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Background: The above studies indicate that the SCZ animal model has

abnormal gamma oscillations and abnormal functional coupling ability of brain

regions at the cortical level. However, few researchers have focused on the

correlation between brain complexity and connectivity at the cortical level. In

order to provide a more accurate representation of brain activity, we studied

the complexity of electrocorticogram (ECoG) signals and the information

interaction between brain regions in schizophrenic rats, and explored the

correlation between brain complexity and connectivity.

Methods: We collected ECoG signal from SCZ rats. The frequency domain and

time domain functional connectivity of SCZ rats were evaluated by magnitude

square coherence and mutual information (MI). Permutation entropy (PE) and

permutation Lempel-Ziv complexity (PLZC) were used to analyze the complexity

of ECoG, and the relationship between them was evaluated. In addition, in order

to further understand the causal structure of directional information flow among

brain regions, we used phase transfer entropy (PTE) to analyze the effective

connectivity of the brain.

Results: Firstly, in the high gamma band, the complexity of brain regions

in SCZ rats is higher than that in normal rats, and the neuronal activity is

irregularity. Secondly, the information integration ability of SCZ rats decreased

and the communication of brain network information was hindered at the

cortical level. Finally, compared with normal rats, the causal relationship

between brain regions of SCZ rats was closer, but the information interaction

center was not clear.

Conclusion: The above findings suggest that at the cortical level, complexity

and connectivity are valid biomarkers for identifying SCZ. This bridges the

gap between peak potentials and EEG. This may help to understand the

pathophysiological mechanisms at the cortical level in schizophrenics.
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1 Introduction

Schizophrenia (SCZ) is a commonly serious mental illness that
severely impairs mental activity and social function of patients
(Mccutcheon et al., 2020). Its lifetime prevalence rate is about
1%, causing a serious social burden. Therefore, the research and
discovery of biomarkers of SCZ are clinically important for the
early diagnosis of SCZ.

Electroencephalogram (EEG) is that postsynaptic potentials
between brain cells discharge reflected electrophysiological activity
on the scalp surface (van der Stelt and Belger, 2007). EEG has
the advantages of high time resolution, low equipment price and
abundant frequency band information. In recent years, EEG has
been widely used to study brain cognitive function in patients with
SCZ. Wang et al. (2023) used phase lag index (PLI) to construct
brain networks that patients with SCZ showed reduced left frontal
to posterior parietal/temporal connectivity compared to healthy
control group. Krukow et al. (2018) used PLI to construct a brain
functional network and observed that significantly higher PLI
values were recorded in theta frequency, especially in the posterior
areas and decreased PLI in low-alpha frequency within the frontal
regions. Ibáñez-Molina et al. (2018) indicated that patients showed
higher complexity values in right frontal regions only at rest,
where no differences in complexity between patients and controls
were found during the naming task. Yu et al. (2016) analyzed the
fractal dimension (FD) values of EEG signals and found that EEG
signals of patients with first-episode SCZ were more irregular and
complex during the execution of functional tasks. However, EEG
has a low spatial resolution and is sensitive to volume conduction
effect, which cannot reflect the deep neural electrical activity of
the brain (Cohen, 2017). Compared with EEG, electrocorticogram
(ECoG) has higher spatial resolution, strong anti-noise ability, and
can record stable high-frequency signals, which can accurately
measure the activity of a certain part of the brain neurons
(Donaldson et al., 2022).

ECoG is the sum of electrical signals generated by pyramidal
cells on the surface of the cortex (Chatterjee et al., 2022). In
clinical practice, ECoG is commonly used to accurately identify
epileptic lesions (Piantoni et al., 2021), providing a new approach
for studying human cortical activity (Jackson and Bolger, 2014).
At present, ECoG is also applied to explore the pathophysiological
mechanisms of intracortical and subcortical networks in patients
with SCZ. Ahnaou et al. (2017) collected ECoG signals to evaluate
the efficacy of drugs with potential antipsychotic properties and
observed abnormal gamma oscillations in the animal model of
SCZ, with network connectivity interrupted. Yan et al. (2022)
collected ECoG signals from monkeys and found that high-
gamma oscillations increased and low-band oscillations decreased
in SCZ. Hashimoto et al. (2009) collected ECoG to study cortical
auditory evoked responses in Nonhuman Primates of SCZ, and
the results showed that the auditory evoked responses and
latency were significantly increased in the animal model of SCZ.
Komatsu and Ichinohe (2020) collected ECoG from the frontal
region to analyze power changes in schizophrenic rats. The
above studies indicate that the SCZ animal model has abnormal
gamma oscillations and abnormal functional coupling ability of
brain regions at the cortical level. However, few researchers
have focused on the correlation between brain complexity and

connectivity at the cortical level. In order to provide a more
accurate representation of brain activity, we studied the complexity
of ECoG signals and the information interaction between brain
regions in schizophrenic rats, and explored the correlation between
brain complexity and connectivity. Combining connectivity with
complexity and applying it to neurophysiological data can provide
new understanding of neural network processes in both healthy
brains and pathological states.

