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Neurons are interactive cells that connect via ions to develop electromagnetic 
fields in the brain. This structure functions directly in the brain. Connectome is 
the data obtained from neuronal connections. Since neural circuits change in 
the brain in various diseases, studying connectome sheds light on the clinical 
changes in special diseases. The ability to explore this data and its relation to the 
disorders leads us to find new therapeutic methods. Artificial intelligence (AI) is 
a collection of powerful algorithms used for finding the relationship between 
input data and the outcome. AI is used for extraction of valuable features from 
connectome data and in turn uses them for development of prognostic and 
diagnostic models in neurological diseases. Studying the changes of brain 
circuits in neurodegenerative diseases and behavioral disorders makes it possible 
to provide early diagnosis and development of efficient treatment strategies. 
Considering the difficulties in studying brain diseases, the use of connectome 
data is one of the beneficial methods for improvement of knowledge of this 
organ. In the present study, we  provide a systematic review on the studies 
published using connectome data and AI for studying various diseases and 
we  focus on the strength and weaknesses of studies aiming to provide a 
viewpoint for the future studies. Throughout, AI is very useful for development 
of diagnostic and prognostic tools using neuroimaging data, while bias in data 
collection and decay in addition to using small datasets restricts applications of 
AI-based tools using connectome data which should be covered in the future 
studies.
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Introduction

The human connectome describes a model of neuronal connections in the human brain 
from single neuron scales to macroscale brain networks. It utilizes various neuroimaging 
modalities to identify the relationship between the structural and functional connectivity of 
the brain not only in people with healthy brains but also in patients with neuropsychological 
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disorders (Betzel and Bassett, 2017; Contreras et  al., 2015; Elam 
et al., 2021).

The main research fields about connectomes include 
understanding the complex network architecture of the human brain, 
the key characteristics of the structural and functional connectomes, 
the effects of structural changes on brain function, and the importance 
of connectomes on the diagnosis and prognosis of different 
neurological and psychological diseases. Finding the human brain 
connection tracts and the mechanisms of brain functioning have been 
considered important and challenging issues over the decades 
(Pospelov et al., 2019; Schmahmann et al., 2007). In this regard, the 
Human Connectome Project (HCP) was proposed in 2009 by a 
research team as an innovation in neuroscience research; and finally 
launched in 2010 with funding provided by the National Institutes of 
Health (NIH). This project aimed to map human brain connections 
in healthy adults to develop a dataset for investigating the relevance 
between human brain circuits and their functions (Elam et al., 2021; 
Van Essen et al., 2013). The turning point of HCP advent is related to 
developments in the field of neuroscience in the late 20th century; 
including the advancement in magnetic resonance imaging (MRI) 
technology such as structural MRI, resting-state functional MRI 
(fMRI), and diffusion MRI (dMRI) and the motivation of 
understanding nervous system pathways diagram [3]. In the following, 
launching HCP led to efforts to set up projects in the field of finding 
connectomes in disordered states (Tozzi et al., 2020).

Artificial intelligence (AI) has attracted the attention of the world 
as a widely used technology that simulates the human brain processes. 
Recently, the importance of using AI has been evaluated in various 
aspects of life sciences including medicine (Lee et al., 2017). Machine 
learning (ML) and deep learning (DL) are two approaches of AI that 
are applied to the medical field, especially medical imaging as clinical 
decision support systems. It seems that the field of medical imaging is 
one of the most suitable areas for investigating the application of AI 
(Castiglioni et al., 2021). Numerous studies have been conducted on 
the evaluation of the structural and functional connectome data 
associations based on ML and DL models in various neurological and 
psychiatric diseases in different aspects from early diagnosis to 
prediction of treatment outcomes. Based on our knowledge, no 
systematic review has been conducted on the usage of AI for the 
analysis of connectome data and the development of related models. 
However, it seems necessary to review recent progressions in this field 
to find gaps in this field and make it possible to fill them in future 
studies. Therefore, the objective of this systematic review is to peruse 
the articles related to ML and DL-based models and algorithms on 
human connectome data.

