AUTHOR=Bhavna Km , Akhter Azman , Banerjee Romi , Roy Dipanjan TITLE=Explainable deep-learning framework: decoding brain states and prediction of individual performance in false-belief task at early childhood stage JOURNAL=Frontiers in Neuroinformatics VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2024.1392661 DOI=10.3389/fninf.2024.1392661 ISSN=1662-5196 ABSTRACT=
Decoding of cognitive states aims to identify individuals' brain states and brain fingerprints to predict behavior. Deep learning provides an important platform for analyzing brain signals at different developmental stages to understand brain dynamics. Due to their internal architecture and feature extraction techniques, existing machine-learning and deep-learning approaches are suffering from low classification performance and explainability issues that must be improved. In the current study, we hypothesized that even at the early childhood stage (as early as 3-years), connectivity between brain regions could decode brain states and predict behavioral performance in false-belief tasks. To this end, we proposed an explainable deep learning framework to decode brain states (Theory of Mind and Pain states) and predict individual performance on ToM-related false-belief tasks in a developmental dataset. We proposed an explainable spatiotemporal connectivity-based Graph Convolutional Neural Network (Ex-stGCNN) model for decoding brain states. Here, we consider a developmental dataset,