The neural activity of the human brain as reflected by ECoG is a
complex activity characterized by nonlinear dynamics (Ando et al.,
2022). Therefore, the nonlinear correlation method is beneficial in
helping us to understand and explain the ECoG kinetic features
and the corresponding brain neural activity processes. Complexity
and entropy are widely used in the study of nonlinear behavior
of EEG signals. There has been an increasing trend toward the
use of complexity analysis in quantifying neural activity measured
by EEG signals (Ando et al., 2022). Xiang J. et al. (2019) used
fuzzy entropy to explore brain neural activity and found that
neural activity in the frontal and occipital regions of SCZ patients
was more chaotic. Jia and Gu (2019) used sample entropy to
characterize the nonlinear characteristics of the brain and observed
irregular neural activity in the brain of patients with SCZ. SCZ is
associated not only with localized functional deficits, but also with
abnormal interactions between different brain regions. The analysis
of functional brain connectivity in the resting state of patients with
SCZ has attracted a great deal of attention. Functional connectivity
reflects the integration of brain information processes in each
neural region (Harmah et al., 2020), which is expressed as the
interaction of neural activity between brain regions. Hummer et al.
(2020) measured the Non-linear Directed Information Flow in SCZ
by Multivariate Transfer Entropy and found that the interaction
of neural activity in brain regions was weakened in patients with
SCZ. Hummer et al. (2020) analyzed the functional connectivity of
the whole brain in early-stage SCZ and found that the functional
coupling between the networks of patients decreased. Fernández
et al. (2013) proposed a functional disconnection syndrome in
SCZ, suggesting that this disconnection is associated with higher
complexity. However, the relationship between complexity and
connectivity is unclear. Therefore, this paper uses a combination
of complexity and connectivity to probe abnormal neuronal
synchronization and abnormal neuronal firing in a rat model
of SCZ.

The rapid discharge of PV+ interneurons produced gamma
oscillations. However, the expression of PV positive intermediate
neurons decreased in patients with SCZ (Jadi et al., 2016). The
number of synapses of GABAergic interneurons is reduced in
patients with schizophrenia, and the secretion and reabsorption
of neurotransmitters by GABAergic interneurons are markedly
impaired (Yuan et al., 2016). Therefore, patients with SCZ have
abnormal gamma oscillations. And this reflects the fact that gamma
oscillations are likely to be electrophysiologic markers of early
schizophrenia. Brennan et al. (2018) found that abnormal gamma
oscillations in SCZ are associated not only with perceptual or lower-
order cognitive processing, but also with higher-order cognitive
function. Tanaka-Koshiyama et al. (2020) evaluated resting-state
EEG in patients with SCZ, and the results of their study revealed
abnormally elevated EEG power in the gamma band in patients
with SCZ. Therefore, this study focuses on the brain activity of
schizophrenic rats in the gamma band.
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Based on the above research, we established a systematic
evaluation framework for brain activity status at the cortical
level in schizophrenic rats using analysis method of complexity
and connectivity. We collected ECoG in the frontal, parietal and
occipital regions of schizophrenic and healthy rats at rest. PLZC,
PE, coherence, MI and PTE were then used to analyze the brain
activity state of schizophrenic rats. We hope that our work can
provide a reference for research focusing on the pathological
mechanisms of SCZ.

2 Materials and methods

2.1 Experimental animals

Ten healthy adult male SD rats were selected, weighing
280–300 g, Specific Pathogen Free (SPF) grade, provided by
Henan Skobes Biotechnology Co., LTD. The feeding environment
temperature was maintained at 25◦C ± 1◦C, humidity was
maintained at 50∼60%, adequate water and food were given,
and light and dark environment were alternated in a 12-h cycle.
All procedures were approved by Xinxiang Medical University’s
Animal Ethics Society (XXLL-20211015) and carried out in
accordance with international experimental animal use ethics
standards throughout the experiment.

2.2 Electrode implantation

In this paper, 10 silver wires with a diameter of 0.08 mm were
used as electrode wires to prepare ECoG electrodes. The impedance
of the ECoG electrodes was also tested to ensure that a high
quality ECoG signal could be acquired. Channels with impedance
values < 10kOhm are considered energized, otherwise they are not.

