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Alzheimer’s disease (AD) is a challenging neurodegenerative condition,

necessitating early diagnosis and intervention. This research leverages machine

learning (ML) and graph theory metrics, derived from resting-state functional

magnetic resonance imaging (rs-fMRI) data to predict AD. Using Southwest

University Adult Lifespan Dataset (SALD, age 21–76 years) and the Open

Access Series of Imaging Studies (OASIS, age 64–95 years) dataset, containing

112 participants, various ML models were developed for the purpose of AD

prediction. The study identifies key features for a comprehensive understanding

of brain network topology and functional connectivity in AD. Through a 5-

fold cross-validation, all models demonstrate substantial predictive capabilities

(accuracy in 82–92% range), with the support vector machine model standing

out as the best having an accuracy of 92%. Present study suggests that top

13 regions, identified based on most important discriminating features, have

lost significant connections with thalamus. The functional connection strengths

were consistently declined for substantia nigra, pars reticulata, substantia nigra,

pars compacta, and nucleus accumbens among AD subjects as compared to

healthy adults and aging individuals. The present finding corroborate with the

earlier studies, employing various neuroimagining techniques. This research

signifies the translational potential of a comprehensive approach integrating ML,

graph theory and rs-fMRI analysis in AD prediction, offering potential biomarker

for more accurate diagnostics and early prediction of AD.

KEYWORDS

machine learning, Alzheimer’s disease, connectome, neuronal connections, brain
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurological condition that affects millions
of individuals worldwide (Li et al., 2022). It is distinguished by cognitive decline,
memory loss, and behavioral abnormalities. One of the main risk factors for developing
neurodegenerative diseases is aging, as it leads to various cellular and molecular changes
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that impair the brain’s ability to cope with stress and damage
(Mayne et al., 2020). The diagnosis of AD is usually based on
clinical criteria, neuropsychological tests, and biomarkers such as
cerebrospinal fluid (CSF) and amyloid PET imaging (Cummings,
2012; National Institute on Aging, 2023). However, these methods
are invasive, expensive, and not widely available. The growing
burden of mild cognitive impairment (MCI), a prodromal stage
of AD and dementia (Sperling et al., 2011) is a major challenge
for health care systems around the world. Primary care physicians
and specialists will need to be prepared to diagnose and manage
them in an increasingly aging population (Livingston et al., 2020).
Therefore, there is a need for alternative and non-invasive methods
to diagnose AD at an early stage (Alroobaea et al., 2021).

Cognitive dysfunction is the main symptom of AD, which
is diagnosed mainly by structural brain changes. However,
functional connectivity, which indicates the functional activity
synchronization between distant brain regions, may change even
before structural alterations. The identification of biomarkers
can help clinicians detect AD early on, and initiate treatment.
Resting-state functional magnetic resonance imaging (rs-fMRI) has
emerged as a powerful tool for investigating neurological disorders.
By analyzing functional connectivity (FC) networks derived from
rs-fMRI data, we can quantify the functional interactions between
brain regions, providing valuable insights for diagnosis. Toward
this aim, many studies have investigated the resting-state networks
(RSN) among MCI and AD individuals (Badhwar et al., 2017;
Farràs-Permanyer et al., 2019). RSNs are spatially coherent, blood-
oxygen-level-dependent (BOLD) signals detected in fMRI. They are
made up of regional patterns commonly involved in brain functions
such as sensory, attention, default mode processing etc. Many of
these studies have revealed altered FC and disruptions in RSNs,
primarily of default mode network (DMN) and fronto-pariatal
network (FPN), which can serve as early biomarkers for predicting
the progression to AD (Sorg et al., 2007; Zhukovsky et al., 2023).
In addition, altered (increased or decreased) FC patterns have
been reported in anterior and posterior cingulate cortex (ACC and
PCC) regions. It is argued that this could also serve as biomarker
(Dickerson and Sperling, 2008; Yuan et al., 2022). These findings
support the potential of fMRI as a predictive tool for AD in its
early stages.

The current approaches of AD prediction employ deep learning
(DL) and machine learning (ML) algorithms on various imaging
and gene expression data. Tanveer et al. (2020) have reviewed
machine learning models for neuroimaging analysis, focusing
on the prediction of AD. Many such classification studies were
dominated with structural data, even though there were studies
employing functional data as well. A brief summary of such
approaches is described in Table 1. These findings suggest the
potential for highly accurate early detection of AD. Arguing that
FC networks based on pairwise correlations may rather follow a
higher-order relationships, attempts have been made to propose
hyperconnectivity network (HCN) models (Guo et al., 2017; Li
et al., 2018; Liu et al., 2024a,b). Very recently, many novel methods
such as spatio-temporal weighted multi-hypergraph convolutional
network (STW-MHGCN), directed hypergraph convolutional
network (DHGCN) etc., have been proposed and tested for MCI,
AD and Major depressive disorders (MDD) with an impressive
success (Liu et al., 2024a,b).