Methods

Search strategy

In this systematic review, we conducted a thorough search using 
PubMed, Google Scholar, and Embase, employing MESH and Emtree 
keywords including “connectome” AND “AI” OR “machine learning” 
OR “deep learning” in English. PRISMA guideline was used for 
screening and filtering the collected studies (Page et al., 2021). We 
aimed to identify peer-reviewed papers exploring the relationship 
between connectome and advanced computational techniques, 

specifically machine learning and deep learning. The screening 
process involved a sequential assessment of titles, abstracts, and full 
texts, with two independent authors ensuring the reliability of the 
selection and information extraction. Discrepancies were resolved 
collaboratively. This systematic approach enhances the credibility of 
our review, providing a concise synthesis of the current state of 
knowledge at the intersection of Connectome and advanced 
computational methodologies.

Inclusion criteria included (1) the use of connectome data, (2) 
subjects were human, (3) the use of ML or DL for analysis of 
connectome data, (4) studies published on original data, (5) peer-
reviewed papers; while the exclusion criteria included (1) the use of 
imaging data but no connectome data, (2) animal models studies, (3) 
lack of results related to accuracy of applied algorithms, (4) systematic 
and other review studies, (5) case studies, and (6) editorials.

Results

Study selection

A total of 4,452 articles were collected from three databases and 
2,372 articles were removed due to duplicates. After removing 
duplicates and checking references for additional articles, a total of 
2,083 articles were screened, while 2,009 articles did not meet the 
eligibility criteria because they were not research studies, no AI-based 
methods were used, no connectome data were used, and no full-length 
article was available. In addition, 74 full-text articles were assessed 
with more details among which 51 articles were removed due to not 
reporting results of AI-based models. Next, 2 articles were reviewed 
among which because of not using AI-based models for data analysis 
(Figure 1).

The papers for this study were chosen if they had effectively 
explored the relationship between the connectome and various ML 
methods. Original research, retrospective, cross-sectional, and cohort 
studies were the types of studies considered eligible for this systematic 
review. The study did not target specific patient conditions; however, 
any research mentioning connective tissue disorders and utilizing ML 
methods was deemed acceptable. Every study, encompassing ML, DL, 
and neural network approaches, was included. This comprehensive 
approach aimed to capture the diverse applications of artificial 
intelligence in understanding the connectome and associated 
disorders. Finally, 22 articles were included in the present 
systematic review.

Machine learning-based models and 
algorithms on connectome data

In recent years, several models have been developed to predict 
various phenomena in neural diseases using ML algorithms reviewed 
here. ML techniques could explore the relationship between brain 
connectome patterns, complex human traits, and polygenic 
architecture. A summary of studies that developed ML methods on 
connectome data has been provided in Table  1. In the study by 
Maglonac et  al., fMRI-based static and dynamic temporal 
synchronization between large-scale brain network nodes was used to 
predict complex traits, such as fluid intelligence, educational 
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attainment, and dimensional measures of anxiety, depression, and 
neuroticism. Besides, they predicted age, sex, and polygenic scores. 
They found that beyond age and sex, connectome-based features 
could effectively predict complex traits including fluid intelligence and 
educational level. Interestingly, the mentioned traits were negatively 
related to static brain connectivity in the frontal area (Maglanoc 
et al., 2020).

The researchers developed ML models to analyze the relationship 
between functional and structural patterns in the human brain. They 
aimed to explore how well the structural connectivity could predict its 
functional connectivity by using diffusion-weighted and resting-state 
functional MRI, respectively. Eventually, by applying deep learning 
networks, they perceived that structural connectome could explain 
significant differences between individuals in cognitive performances 
(Sarwar et al., 2021). This relation was also to predict serious problems 
in different diseases. Another study guided by Munsell et  al. 

investigated the relationship between the architecture of neural 
networks and naming performance in patients suffering from 
temporal lobe epilepsy (TLE; Munsell et al., 2019). They utilized a 
structural connectome-based approach and an ML model to assess 
language naming performance using T1-weighted and diffusion MRI 
scans. Their ML model accurately predicted the naming performance 
in patients with medication refractory TLE, while this function was 
mainly associated with the temporal and frontal areas. They 
highlighted that the ML connectome-based models could be  a 
promising approach to gain insights into the neural mechanisms 
underlying language impairments in neurological disorders.