Instruments used during the procedure were rinsed with saline
and placed in a sterile environment for backup. The experimental
rats should be fasted for 12 h before surgery to prevent problems.
After deep isoflurane (Oxygen flow rate 0.7 L/min, induction
concentration 3%) anesthesia, the heads of the experimental rats
was fixed to a stereoscope using an ear stick and adjusted so that the
head was in a horizontal position. The surgical site was sterilized
using 75% alcohol and the eyes of the experimental rats were
covered with erythromycin ointment. The scalp and outer surface
periosteum of the skull are removed and the fontanel is positioned.
In this paper, 10 cranial nails with a diameter of 0.8 mm were
used as active electrodes, and their positional coordinates relative
to the fontanel are shown in Figure 1 and Table 1. In this paper,
we analyzed ECoG signals in brain regions of frontal (4 electrodes:
FL1, FR1, FL2, FR2), parietal (4 electrodes: PL1, PR1, PL2, PR2),
and occipital (2 electrodes: OL, OR) region. The cranial nail was
fixed to the head of the experimental rat according to the position
of the electrode coordinates. So that the skull nail touches the
dura, but does not squeeze the brain. Wrap the electrode wire of
the corresponding channel around the corresponding skull nail
and use dental cement to secure the electrode. After surgery, the
experimental rats were kept in a single cage for seven days and
injected intraperitoneally with penicillin for three days to prevent
infection.

Ten screws with a diameter of 0.8 mm are used as electrodes,
and their position coordinates relative to the anterior fontanel are
shown in Figure 1 and Table 1. The reference electrodes are set
in the cerebellum and fixed with dental cement. After the surgery,
the rats were kept in a single cage for seven days, and penicillin
was injected intraperitoneally for three consecutive days to prevent
infection. We analyzed frontal cortical region (4 electrodes: FL1,
FR1, FL2, FR2), parietal cortical region (4 electrodes: PL1, PR1,
PL2, PR2), and occipital cortical region (2 electrodes: OL, OR)
(see Figure 1).

2.3 ECoG recording

The ECoG signal acquisition device was Cerebus 128-channel
neural signal acquisition system (purchased from Black Rock,
USA). To improve the signal quality, the ECoG recording process
was performed in a shielded room. The sampling frequency was
1,000 Hz, and the experimental rats were placed in the shielded
room for 3 days before the experiment to adapt to the shielded
room environment. After one week of postoperative recovery, the
ECoG signals were collected from the rats. The rats were placed
in the shielded room, and the Headstage was connected to the
electrode connector in the awake and stationary state, and the
ECoG signals were collected from the rats after the baseline was
stable, and the collected ECoG signals were stored as the data of
“normal rats.” The collected ECoG signal was stored as “normal
rat” data. The rat model of SCZ was prepared by intraperitoneal
injection of MK801 at a dose of 0.5 mg/kg, and waited for 30 min for
the drug to take full effect. The ECoG signals collected were stored
as “schizophrenic rat” data. The collection time was 10 s, and each
rat was collected 8 times for 5 consecutive days.

2.4 Data pre-processing

We pre-processed the acquired ECoG signals offline in
MATLAB (version 2019a, MathWorks Inc., USA). In this study, we
analyzed ECoG signals in the 55–95 Hz band. First, we reduced the
sampling frequency from 1,000 Hz to 256 Hz. we used a trap filter
to filter the 50 Hz IF interference as well as the 100 Hz harmonics.
ECoG signals with large motion artifacts were excluded by visual
inspection. Finally, a band-pass filter is used to extract the ECoG
signal in the 55–95 Hz band.

2.5 Complexity analysis

Several nonlinear dynamics algorithms have been applied
to EEG analysis. These algorithms demonstrate the nonlinear
characteristics of EEG signals at different levels. Among the
EEG analysis methods, especially “complexity” and “entropy” are
most widely used. Complexity can reflect the randomness of the
signal in the time series. Entropy can be used to characterize the
capacity of information. Symbolic dynamics-based measurements
have the advantages of high immunity to interference and low
computational complexity compared to traditional time-domain
methods. Therefore, PLZC and PE are used to capture the
characteristics of neural electrical activity in this paper.
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FIGURE 1

Electrode location and brain region description. The whole brain contains a total of 10 channels, of which the frontal and parietal regions have 4
channels each, the occipital region has 2 channels, and the remaining 4 channels are not in the above regions. Created with BioRender.com.

2.5.1 Permutation entropy
Permutation entropy (PE) is a quantitative complexity

algorithm used to study the local structure of dynamic time series.
It converts a given time series into a series of ordered patterns,
each of which describes the sequential relationship between current
and equidistant past values at a given time (Bandt and Pompe,
2002). Compared with other algorithms, PE has the characteristics
of simplicity, strong anti-noise ability and low computational
complexity (Li et al., 2007).

First, the given time series{x (i) : i ≤ 1 ≤ N}is reconstructed:

Xi = {x(i), x(i+ π, ..., x(i+ (m− 1)τ)}

i = 1, 2, ...,N − (m− 1) τ (1)

In Equation 1, τ represents the time delay and m represents the
embedding dimension.

