for classification. The

process of feature extraction is depicted in Equation (1).

F =

N
∑

i=1

(

D
(

EN(x)
)

◦ Ei(x)
)

, (1)

where x represents the input image, F represents the final output

features, E represents the encoding operation, D represents the

decoding operation, N represents the number of down-sampling

operations, and i = 1, . . . ,N represents the i-th down-sampling

operation.

2.2.3 Segmentation network architecture
We trained a segmentation network using the regions

annotated by doctors as ground truth. Subsequently, we transferred

the weights of the encoder of the segmentation network to a

feature extraction network for classification. The overall structure

of the segmentation network is based on MED3D (Chen et al.,

2019), adopting a conventional encoder-decoder architecture. We

initialized the weights with pretrained weights fromMED3D (Chen

et al., 2019). The encoder adopts the 3D ResNet-50 (He et al.,

2016), known for its excellent feature representation capability. The

decoder consists only of an upsampling layer to restore the size

of the feature maps to the original size, facilitating the training of

the segmentation network using segmentation masks. As described

in MED3D, concentrating the network’s feature representation

capability in the encoder is advantageous for subsequent transfer

to downstream classification tasks.

The training details of the entire segmentation network are

as follows: ResNet-50 accepts images of the original size of 155

× 280 × 280 (length × width × height), and after undergoing
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convolution and max pooling operations by ResNet-50, they are

transformed to a size of 39 × 70 × 70 with 256 channels. The

images then become 20 × 35 × 35 (length × width × height),

with the number of channels gradually increasing to 256, 1,024, and

2,048. Ultimately, the size of the feature maps from the encoder

is 2,048 × 20 × 35 × 35 (number of channels × length × width

× height). Subsequently, through an upsampling operation, the

feature maps are restored to 39 × 70 × 70, with 2 channels, to

obtain a predicted segmentation result. At this stage, to ensure

that the dimensions of the ground truth and the prediction match

for the convenience of loss calculation, the ground truth must be

cropped to correspond to the size of the prediction, making their

sizes uniform. The calculated loss is then fed back into the network

to update the parameters, with a total of 200 iterations performed

until the network converges.

During the training of the segmentation network, we mixed the

two types of MRI images and used only their segmentation labels

to train the network. Additionally, no category label information

was used during the training of the segmentation network.

Thus, during the training process, the network was unaware of

whether the images corresponded to gliomas or solitary brain

metastases, or whether they were related to bleeding or non-

bleeding conditions.

Once the segmentation network is trained, we input the MRI

images into the network to extract the highest-level semantic

features. Given that this network is adept at segmenting the

abnormal or tumor regions, the high-level semantic features

extracted are pertinent to these areas. By employing these

features for subsequent classification tasks, we can minimize the

interference from irrelevant regional features.

2.3 Attention mechanism

The principle of the attention mechanism lies in identifying

key features in image data through a layer of new weights.

Through learning and training, deep neural networks can learn

to focus on regions of interest in any given new image. In

brain slice images, tumor areas or abnormal regions related

to bleeding only occupy a small part of the image, and

information from other areas may interfere with subsequent

feature extraction. Therefore, we introduce the attention

mechanism to allow the network to automatically focus on

abnormal regions that are helpful for classification while ignoring

normal areas.

The specific approach is shown in the Figure 3: the original

image is input into the well-trained network, which outputs a

probability map and a feature map. As shown in Equation (1),

when we input the original image x into the trained network,

it outputs probability maps D(EN(x)) and feature maps Ei, (i =

1, ...,N). The probability map reflects the probability of each

point on the image being an abnormal region. By multiplying the

probability map with the feature maps of the downsampling layers,

we can make the network pay more attention to the features of

abnormal regions during feature extraction, reducing interference

from normal areas.