In addition, Gleichgerrcht et al. (2020) conducted a study, aimed 
to investigate the potential of using structural connectome hubs to 
predict surgical outcomes in patients with TLE. They employed ML 
models to investigate the association between structural network 
integration and postsurgical outcomes. They used preoperative MRI 

FIGURE 1

PRISMA flow diagram. ML, machine learning; DL, deep learning.
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data of 121 individuals with medication-resistant TLE to train the 
neural network models. Further, they used a dataset from 47 
independent TLE patients from other centers to evaluate the predictive 
value of the model. They demonstrated that the lateral and medial 
temporal regions were associated with surgical outcomes. Indeed, 
individuals with abnormal integration structural networks had less 
chance of becoming seizure-free. The results of this experiment were 

consistent with previous studies regarding network abnormalities in 
TLE. Munsell et  al. assessed the effectiveness of different ML 
algorithms in predicting the postsurgical outcomes of patients with 
TLE using structural connectome data (Munsell et al., 2015). For this 
purpose, they applied various ML algorithms on the diffusion MRI 
scans of epilepsy cases. They realized that support vector machines 
(SVMs) and random forests (RF) achieved high accuracy in predicting 

TABLE 1 Application of ML models on connectome data for specific aims.

S. No. Author
Machine learning 
technique

Study design Target condition

1 Gleichgerrcht et al. 

(2020)

2021 Single-layer feed-forward neural 

network classification model

Training cohort and three other sites 

as a testing cohort

Binary surgical outcome of patients 

with drug-resistant temporal lobe 

epilepsy

2 Ma et al. (2020) 2020 RVR* Cross-sectional study Short-term/acute insomnia and 

chronic insomnia

3 Payabvash et al. 

(2019a)

2019 Naive Bayes, random forest, SVM 

with linear kernel, SVM with 

polynomial kernel, and neural 

networks*

Original study The use of neuroimaging techniques 

to investigate white matter 

microstructure in ASD* in children.

4 Munsell et al. (2015) 2015 Elastic net, SCCA, SVM classifiers, 

and deep learning*

Two-stage connectome-based 

prediction framework

Temporal lobe epilepsy (TLE)

5 Sarwar et al. (2021) 2021 Deep neural networks Mapping whole-brain structural and 

functional connectivity matrices for 

1,000 healthy adults using diffusion-

weighted and resting-state functional 

MRI data

Functional connectivity (FC) in the 

human brain based on structural 

connectivity (SC)

6 Munsell et al. (2019) 2019 SVR, OLSR* analysis of language scores and brain 

connectomes

REFRACTORY temporal lobe 

epilepsy (TLE)

7 Bruin et al. (2023) 2023 Linear SVM model Multi-site, cross-sectional study Obsessive-compulsive disorder 

(OCD) functional connectome 

evaluation

8 Tymofiyeva et al. 

(2019)

2019 J48 pruned tree classifier, Longitudinal study Major depressive disorder (MDD) in 

adolescent treatment

9 Chen et al. (2022) 2022 MKL-SVM* Retrospective, cross-sectional, 

multicenter study.