Then the Xi sequence according to Equation 2 is incrementally
sorted:

{x
(
i+

(
j1 − 1

)
τ
)
≤ x

(
i+

(
j2 − 1

)
τ
)

≤ ... ≤ x
(
i+

(
jm − 1

)
τ
)
} (2)

Therefore, there are m! permutations in the m dimension, which
means that each vector Xi is mapped to one of the m! permutations.

TABLE 1 The position of the 10 electrodes relative to the fontanel
(positive values of X and Y indicate the right and front, respectively) (mm).

Location name X Y

FL1 −1.5 4.5

FR1 1.5 4.5

FL2 −1.5 1.5

FR2 1.5 1.5

PL1 −1.5 −1.5

PR1 1.5 −1.5

PL2 −1.5 −4.5

PR2 1.5 −4.5

OL −3 −7

OR 3 −7

The probability of pj in Equation 3 occurring in sort j is:

pj =
nj∑m
j nj (3)

nj represents the number of occurrences of the j sort.
The permutation entropy of the time series x (i) in Equation 4:

i ≤ 1 ≤ N is

Hx (m) = −
m!∑

j = 1
pjlnpj (4)
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When the time series is random, Hx (m) reaches the maximum
value ln(m!); When the time series is an ordered sequence,
Hx (m) tends to 0.

For ease of representation, Hx (m) is usually normalized by
dividing it by an ln(m!). From Equation 5, the permutation entropy
of the time series x(i):

PE = Hx(m)
ln(m!) (5)

2.5.2 Permutation Lempel-Ziv complexity
Permutation Lempel-Ziv complexity (PLZC) is proposed based

on Lempel-Ziv complexity combined with sorting method (Liu
et al., 2023), In the sorting process, embedding dimension m
and delay time τ are the two most important parameters. The
calculation of PLZC can be realized in the following 8 steps:

The first step is to use a sorting algorithm to convert the EEG
signal into a finite digital sequence {x(n)}. Through this step, the
signal will be represented as no more than m! symbols representing
the sorting mode. The second step is to initialize the measurement
values of PLZC. Make S and Q represent the first and second
symbols in {x(n)}, respectively, and make the complexity c(n) = 1.
The third step is to integrate S and Q into SQ, removing the end
characters of the SQ sequence to form SQv. Fourth, determine
whether Q has reached the end of the character sequence. If it has
already arrived, the algorithm result will be normalized. Fifth, take a
subsequence of SQv. Place all subsequences in a table named SQvsub

if Q belongs to SQvsub, then proceed to step 6. Otherwise, Q is a new
sequence and we proceed to step 7. Step 6, add the next character to
update Q and return to step 3. Step 7, set S = SQ and assign Q to the
next character in the numerical sequence {x(n)}. At the same time,
the complexity c(n) is increased by 1. Step 8, the complexity c(n)
obtained at this point represents the number of different patterns
in the original number sequence {x(n)}. From Equation 6, the total
number of subsequences has an upper bound (Borowska, 2021)
L(n). From Equation 7, PLZC can be expressed as:

L (n) = c (n) logm! [c (n)]+1 (6)

PLZC = c(n)(logm![c(n))+1)
n (7)

2.6 Connectivity analysis

To assess information interactions between brain regions in
schizophrenic rats. In this paper, we analyze the EEG connectivity
evaluation metrics from time domain, frequency domain and
directed information flow, respectively. In this paper, connectivity
measurements including coherence, MI and PTE between different
channels are calculated for connectivity studies.

2.6.1 Coherence
Coherence can measure the linear relationship between two

signals in a specific frequency band or frequency point. Assuming
that X (t) and Y (t), respectively, represent the EEG signals of
electrode (or brain area) X and Y (Niso et al., 2013). Firstly, the
frequency domain conversion method is used to convert the time-
domain signals X(t) and Y(t) to the frequency domain. Then, for
each frequency f, estimate its respective spectral power density

Sxx(f ) and Syy(f ) and their cross-power density Sxy(f ). In view of
the above, the coherence function between them can be calculated
using Equation 8 (coherency function)Kxy(f ):

Kxy
(
f
)
=

Sxy(f )
√

Sxx(f )Syy(f )
(8)

Finally, calculate the coherence value at frequency f using
Equation 9:

COHxy
(
f
)
=
∣∣Kxy

(
f
)∣∣2 (9)

The range of values for coherent indicators is 0∼1.
COHxy

(
f
)

0 means that there is no linear dependence between
X(t) and Y(t) at frequency f. The larger the coherence value, the
stronger the statistical dependency between the two signals; The
reverse is also true.