2.4 Multi-scale feature fusion

The ResNet-50 network (He et al., 2016) we employed

extracts features of abnormal ROI regions in a hierarchical

manner. During the downsampling process of images, the low-

level features obtained by this network have higher resolution,

containing more positional and detailed information. However,

due to fewer convolutional operations, these features have

lower semantic meaning and are more susceptible to noise

interference. In contrast, high-level features possess stronger

semantic information but lower resolution, resulting in poorer

perception of details. Therefore, in deep learning, the fusion of

these features proves significantly beneficial for both detection and

segmentation tasks.

2.5 Feature dimensionality reduction and
classification

After attention mechanism and multi-scale feature fusion, we

extracted 7,168-dimensional features from each region. Due to the

high dimensionality of the features, there exists redundancy among

them, which may lead to overfitting. Therefore, it is necessary

to reduce the dimensionality of the features to eliminate their

correlation. Here, we employed PCA for dimensionality reduction,

selecting the most discriminative feature set related to hemorrhage

transformation. The reduced-dimensional features were then

used for classification prediction using SVM. When performing

classification prediction with SVM, we used classification labels,

meaning that the features extracted by the segmentation network

were identified as being from patients with glioma or brain

metastasis, or from patients with HT or non-HT. For both

classification tasks, we first computed the prediction results for each

modal separately, and then fused the features frommultiple modals

for prediction.

2.6 Statistical analysis

We conducted statistical analysis on the results obtained

from each modality, comparing the area under the ROC

curve (AUC) of various prediction models and calculating

the F1 score (F1) and accuracy (ACC). A 5-fold cross-

validation was employed to optimize the results. The statistical

TABLE 3 Performance metrics ofM3 for brain tumor classification,

detailing F1 and ACC results for individual MRI modals and multi-modal

fusion.

F1 ACC

T1ce 0.9264± 0.05 0.9463± 0.02

T2 0.9163± 0.05 0.9382± 0.02

FLAIR 0.8567± 0.07 0.8964± 0.01

Multimodal 0.9405± 0.03 0.9554± 0.01
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analysis was carried out using the R language in conjunction

with the PyTorch package (Paszke et al., 2019). Given the

extensive number of experiments and comparisons involved,

we decided against listing each individual p-value to maintain

readability and conciseness. Nonetheless, all the metrics reported

(F1, ACC) in Tables 3–5 were rigorously tested, and each

showed p-values < 0.05, demonstrating statistically significant

differences.

TABLE 4 Performance metrics ofM3 for HT classification, detailing F1 and

ACC results for individual MRI modals and multi-modal fusion.

F1 ACC

ADC 0.7428± 0.11 0.8066± 0.06

CBF 0.7093± 0.15 0.7400± 0.14

CBV 0.7702± 0.13 0.8400± 0.08

MTT 0.7383± 0.15 0.7800± 0.13

TTP 0.7905± 0.12 0.8457± 0.05

Multimodal 0.7943± 0.10 0.8533± 0.04

3 Results

3.1 Experiment setup

The experimental development environment is as follows:

programming language Python 3, deep learning framework

PyTorch, processor Intel(R) Core(TM) i5-9600K CPU @ 3.70

GHz, display adapter NVIDIA GeForce RTX 2080 Ti, operating

system Ubuntu 18.04, and medical image data reading and writing

operations provided by SimpleITK (Yaniv et al., 2018).

3.2 Performance of classification
prediction

Figure 4 illustrates the classification prediction performance

for brain tumors and cerebral hemorrhage transformation in

stroke. From the ROC curves, it can be observed that the

classification prediction results vary for different modalities or

modals of images. For the brain tumor classification task, the

classification performance of the three single-modal images all

exceeds 0.95, with the best performance achieved by the t1ce

TABLE 5 The ablation study results ofM3 for brain tumor classification.