Subjective cognitive decline (SCD)

10 Payabvash et al. 

(2019b)

2019 Naïve Bayes, random forest, SVM 

with linear kernel, and SVM with 

polynomial kernel

Cross-sectional study Auditory over-responsivity (AOR)

11 Maglanoc et al. (2020) 2020 Shrinkage linear regression Cross-sectional study Genetic basis of functional 

connectivity in the human brain

12 Zhang et al. (2020) 2020 SVM Cross-sectional study post-traumatic stress disorder 

(PTSD)

13 Barile et al. (2022) 2022 SVM, Random Forest Original research Classification of multiple sclerosis 

(MS) based on grey matter 

connectome

14 Chen et al. (2020) 2020 Logistic Regression, Decision Tree 

Classifier, and XGBoost*

Original study “Chemo-brain” or cognitive 

impairment in breast cancer patients 

who have undergone chemotherapy

15 Hannum et al. (2023) 2023 LDA, ANN, SVM, NC, CORR* Original study classify cognitive states based on 

functional connectome data obtained 

from fMRI scans

*ASD, autism spectrum disorder; MKL-SVM, multiple kernel learning support vector machine; RVR, multivariate relevance vector regression; SVR, support vector regression; OLSR, ordinary 
least squares linear regression; SCCA, sparse conical correlation analysis; LDA, linear discriminant analysis; ANN, multi-layer perceptron neural network; NC, nearest-centroid; CORR, 
correlation-based.
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the outcomes. Further, they identified specific features of the structural 
connectome, such as connectivity patterns in a few specific brain 
regions, which played a crucial role in the accuracy of outcome 
prediction. They mentioned that using ML algorithms based on 
structural connectome has had similar results to the clinical findings 
presented by expert clinicians about predicting the outcome after 
surgery in patients with epilepsy.

Prediction of treatment outcomes was not limited to surgeries. 
Cognitive behavioral therapy (CBT) is a first-line treatment for 
adolescent major depressive disorder (MDD). In a study, a supervised 
ML algorithm was applied to structural connectome to predict 
symptom reduction in depressed patients treated with CBT. They 
obtained structural connectome data from diffusion MRI scans of 
depressed patients before receiving CBT. Next, they indicated that 
specific connectivity patterns in structural connectome were 
associated with the prediction of more significant depressive symptom 
reduction in patients receiving CBT. Regarding these results, they 
claimed this model could be used as a promising predictor of CBT 
effectiveness in all adolescent patients with MDD (Tymofiyeva et al., 
2019). Connectome data could be used to predict the outcomes of 
treatments in not only neural diseases but also in cancers developed 
in other parts of the body. As an example, Chen et al. conducted a 
study to investigate the application of structural and functional 
connectome features in ML models for predicting “chemo-brain” in 
women receiving chemotherapy for breast cancer. They aimed to 
identify specific brain connectivity patterns with biomarker potential 
for predicting chemotherapy-induced cognitive impairments. Finally, 
they achieved an accurate connectome-based prediction model, which 
predicts the cognitive outcome with non-invasive tools in breast 
cancer cases who receive chemotherapy (Chen et  al., 2020). The 
identification of biomarkers in childhood diseases is one of the most 
important factors for prevention and early intervention or postponing 
the progression of diseases. For instance, the white matter connectome 
edge density is assumed an imaging biomarker in children with autism 
spectrum disorders (ASD; Payabvash et al., 2019a). In this study, they 
applied ML models focusing on the white matter connections using 
diffusion MRI data to evaluate the connectivity patterns in ASD 
patients. They studied 14 ASD children and 33 typically developed 
children and finally found less density of connectome edges in 
posterior white matter tracts of ASD children. They indicated the 
feasible ML algorithms based on the structural connectome for 
diagnosing ASD in children. Progressive neurodegenerative diseases 
are among the diseases for which the identification of biomarkers via 
non-invasive methods is immediately required. Chen and colleagues 
stated that ML models based on multimodal connectomes have 
predictive potential of preclinical stages of Alzheimer’s disease (AD). 
For this purpose, structural and functional MRI, and positron 
emission tomography (PET) were used to construct a multimodal 
connectome model. They revealed that multiple kernel learning-
support vector machines (MKL-SVM) could distinguish between 
preclinical stages of AD and healthy controls with high accuracy, 
which can be  a promising approach for timely interventions and 
personalized treatment strategies (Chen et al., 2022).