2.6.2 Mutual information
In information theory, mutual information is an extension of

information entropy, commonly used to measure the correlation
between two random variables (Melia et al., 2015). From Equations
10–12, define the entropy of two time series as H(x) and H(y), and
the joint entropy between them as H (x, y):

H (x) = −
∑

x = X
px(x)logpx(x) (10)

H
(
y
)
= −

∑
y = Y

py
(
y
)

log py
(
y
)

(11)

H (X,Y) = −
∑

x = X,y = Y
p
(
x, y

)
log p

(
x, y

)
(12)

P (x, y) is the joint probability density of X and Y. From
Equation 13, mutual information is defined as:

I (X,Y) = H (X)+H (Y)−H (X,Y) (13)

2.6.3 Phase transfer entropy
Phase Transfer Entropy (Lobier et al., 2014; Zhu et al.,

2023) (PTE) has high computational efficiency, can reliably detect
directional interactions between signals, is robust to noise and
linear mixing, and is suitable for large-scale directional connectivity
analysis. At the same time, due to the asymmetry of PTE, PTE
can be used to represent the direction of information flow between
neuron groups.

The instantaneous phase time series of signals X and Y are
defined as θx(t) and θy(t), which are obtained by the Hilbert
transformation of the two signal time series. The PTE from X to
Y between signals X and Y is shown in Equation 14:

PTExy = H
(
θy (t) , θy(t

′

)
)
+H

(
θy(t

′

), θx(t
′

)
)

−H
(
θy(t

′

)
)
−H

(
θy(t), θy(t

′

), θx(t
′

)
) (14)

2.7 Statistical analysis

We statistically analyzed the experimental results using SPSS
19.0 software. For each set of data, normality was tested using the
Shapiro–Wilk test, and variance chi-square was examined using
Levene’s test. If the data satisfied the normal distribution and the
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variance was homogeneous, the paired-samples t-test was used; if
the data did not satisfy the normal distribution or the variance was
not homogeneous, the Wilcoxon rank-sum test was used. P < 0.05
indicated that there was a statistically significant difference between
the two groups of data, and P < 0.001 indicated that there was
a significant statistically significant difference between the two
groups of data. In the figure, P < 0.05, P < 0.01 and P < 0.001
are represented by the symbols ∗, ∗∗, ∗∗∗.

To evaluate the relationship between complexity and functional
connectivity, we used the Pearson correlation coefficients, R of
between PE and coherence, R of PE and MI, R of PLZC and
coherence, R of PLZC and MI.

Finally, we conducted surrogate analysis to test the significance
of the estimated PTE values. The estimated phases from the Hilbert
transform for electrodes from a given pair of brain areas were time-
shuffled so that the predictability of one time-series from another
is destroyed, and PTE analysis was repeated on this shuffled data
to build a distribution of surrogate PTE values against which the
observed PTE was tested (P < 0.05).

3 Results

3.1 The changes of neuronal activity in
schizophrenic rats

In order to further analyze the changes of nonlinear dynamic
characteristics in the whole brain of the experimental rats, the
Wilcoxon rank sum test was performed on the PLZC and PE values
of the two groups of rats in this paper, and the results are shown in
Figure 2. The PLZC values of schizophrenic rats were statistically
significantly higher than those of normal rats (Z = 2.325, P = 0.02)
(Figure 2A). The PE values were statistically significantly higher
in schizophrenic rats than in normal rats (Z = 3.199, P = 0.001)
(Figure 2B).

Finally, in order to elucidate the differences among different
brain regions in the SCZ rat brain, we analyzed the neural
activities within the frontal, occipital and parietal brain regions.
Still using the Wilcoxon rank sum test, all three brain regions
were found to be statistically significant by the calculation and
the results are shown in Figure 3. Compared with normal rats,
SCZ rats showed similar changes in PLZC and PE values in
the three brain regions. Wilcoxon rank sum test showed that
the PE values of SCZ rats were lower than those of normal
rats in all three brain regions (frontal: Z = 4.785, P < 0.001;
parietal: Z = 3.145, P = 0.002; occipital: Z = 2.124, P = 0.034)
(See Figure 3A). PLZC values in the frontal and parietal lobes
of SCZ rats were lower than those of normal rats (frontal:
Z = 3.098, P = 0.002; parietal: Z = 2.917, P = 0.004) (See
Figure 3B).

3.2 Changes of information integration
between cortical regions in
schizophrenic rats

Figures 4, 5 showed the adjacency matrix of coherence and
MI in the high gamma frequency band for two groups of

rats. The values in the adjacency matrix show a symmetrical
distribution and the matrix is divided into nine parts using a black
line, which is used to distinguish the three brain regions. The
results showed that SCZ rats had lower mutual information and
coherence values than normal rats in all three brain regions. In
SCZ rats, mutual information and coherence values were higher
between frontal and parietal channels and lower among occipital
channels.