Deep learning Mask attention Multiscale

F1 ACC F1 ACC F1 ACC

T1ce 0.8896± 0.05 0.9136± 0.01 0.9005± 0.06 0.9254± 0.06 0.9114± 0.05 0.9318± 0.02

T2 0.8867± 0.06 0.9136± 0.01 0.8887± 0.05 0.9182± 0.02 0.8938± 0.05 0.9190± 0.01

FLAIR 0.8627± 0.06 0.8873± 0.02 0.8595± 0.06 0.8900± 0.01 0.8616± 0.06 0.8873± 0.01

Multimodal 0.8946± 0.05 0.9172± 0.02 0.9081± 0.04 0.9291± 0.01 0.9250± 0.05 0.9427± 0.02

FIGURE 4

Comparative analysis of AUC results for M3, displaying performance on individual modals and the enhanced outcomes from multi-modal fusion.
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FIGURE 5

Comparison diagram of the ablation methods and our method: (A) deep learning: only the last layer features of the encoder are used for

classification prediction; (B) mask attention: the probability map is multiplied with the features of the last layer of the encoder to exclude the

interference of irrelevant features; (C) multiscale: the three layers of features extracted by the encoder’s down-sampling are concatenated, and

multi-scale features are used for classification; (D) our method: the probability map is multiplied with the three layers of features extracted by the

encoder, and then these three layers of features are concatenated for classification.

modal at 0.9815 (light blue line), while the FLAIR modal

has the lowest classification performance at 0.9543. As for the

cerebral hemorrhage transformation classification prediction task,

the classification prediction performance of the five single-modal

images all exceeds 0.75, with the MTT modal showing the

best performance at 0.8069 and CBV demonstrating the lowest

performance at 0.7542. For both tasks, we conducted multimodal

fusion experiments. The AUC value for brain tumor fusion of

the three modalities is 0.9871, while for cerebral hemorrhage

transformation prediction, it is 0.8403. The results indicate that the

experimental results of multimodal fusion are higher than those of

singlemodal, demonstrating the effectiveness ofmultimodal fusion.

Tables 3, 4 display the F1 and ACC for the classification

prediction of the two tasks. It can be observed that the results of F1

and ACC are similar to those of AUC. For brain tumor classification

prediction, the F1 and ACC values for each modal all exceed 0.85.

The t1ce modal demonstrates the best classification performance,

with F1 and ACC reaching 0.9246 and 0.9463, respectively, while

the FLAIR modal shows the lowest performance at 0.8567 and

0.8964. As for cerebral hemorrhage transformation prediction, TTP

exhibits the best performance, with F1 and ACC reaching 0.7905

and 0.8457, respectively, while the FLAIR modal shows the lowest

performance. Similarly, the performance of multimodal fusion is

superior to that of single modal. For brain tumor multimodal

classification prediction, the F1 and ACC values reach 0.9405 and

0.9554, respectively, outperforming the results of single modal.

The multimodal results of cerebral hemorrhage transformation

prediction also outperform those of single modal, with F1 and ACC

values reaching 0.7943 and 0.8533 for multimodal fusion.

3.3 Ablation study

We also conducted ablation experiments to demonstrate the

effectiveness of our proposed attention mechanism and multi-scale

feature fusion. In the ablation study, we used the same data as

the main experiment, along with the identical data partitioning.

The difference lies in the modifications made to the network

architecture. We compared three methods: pure deep learning

(Deep Learning), deep learning with only the attention mechanism

added (Mask Attention), and deep learning with only multi-scale

feature fusion added (Multiscale). The details of three methods are

shown in Figure 5. The ROC curve is shown in Figures 6, 7, The

F1 and ACC is listed in Tables 5, 6. From the results of AUC, F1,

and ACC, it can be observed that the results of adding either the

attention mechanism or multi-scale feature fusion are better than

pure deep learning. However, all threemethods performworse than

M3 (which can be seen in Tables 3, 4), confirming the effectiveness

of our proposed approach.

Moreover, we expanded our analysis by using Dataset 2

to test more advanced feature transformation and classification

methods, including direct use of complex CNNs for classification,

as well as replacing SVM with Random Forest (RF), Gradient

Boosting Machines (GBM), and a three-layer nonlinear Multilayer

Perceptron (MLP).