The use of structural connectome data was also used for 
uncovering neural mechanisms of other diseases. Payabvash et al. 
conducted a study to investigate the correlation of white matter 
connectome with auditory over-responsivity (AOR; Payabvash et al., 
2019b). Indeed, they employed ML classifiers on the edge density 

imaging data from diffusion tensor imaging (DTI) and high-resolution 
T1 scans. This technique measures the density of connections between 
different brain regions to examine the white matter connectivity 
patterns in individuals with AOR. They identified specific edges in 
connections of the white matter connectome that were consistently 
altered in individuals with AOR compared to the healthy controls. 
These findings provide new insights into the neural basis of AOR and 
demonstrate the potential of edge-density imaging and ML models for 
identifying biomarkers for this sensory processing disorder. Grey 
matter connectome analysis using MRI data and ML models could 
provide an accurate classifier for different clinical profiles of multiple 
sclerosis (MS) patients. Indeed, it was demonstrated that ML classifiers 
are valuable tools for understanding the heterogeneity of MS and 
aiding in the accurate classification of different clinical profiles, which 
may have implications for personalized treatment and management 
strategies (Barile et  al., 2022). Magnetoencephalography (MEG) 
connectome data also could be used in ML models for classifying 
individuals with post-traumatic stress disorder (PTSD). Researchers 
used these data and built an accurate model to differentiate combat-
related PTSD cases from trauma-exposed controls based on their 
MEG connectome patterns. They highlighted the neural mechanisms 
underlying the disorder and paved the way for potential diagnostic 
applications (Zhang et  al., 2020). This study showed that MEG 
connectome data and ML algorithms can be used in the classification 
of other mental disorders.

Noteworthy, the functional connectome data has been used in 
fewer studies than structural connectome; however, it seems to 
include valuable information related to various diseases. ML models 
were used to evaluate the association between sleep quality and 
functional connectome in patients suffering from insomnia (Ma 
et al., 2020). They studied 29 individuals with short-term insomnia 
and 44 chronic insomnia patients. They conducted fMRI imaging for 
patients measured their sleep quality with the Pittsburg sleep quality 
index (PSQI) and applied the vector regression model. Whole-brain 
regional functional connectivity strength was used for PSQI 
prediction and there were similarities and differences between the 
two groups of chronic and short-term insomnia that helped 
identification of underlying mechanisms for each group. Functional 
connectome was also used for obsessive-compulsive disorder (OCD) 
classification. An ML approach was employed on the resting-state 
functional MRI data from multiple sites as part of the ENIGMA-OCD 
consortium. Indeed, they used a meta-analysis of resting-state 
functional MRI scans from 1,028 healthy controls and 1,024 OCD 
patients, to assess the difference between these two groups in whole-
brain functional connectivity at both network and regional levels. 
Finally, they realized that sensorimotor networks play a crucial role 
in OCD, and shed light on its role in existing pathophysiology (Bruin 
et  al., 2023). In this regard, another study evaluated functional 
connectome fingerprints and used these fingerprints to decode 
cognitive states, such as memory or attention. For this purpose, they 
used fMRI scan data to develop an ML model and showed that these 
fingerprints were informative enough to decode cognitive states with 
high accuracy levels. This study highlighted the potential of ML 
approaches in characterizing individual brain connectivity patterns 
and provided insights into cognitive states which in turn can 
potentially open doors to personalized interventions and cognitive 
state monitoring in various domains such as clinical diagnosis and 
cognitive neuroscience research (Hannum et al., 2023).
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Deep learning-based models and 
algorithms on connectome data