First, we analyzed connectivity in the rat brain region.
Linear and nonlinear connectivity within the frontal, parietal, and
occipital brain regions are represented in Figure 6A. Wilcoxon
rank sum test and paired samples t-test showed that SCZ rats
had statistically significant lower values of coherence and mutual
information within the frontal, parietal, and occipital brain
regions than the normal rats in the resting state. Coherence
was statistically significant between the two groups (frontal:
Z = −4.422, P < 0.001; occipital: t = −3.937, P < 0.001).
Mutual information was statistically significant between the two
groups (frontal: Z = −3.459, P < 0.001; occipital: t = −3.334,
P < 0.001).

Second, we analyzed the connectivity between brain regions
in rats. Statistical differences in changes in linear and nonlinear
connectivity between brain regions are shown in Figure 6B.
Wilcoxon rank sum test showed that linear and nonlinear
connectivity between frontal-parietal lobes were statistically
significantly lower in SCZ rats than in normal rats in the resting
state. The linear connectivity between frontal-parietal lobes was
statistically significant between the two groups (Z = −3.723,
P < 0.001), and that between frontal-occipital lobes was statistically
significant between the two groups (Z = −2.775, P = 0.006). Non-
linear connectivity between frontal-parietal lobes was statistically
significant between the two groups (Z = −2.661, P = 0.008) and
between frontal-occipital lobes (Z =−2.245, P = 0.025).

To further visualize the pattern of causal interactions, we
calculated causal associations between the frontal, parietal, and
occipital lobes in resting state between normal and SCZ rats. SCZ
rats had more and denser causal interactions among the three brain
regions than normal rats (Figures 7A, B). Next, we tried to quantify
the net outflow and inflow from each node of the three brain
regions. Specifically, we calculated the outflow from each region,
defined as the sum of the PTE from electrodes in one brain region to
electrodes in the other two brain regions, and the opposite inflow.
The difference between inflow and outflow is used to determine the
inflow hub. This analysis determined that the parietal and occipital
lobes were the strongest inflow areas in normal rats (Figure 7C).
However, in SCZ rats, it is not clear which brain region is the center
of information exchange (Figure 7D).

3.3 The correlation between connectivity
and complexity

According to Ferriston’s study, SCZ is a functional
disconnection and this disconnection may be associated with
higher complexity. Therefore, in order to assess the relationship
between complexity and functional connectivity of brain regions,
we analyzed the Pearson correlation coefficients between
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FIGURE 2

The nonlinear dynamic characteristics of the whole brain. (A) The average PLZC values of the whole brain. (B) The average PE values of the whole
brain. P < 0.05 and P < 0.01 are represented by the symbols *, **.

FIGURE 3

The complexity of frontal, parietal and occipital regions. (A) The value of PLZC of frontal, parietal and occipital regions. (B) The value of PE of frontal,
parietal and occipital regions. Boxplots show the median and the four quartiles, where outliers beyond two interquartile intervals from the median
are shown as individual dots. P < 0.05, P < 0.01 and P < 0.001 are represented by the symbols *, **, ***.

FIGURE 4

The change in coherence within 55∼95 Hz frequency band. (A) Coherence matrix of one rat with black straight lines dividing the 10 channels into
the frontal, parietal, and occipital regions (denote as F, P, O, respectively). (B) The statistical results of adjacency matrix.

complexity and functional connectivity indexes of brain regions in
SCZ rats and normal rats, and the results were shown in Figure 8.

The complexity of the three brain regions of the SCZ rats and
their functional connectivity were highly and positively correlated
(PLZC-coherence (Figure 8A): frontal: r = 0.791, P < 0.001;

parietal: r = 0.352, P = 0.025; occipital: r = 0.349, P = 0.026.
PE-coherence (Figure 8B): frontal: r = 0.520, P < 0.001; parietal:
r = 0.320, P = 0.043; occipital: r = 0.391, P = 0.012. PLZC-MI
(Figure 8C): frontal: r = 0.845, P < 0.001; parietal: r = 0.494,
P = 0.001; occipital: r = 0.417, P = 0.007. PE-MI (Figure 8D):
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FIGURE 5

The change in MI within 55∼95 Hz frequency band. (A) MI matrix of one rat with black straight lines dividing the 10 channels into the frontal, parietal,
and occipital regions (denote as F, P, O, respectively). (B) The statistical results of adjacency matrix.

FIGURE 6

(A) The results of coherence and mutual information in brain regions. (B) The statistical results of coherence and mutual information in
frontal-occipital, frontal-parietal and parietal-occipital regions. P < 0.05, P < 0.01 and P < 0.001 are represented by the symbols *, **, ***.

frontal: r = 0.561, P < 0.001; parietal: r = 0.442, P = 0.004;
occipital: r = 0.418, P = 0.007). The complexity of the three brain
regions in normal rats was negatively or less positively correlated
with their functional connectivity (PLZC-coherence (Figure 8A):
frontal: r = 0.229, P < 0.001; parietal: r = −0.178, P = 0.269;
occipital: r = −0.496, P = 0.001. PE-coherence (Figure 8B): frontal:
r = 0.252, P = 0.115; parietal: r = −0.006, P = 0.691; occipital:
r = −0.274, P = 0.870. PLZC-MI (Figure 8C): frontal: r = 0.246,
P = 0.125; parietal: r = −0.389, P = 0.013; occipital: r = −0.471,

P = 0.002. PE-MI (Figure 8D): frontal: r = 0.243, P = 0.129; parietal:
r =−0.243, P = 0.129; occipital: r =−0.264, P = 0.009).