The results of these tests are presented in Table 7. Here is a

summary of the findings:

(1) The direct use of CNNs for simultaneous segmentation and

classification (Direct CNN) showed clear disadvantages compared

to our method where features are first extracted from the
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FIGURE 6

The AUC results of three ablation methods for brain tumor classification. (A) Deep learning; (B) mask attention; (C) multiscale.

FIGURE 7

The AUC results of three ablation methods for HT prediction classification. (A) Deep learning; (B) mask attention; (C) multiscale.

TABLE 6 The ablation study results ofM3 for HT predict classification.

Deep learning Mask attention Multiscale

F1 ACC F1 ACC F1 ACC

ADC 0.6699± 0.11 0.7333± 0.12 0.6719± 0.15 0.7133± 0.14 0.6817± 0.12 0.7333± 0.10

CBF 0.7090± 0.12 0.7533± 0.14 0.7285± 0.15 0.7733± 0.13 0.7092± 0.12 0.7533± 0.11

CBV 0.6034± 0.11 0.6600± 0.12 0.6714± 0.14 0.7400± 0.13 0.6071± 0.11 0.6600± 0.11

MTT 0.7408± 0.12 0.8133± 0.11 0.6969± 0.14 0.7466± 0.13 0.7473± 0.13 0.7600± 0.13

TTP 0.6861± 0.14 0.7400± 0.14 0.7657± 0.13 0.7800± 0.09 0.6811± 0.14 0.7333± 0.14

Multimodal 0.7530± 0.13 0.7550± 0.12 0.7666± 0.12 0.7866± 0.10 0.7405± 0.12 0.7655± 0.11

segmentation ROI, followed by classification. This is likely due

to limited data size leading to inadequate feature extraction and

significant overfitting.

(2) The performance of RF, GBM, and MLP was comparable

to SVM, with no significant differences in performance (p-

values > 0.05). This comprehensive testing underscores

that when the initial feature extraction is robust, the choice

among these advanced classifiers does not significantly

impact performance.

These results confirm the appropriateness of our

methodological choices given the constraints and characteristics of

our data.
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TABLE 7 The ablation study results of feature transformation and

classification methods.

Multimodal F1 ACC

Ours 0.794± 0.10 0.853± 0.04

Direct CNN 0.720± 0.15 0.818± 0.07

Ours-RF 0.787± 0.09 0.839± 0.04

Ours-GBM 0.790± 0.11 0.841± 0.05

Ours-MLP 0.791± 0.13 0.841± 0.05

4 Discussions

The health of the brain is crucial for overall wellbeing, with

brain tumors and strokes being two common conditions that can

cause severe damage to the brain. Currently, there is a lack of

effective methods in clinical practice for accurately classifying brain

gliomas and brain metastases, as well as predicting HT in strokes.

Previous approaches (Aerts et al., 2014; Chen et al., 2021)

have relied on clinical information and radiomics for feature

extraction, but their classification accuracy has been limited. Taking

the prediction of HT as an example, we conducted a preliminary

experiment. If we only used clinical information for classification,

the AUC value was only around 0.6. If we used radiomic methods

to extract features for prediction, the highest classification AUC

did not exceed 0.75, proving that traditional methods are not

adequate for this task. The introduction of deep learning has

alleviated some of these issues, but accuracy remains a concern.

Building upon existing deep learning methods, we incorporated

attention mechanisms and multi-scale feature fusion to allow the

network to focus more on the features of ROI and integrate features

from both deep and shallow layers for classification. M3 achieves

high-precision classification of brain tumors and predicts whether

hemorrhage occurs after thrombolytic therapy in stroke patients.