Various studies have utilized deep learning algorithms alongside 
machine learning models to predict outcomes and complications, as 
well as provide early diagnosis, for neurological and psychological 
diseases. A summary of these studies has been provided in Table 2. A 
study was conducted with the aim of residual distortion reduction in 
connectome data using high-resolution diffusion MRI (dMRI) 
preprocessed by HCP—pipelines and DL. For this purpose, 
“Distortion Correction Net (DrC-Net)” as an unsupervised DL 
framework was applied. U-NET was used to identify latent features of 
fiber orientation distribution (FOD) images while a transfer network 
for the propagation of deformation features was used in the proposed 
method. The presented method was trained randomly on 60 samples 
out of 100 cases from the HCP dataset and then tested on the rest. It 
was found that the presented method had similar distortion correction 
performance on both the training and test datasets based on the two 
evaluation methods including the mean squared difference (MSD) of 
the fractional anisotropy (FA) and the angular difference of main fiber 
directions. This study revealed dramatic improvement related to 
susceptibility distortion correction in both evaluation methods. In line 
with this finding, it is possible to significantly improve the mapping of 
connections between brain circuits by employing DrC-Net in 
minimizing the residual distortions in connectome imaging data 
(Qiao and Shi, 2020).

Recently, studies have shown the importance of the role of DL 
models in predicting the different outcomes after surgery in patients 
with epilepsy. A deep relational reasoning network was applied to 
connectome data obtained from 51 children with Frontal lobe Epilepsy 
(FE) using preoperative conventional diffusion-weighted imaging. It 
was aimed to evaluate expressive and receptive language scores for 
language impairment prediction and postsurgical seizure outcomes 
based on Clinical Evaluations of Language Fundamentals (CELF) 
scores and International League Against Epilepsy (ILAE) classification, 
respectively. The method used in this experiment was “dilated 
CNN + RN,” also known as dilated convolutional neural network 
(CNN) combined with a relation network (RN), and the accuracy of 
model was assessed on whole-brain connectome data. The dilated 
CNN + RN approach represented an improvement in both the 
prediction of language impairment and seizure outcomes (seizure 
freedom and seizure recurrency) after surgery. In this model, gradient-
based regression/classification activation maps were utilized on 
preoperative DWI data and it was successful in determining complex 

and non-local connectivity patterns in the connectome matrix for 
outcome prediction. In addition, 5-fold cross-validation, the cross-
entropy loss function, and the synthetic minority over-sampling 
technique (SMOTE—to avoid overfitting due to the small sample size) 
were used for this evaluation. According to the results, the presented 
model had better performance than other investigated models (like 
SVR, Lasso, MLR, CNN + MLR) in language impairment prediction 
(Banerjee et al., 2020).

A study guided by Gleichgerrcht and colleagues on 50 patients 
with unilateral temporal lobe epilepsy (TLE). They aimed to 
investigate the role of the DL-based method on whole-brain structural 
connectomes derived from preoperative T1-weighted MRI and DWI 
in predicting postoperative seizure outcomes in these patients 
compared to conventional clinical prediction. Postsurgical seizure 
outcome (classified in two situations, becoming seizure-free or having 
persistent seizures) was evaluated by researchers at least 1 year after 
surgery. According to the result of this study, positive predictive value 
and negative predictive value were considered as seizure freedom and 
recurrent seizure outcome after surgery. In conclusion, DL model 
based on connectome data was more accurate for classification of 
seizure outcomes than the classification model based on clinical 
variables (PPV = 88 ± 7% and NPV = 79 ± 8% in the deep learning 
classification model in contrast to less than 50% accuracy in 
classification model for clinical variables; Gleichgerrcht et al., 2018).

Various research groups have used DL algorithms to develop 
diagnostic tools for neurodegenerative diseases via connectome data. 
Yasaka and colleagues designed a study to determine neural circuits 
in patients with Parkinson’s disease (PD) using a DL model on 
parameter-weighted and number of streamlines (NOS) -based 
structural connectome matrices derived from dMRI. For this study, 
researchers analyzed a total of 230 cases, consisting of 115 individuals 
with Parkinson’s disease and 115 healthy controls. The researchers 
employed the gradient-weighted class activation mapping (Grad-
CAM) technique to examine the connectome matrices of patients and 
identify the specific brain regions that the convolutional neural 
network (CNN) was targeting. The results showed that the use of a DL 
approach on some parameter-weighted structural matrices had a 
higher performance in distinguishing PD patients from healthy 
controls compared to the conventional NOS-based matrix. DL models 
trained by the diffusion kurtosis imaging (DKI)-weighted connectome 
matrix had a significantly better diagnostic performance than other 
connectome matrices for PD. Eventually, the destruction of neural 
connections between the basal ganglia on one side and the cerebellum 
on the contralateral side was observed by researchers in PD patients. 