4 Discussion

In this study, we systematically studied the state of brain activity
in SCZ at the cortical level. The study found that the SCZ rat
model was similar to schizophrenic patients in terms of information
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FIGURE 7

Information flow as measured by PTE for chosen cortical networks. (A) Information flow in normal rat PTE network. (B) Information flow in SCZ rat
PTE network. (C) Outflow from frontal, parietal and occipital lobes of control rats. (D) Outflow from frontal, parietal and occipital lobes of SCZ rats. P
< 0.001 is represented by the symbols ***.

interaction between brain regions, complexity, and brain networks.
This could provide new understanding of neural network processes
in healthy brains and in pathological states. The findings suggest
that both complexity and connectivity-based brain networks have
the potential to assess abnormal EEG activity in a rat model of SCZ.

4.1 Frontal and parietal regions are
associated with brain dysfunction in SCZ
rats

In the frontal and parietal region, we found connectivity
and nonlinear dynamics indicators that can distinguish between
schizophrenic rats and normal rats. However, features of the
occipital brain region do not possess this comprehensive ability,
and these results all confirm that the frontal-parietal brain region
is involved in SCZ dysfunction. The complexity and connectivity
abnormalities of EEG in patients with SCZ, especially in the frontal
and parietal regions of the brain (Mathalon and Ford, 2008).
Previous studies have reported that functional magnetic resonance
imaging (fMRI) results of patients with SCZ show abnormalities
in brain structure and morphology (Highley et al., 2018). Recent
studies have shown that brain electrical activity in the frontal and
parietal lobes is thought to play a key role in human working
memory (Kuo and Van Petten, 2008). Jeong et al. (1998) reported
that patients with SCZ showed significant abnormalities in the
correlation dimension of the left frontal lobe. Akar et al. (2016)
found significant abnormalities in the complexity of frontal and
parietal regions of the brain in patients with SCZ. In the present
study, our findings showed that the PE and PLZC values in the
frontal and parietal lobes of the schizophrenic rat model were
significantly abnormal, whereas those in the occipital lobe were
not, which is consistent with the results of the aforementioned

literature. Deserno et al. (2013) found reduced prefrontal-parietal
connectivity in patients with SCZ. Cui et al. (2016) found that
exhibiting low connectivity within frontal and parietal networks. In
addition, some researchers have shown that this disease is believed
to be closely related to the dysfunction of the functional structure
(Pu et al., 2016; M’barek et al., 2022) and disconnection (Williams
et al., 2007) of the frontal region. The above EEG-based results can
explain why we observed abnormal connectivity in the frontal and
parietal lobes in a rat model of SCZ. Previous findings have shown
that patients with SCZ have structural abnormalities in the parietal
brain region (Dorph-Petersen and Lewis, 2017; Pan et al., 2017),
Frontal–parietal connectivity disorder is an important pathology
of SCZ (Son et al., 2017; Xiang Q. et al., 2019). SCZ patients have
dysfunction and abnormal connectivity, especially in the functional
structure of the frontal lobe (Mathalon and Ford, 2008). These
results further support that abnormal EEG activity in the frontal
and parietal lobes is associated with brain dysfunction in a rat
model of SCZ.

4.2 Complexity index is a powerful tool
to identify SCZ

Ferriston’s disconnection syndrome hypothesis has
demonstrated the presence of complexity abnormalities in
SCZ patients, i.e., abnormal connections between neural systems
due to dissociation or splitting between brain regions (Sporns
et al., 2000). Recent findings have shown that MEG signaling
is significantly more complex in patients with SCZ than in
healthy controls (Bai et al., 2022). This may support our
findings. The findings of the present study showed that the
PE and PLZC values of the rat model of SCZ were significantly
higher than those of the control group. Xiang J. et al. (2019)
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FIGURE 8

the scatter plot between complexity and connectivity indicators. (A) The results of Pearson correlation analysis between PLZC and coherence.
(B) The results of Pearson correlation analysis between PE and coherence. (C) The results of Pearson correlation analysis between PLZC and mutual
information. (D) The results of Pearson correlation analysis between PE and mutual information. The solid line in the figure is the linear regression
line (black is the linear regression line of SCZ rats, red is the linear regression line of normal rats), and r is the Pearson correlation coefficient [r value
satisfying P < 0.05 is represented by (*)].