In recent years, many methods (Nielsen et al., 2018; Jiang

et al., 2023) have been proposed to address the classification

of brain images. Previously, most relied on clinical information

for classification, but clinical scoring mechanisms are subject to

individual bias, and doctors must have a clear understanding

of the patient’s condition, leading to unreliable classifications

(Mazya et al., 2012; Strbian et al., 2014). With the development

of radiomics, researchers have begun using radiomics to extract

features and then classify them using machine learning algorithms

(Aerts et al., 2014). However, radiomics only captures shallow

features such as grayscale and texture. Although deep learning

has improved classification accuracy by extracting deep features,

previous methods often only used simple downsampling to extract

features. However, features from non-ROI regions in images may

interfere with the network, and as the network downsamples,

shallow features are gradually lost. Therefore, we introduced mask

attention mechanisms and multi-scale feature fusion to allow

the network to focus more on ROI and integrate features from

multiple scales, resulting in more favorable feature extraction for

classification.

After feature extraction, due to the high dimensionality

and redundancy of features, we used PCA for dimensionality

reduction, followed by inputting the reduced features into SVM

for classification. Firstly, the decision to employ linear methods

like PCA for feature transformation and SVM for classification

was grounded on the high-quality features extracted from our

deep-learning segmentation framework, which is based on multi-

scale and mask-attention mechanisms. These features effectively

encapsulate the critical characteristics of ROI essential for

downstream tasks, providing a robust foundation for the effective

application of linear methods. Secondly, the size of the clinical

datasets used (87 + 88 patients in Dataset 1 and 71 patients in

Dataset 2) poses challenges. Given the relatively small scale of

these datasets, deploying complex nonlinear models such as deep

neural networks could lead to overfitting. In contrast, simpler linear

methods entail lower risks of overfitting and are thus more suitable

under these conditions.

Assessing the quality of delineations through inter- and intra-

rater variability analysis is important in this paper. Firstly, we would

like to emphasize that all our data annotations were conducted

by three senior clinical experts, each with over ten years of

experience and holding intermediate or senior professional titles.

Unlike annotations performed by junior or general practitioners,

the annotations by these experienced experts are highly reliable and

accurate. Furthermore, each expert’s independent annotations were

rigorously reviewed by the other two experts, and all annotated

data were finalized only after achieving consensus among the three

experts. Therefore, the inter-rater and intra-rater variability of our

data annotations is highly reliable.

We have conducted additional analysis on Dataset 2 using

71 cases to assess both inter-rater and intra-rater variability. For

the inter-rater variability analysis, we randomized the annotations

such that each expert annotated cases they had not previously

annotated, following the same protocol of review and consensus by

the other two experts. We retrained the multimodal model using

this new set of annotations and found no significant difference

(p-value < 0.05) between the predictions of this model and the

model reported in the manuscript. This indicates that the inter-

rater variability of our dataset annotations is stable and reliable.

For the intra-rater variability analysis, each expert re-annotated the

data following the same protocol of review and consensus by the

other two experts. We retrained the multimodal model with this

new set of annotations and again found no significant difference (p-

value < 0.05) between the predictions of this model and the model

reported in the manuscript. This demonstrates that the intra-rater

variability of our dataset annotations is also stable and reliable.

Our proposed method has some limitations. Firstly, as a data-

driven deep learning task, the two datasets we used are relatively

limited. Secondly, the interpretability of the features extracted

by deep learning is weak. Although the effectiveness of the two

modules we proposed has been verified in classification results,

their effectiveness lacks theoretical proof.

In the future, we will validate our model using multi-center

datasets, and we will also compare more deep learning feature

extraction methods to further improve our proposed attention

mechanisms and multi-scale feature fusion.

5 Conclusions

We have proposed a novel method called M3 to address

the classification problem of multi-modal brain diseases, which
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integrates mask attention and multi-scale feature fusion module.

The mask attention module allows the network to focus on the

regions regions that are highly relevant to the disease, while the

multi-scale feature fusion module combines features from multiple

scales. M3 has been validated on brain tumor data and brain

hemorrhage conversion data, and ablation experiments have fully

demonstrated the effectiveness of the two modules we proposed.
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