TABLE 2 Integration of connectome data and deep learning algorithms.

S. No. Author Technique Study design Target condition

1 Banerjee et al. (2020) 2021 CNN combined with a relational 

reasoning model

Original article Language impairments in children 

with focal epilepsy (FE)

2 Funke et al. (2018) 2018 3D U-NET Original research Connectome reconstruction

3 Gleichgerrcht et al. 

(2018)

2018 DNN Retrospective study Post-surgical treatment of partients 

with epilepsy

4 Qiao and Shi (2020) 2020 DrC-Net Original research Susceptibility distortion correction

5 Yasaka et al. (2021) 2021 CNN Prospective study Parkinson’s disease (PD)

6 Sarwar et al. (2020) 2020 CNN Original research Connectome mapping

*CNN, convolutional neural network; DrC-Net, DistoRtion correction net; DNN, deep neural network.
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Meanwhile, DL models showed robustness for discrimination between 
PD patients and healthy people via parameter-weighted connectome 
matrices (Yasaka et  al., 2021). Sarwar and colleagues developed a 
framework called block decomposition and stitching (BDS) by DL and 
dMRI data to map structural connectome and also to improve the 
accuracy of the conventional connectome mapping pipelines used for 
streamlining tractography. This experiment utilized dMRI and rsfMRI 
data to evaluate the precision of structural connectivity matrices in 
relation to functional connectivity matrices. The results showed that 
when the proposed model was assessed in combination with the 
typical connectome mapping pipelines, it yielded a 20–30% 
improvement in the accuracy of connectivity matrices reconstruction. 
It was also found that the BDS model can increase the structure–
function connectome correlation strength between diffusion MRI and 
functional MRI data compared to conventional tractography. 
Likewise, this model can integrate conventional connectome mapping 
pipelines for accuracy improvement (Sarwar et al., 2020).

Discussion and conclusion

Integration of artificial intelligence (AI) techniques into human 
brain connectomics studies has led to significant advancements in 
recent years. AI has emerged as a powerful tool for data analysis, 
modeling, visualization, and interpretation, revolutionizing the field 
of brain connectomics. The present systematic review highlights the 
AI-based algorithms using connectome data for different diseases. In 
this discussion, we  explore the substantial contributions of AI in 
advancing our understanding of human brain connectivity and 
highlight its strengths and weaknesses. Consequently, we have come 
to understand that predictive models can be  created to classify 
neurological diseases into subcategories, identify symptoms for early 
diagnosis, and establish connections between functional activities, 
prediction of post-surgical outcomes, and changes in connectome 
patterns. Despite this progress, there remains significant untapped 
potential for utilizing connectome data to diagnose a wider range of 
mentioned applications for other neurological diseases. AI algorithms 
have played a crucial role in improving the efficiency and accuracy of 
data acquisition and preprocessing steps in brain connectomics 
research. Prediction of surgical outcomes is important for surgeons, 
especially neurosurgeons. We mentioned the connectome data as a 
source of predicting surgical outcomes for drug-resistant TLE patients 
(Gleichgerrcht et  al., 2018; Munsell et  al., 2019). It seems that 
connectome can be  a non-invasive and informative data with a 
potential for prediction of surgical outcomes. Early diagnosis is pivotal 
in central nervous system (CNS) diseases. Moreover, the 
non-invasiveness of connectome-based testing should be highlighted, 
as well as its greater access to data compared to traditional blood tests 
or biopsies. This method enables direct data collection from the brain, 
allowing for the identification of localized biomarkers. In this regard, 
a few studies have suggested the great potential of connectome data to 
find biomarkers of diseases in terms of the prognosis of ASD in 
childhood (Payabvash et  al., 2019a). In addition to the 
non-invasiveness of using connectome, it is worth noting that data 
availability is more considerable than blood tests or biopsies, while it 
provides data directly from the brain which can be mentioned as 
localized biomarker identification.