suggested that the EEG signals of schizophrenic patients
have a higher degree of irregularity or variability, suggesting
potentially disorganized, irregular neuronal spiking activity.
One possible explanation is that this increase in complexity
and entropy can be understood as an increase in the number
of complex interconnected and simultaneously active neural
components (Bai et al., 2015). For example, (Zhao et al.,
2013) found that schizophrenic patients had more active and
excitable brain activity, a greater probability of generating

new patterns of EEG signals, and higher EEG complexity
compared to normal controls. Under such conditions of increased
neural complexity, brain activity operates in an asynchronous
parallel distribution pattern, which may lead to self-organization
and dynamic instability (Arshavsky, 2016). Thus, nonlinear
neurodynamic features are sensitive to neuronal activity and
brain states, providing an important avenue for exploring the
mechanisms of cognitive dysfunction in the SCZ (Xiang J. et al.,
2019).
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4.3 Reduced information coupling ability
between brain regions in rats with SCZ

In the literature on SCZ, conflicting results have been reported
on brain network function, and the differences in research
results are mainly due to differences in different methods. For
example, Hummer used the mean and variance of correlation
coefficients across brain regions to define network connectivity,
and the results of his study found that whole-brain functional
connectivity was diminished in schizophrenics compared to
controls (Hummer et al., 2020). Yin et al. (2017) used MI to
construct a functional brain network with fewer informational
interactions in SCZ patients compared to normal controls. Yeum
and Kang (2018) found reduced coherence between brain regions
in schizophrenic patients. Different measures of brain network
connectivity are used to quantify the ability of information
coupling in brain networks (Abazid et al., 2021). This study uses
spectral coherence and mutual information methods to evaluate
the functional connectivity of ECoG signals in schizophrenic
rats, and analyzes the electrophysiological changes of the brain
network in linear and nonlinear coupling. The trends of the
two are consistent, with a decrease in linear interaction and a
decrease in nonlinear coupling. One possible explanation is that
this decline in linear connectivity indicates damage to cortical
connections or a separation between cortical and subcortical
structures, and a weakening of nonlinear coupling is associated
with reduced functional connectivity between cortical structures
(Alonso et al., 2010).

4.4 Causal structural abnormalities in
directional information flow between
different neural oscillatory activities in
SCZ rats

For PET results, causal interactions between brain regions in
SCZ rats were more complex. But the intensity of information
interaction between brain regions decreased. This is consistent with
the results of functional connectivity and complexity analysis in this
paper. Rajpal et al. (2022) found that the diversity of EEG signals
increased in patients with SCZ, and the causal relationship between
brain regions was close. The reason for this phenomenon may be
that abnormal activity of the dopamine system in SCZ rats may be
associated with the appearance of symptoms such as hallucinations
and delusions. Abnormalities in this neurotransmitter system may
affect the functional activities of brain regions, making causal
interactions between brain regions more intimate. This may imply
that brain activity in the SCZ rat model is under tension in the
resting state (Barnett et al., 2020).

4.5 The tighter and more complex the
connections between brain regions in
SCZ rats

Fernández et al. (2013) proposed a functional disconnection
syndrome in SCZ, suggesting that this disconnection is associated

with higher and higher complexity. The pathology of SCZ leads
to cortical disconnection, which leads to abnormal interactions
between different regions, resulting in dysfunctional connectivity
and complexity abnormalities (Sporns et al., 2000). The findings
suggest that functional connectivity of brain regions is positively
correlated with complexity in schizophrenic rats. Lynall et al.
(2010) found that the strength of functional connectivity was
significantly reduced in patients with SCZ, while the diversity of
functional connectivity was increased. In the process of reducing
the effective coupling strength of the fully synchronized state,
Pikovsky et al. (2002) argued that nonlinear coupled oscillations
can appear as chaotic states, which can increase complexity. The
positive correlation observed in this study can be used to explain
this mechanism. The above findings suggest that the combination
of complexity and functional connectivity may reflect the complex
pathologic processes of SCZ.

5 Conclusion

In this study, we found that the connectivity of brain regions
in schizophrenic rats increases with increasing complexity. At the
cortical level, the complexity of brain regions in schizophrenic
rats decreased, the ability of information integration between
cortical brain regions decreased, and the information exchange
of brain networks was blocked. We also found causal structural
abnormalities in the directional information flow between different
neural oscillatory activities in schizophrenic rats. It is concluded
that complexity and connectivity are valid indicators for diagnosing
SCZ. In addition, our study fills the gap between spike and
EEG in understanding the pathological mechanisms of SCZ at
the cortical level.

However, there are still some limitations that should be
considered in the future. First, subsequent studies could increase
the number of leads as well as the task status. This helps to
analyze the link between the function of different brain regions
and cognitive deficits in the SCZ. Second, subsequent studies could
increase the length of the acquired signal. This helps to understand
the dynamic information interactions between brain regions.
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