Cognitive disorders are among the most common diseases that 
mainly do not have any definite treatments. In addition to the 
alterations in neural circuits and molecular interaction, signaling 
pathways, and neuron–neuron connections, considerable changes 
have been found in brain structure–function connectivity. 
Accordingly, using connectome data and AI not only helps detect 
changes in the cognitive performances of patients with neural diseases, 
but its exploration is useful for finding positive and negative networks 
in OCD and targeted interventions (Bruin et  al., 2023). 
Neurodegenerative diseases are progressive diseases that have a high 
prevalence in the elderly, and no treatment is capable of limiting their 
progression. However, since these diseases are multi-factorial and 
sporadic, it seems necessary to find risk factors and predict the risk of 
their appearance in early times. However, the use of connectome data 
integrated with AI algorithms helps differentiate between the 
preclinical and clinical stages of AD and diagnose this disease 
effectively using hybrid PET/MRI imaging data (H. Chen et al., 2022). 
Another application of employing AI for the analysis of connectome 
data is subtyping diseases such as PTSD. These studies showed the 
potential of connectome data for using brain structural data in this 
disease for diagnosis, subtyping, and prediction of cognitive 
performance (Zhang et  al., 2020). In this regard, developing new 
databases for collecting connectome data is one of the main tasks for 
developers and stockholders in healthcare systems. On the other hand, 
integrating connectomics data with AI is the main challenge for 
developing prognostic and diagnostic models for clinicians. These 
models should represent high accuracy and reliability to use as 
assisting tools by physicians and surgeons. According to the results, 
support vector machine (SVM), logistic regression (LR), gradient 
boosting, and random forest were among the most frequently used 
ML models applied to connectome data. The mentioned algorithms 
demonstrated high accuracy in predicting and classifying applications, 
though mainly no cross-validation analysis was applied on external 
data to find the exact accuracy of these algorithms. On the other hand, 
CNN and U-Net were the most frequent DL algorithms used for the 
analysis of connectome data. Despite connectome data being an 
imaging dataset with significant potential for analysis using deep 
learning algorithms, there are very few studies utilizing these 
algorithms. Therefore, limited number of studies on neurodegenerative 
disease such as AD, PD, and MS, low number of studies on brain 
tumors, low number of studies using deep learning algorithms for 
connectome data analysis, and low number of studies on the 
identification of early diagnostic symptoms are the main limitations 
regarding the use of A-based algorithms for analysis of 
connectome data.

In total, connectome provides a database for studying diseases and 
conditions related to the brain connectivity while its alterations are the 
source of information related to the diseases. Studying these alterations 
and using them for prediction of clinical phenomena such as 
diagnosis, prognosis and response to treatment are among the main 
missions of AI.

Future perspectives

AI is a growing technology that can serve various fields such as 
medicine for infinitive applications. Connectome data has been 
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recently identified in brain sciences as an informative and 
non-invasive source for the exploration of structural-connectivity 
relationships between various parts of the brain. Connectome data 
contains multi-aspect data so that in some studies only structural 
changes and their relation to the functions have been studied, while 
in other studies networks developed by connectivity of different 
parts or thickness-derived adjacency have been used as extracted 
data for more detailed studies (Chen et  al., 2020; Payabvash 
et al., 2019b).

Hereby, we  suggest using the more novel aspects of 
connectome data for studying other diseases, using studies with a 
higher number of imaging data to develop more robust AI 
applications using connectome data to replace invasive methods 
for diagnosis and prognosis of diseases with the use of 
connectome data.

In conclusion, the integration of AI techniques has revolutionized 
human brain connectomics studies, providing powerful tools for data 
analysis, modeling, and interpretation. AI has contributed to our 
understanding of brain connectivity, identification of biomarkers, and 
personalized diagnostics for neurological and psychiatric disorders. 
By leveraging AI’s capabilities, we can advance the field and pave the 
way for improved patient care.
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