Our goal is to identify biomarkers in fMRI-derived connectome
for an early diagnosis of AD. By applying ML tools to Adult, Aging

& AD cohorts, we here provide a method that potentially improves
classification, utilizing the graph theory matrices derived from rs-
fMRI data. Brain regions categorized in a brain atlas, AAL3 (Rolls
et al., 2020) known to be involved in AD pathophysiology were
considered and their BOLD time series and correlation matrices
were extracted (Lodha et al., 2018). We then applied a threshold
to obtain binary FC networks and computed their graph metrics
and then used these metrics as features to classify dataset of healthy
adults, aging individuals and AD patients.

2 Materials and methods

2.1 Data compilation

fMRI data for healthy adults, and aging groups were compiled
from various sources.

Data of Adult & Aging individuals: The fMRI data of adult
& aging individuals used in this study, Southwest University Adult
Lifespan Dataset (SALD) were collected from 1000 Functional
Connectomes Project (FCP) and its successor, the International
Neuroimaging Data-Sharing Initiative (INDI). Data details and
fMRI acquisition parameters are given in the (Wei et al., 2018).
We divided the data into two age groups, one Adult (age 21–
50 years), and another, Aging (53–76 years). These age ranges
were chosen to capture a broad spectrum of adult development,
encompassing both young adult and aging individuals. The Adult
group included 40 subjects, while the aging group contained 36
subjects and all of them were healthy subjects. The selection of
healthy subjects in the SALD database was based on the following
exclusion criteria to avoid medications or co-morbidities: i) MRI-
related exclusion criteria, which included claustrophobia, metallic
implants, Meniere’s Syndrome and recent (6-months) history of
fainting; ii) current psychiatric disorders or neurological disorders;
iii) use of psychiatric drugs within the 3 months prior to scanning;
iv) pregnancy; or v) a history of head trauma.

AD data: The fMRI data of AD individuals, used in this study
were collected from the Open Access Series of Imaging Studies
(OASIS) dataset (Marcus et al., 2010; LaMontagne et al., 2019). The
OASIS is publicly available neuroimaging dataset of healthy adults
and individuals with AD. We specifically focused on the data from
AD patients within the aging subject, comprising 36 participants,
age 64–95 years. Detail of data acquisition in OASIS are available at
https://sites.wustl.edu/oasisbrains/. A brief information is provided
here: AD diagnosis of subjects based on clinical information,
including gradual memory decline and functional impairment
MRI scan detail, Siemens scanners, 3T with 16-channel head coil,
structural sequences (T1, T2, FLAIR) and functional sequences
(resting-state BOLD, ASL). Resting state scans labeled according to
BIDS standard “task-rest” (Marcus et al., 2010; LaMontagne et al.,
2019).

2.2 Image processing

All downloaded data were preprocessed with the CONN-
fMRI functional connectivity toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012) and Statistical Parametric Mapping (SPM)
(Eickhoff et al., 2005) with MATLAB R2018b by using the
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TABLE 1 ML and DL-based models and statistics in previous studies.

Research study Dataset Models Average classification
accuracy

Abrol et al., 2020 ADNI CNN +3D ResNet 83%

Saratxaga et al., 2021 OASIS DL and image processing 88%

Sudharsan and Thailambal, 2023 ADNI ML 75%

Basheer et al., 2021 OASIS Deep neural networks 92%

Martinez-Murcia et al., 2020 ADNI DL using convolutional autoencoders 80%

Liu et al., 2024a ADNI Deep spatio-temporal feature fusion (STW-MHGCN) 87%

Prajapati et al., 2021 ADNI Deep neural network binary classifier 85%

Current study OASIS SVM# 92%

#Only the best model is included in this table.

CONN default preprocessing pipeline. All functional images
were realigned, unwarped, slice-time corrected, co-registered with
structural data, spatially normalized into the standard Montreal
Neurological Institute (MNI) space, outlier detected (ART-based
scrubbing), and smoothed using a 6mm FWHM Gaussian kernel.
Structural data were segmented into gray matter, white matter
(WM), and CSF, and normalized in the same default preprocessing
pipeline. Region-wise BOLD time-series data from 166 ROIs
(Region of Interest) were processed as defined by the Automated
Anatomic Labeling atlas (AAL3; Rolls et al., 2020). The AAL3
atlas divides the brain into 166 distinct anatomical regions. These
ROIs were further grouped into broader anatomical areas for the
present analysis of AD. They are various brain lobes (frontal,
parietal, occipital, temporal, cerebellum, and thalamus), important
RSN (DMN and FPN) and brain regions such as anterior cingulate
cortex. More information on this organization and AAL atlas
regions can be found in the Supplementary Table 3. The average
BOLD time series for each region was extracted using the AAL3
atlas. The correlation coefficients between each seed-averaged
BOLD time series and the BOLD time series of all whole-brain
voxels were calculated to create functional connectivity maps from
ROI to ROI using the CONN toolbox.

For each ROI, connectivity matrices were created and analyzed
using graph theory with the CONN-fMRI toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012). The ROI-to-ROI study was
performed by calculating statistics for all potential links for a subset
of ROIs,. In CONN toolbox, thresholding refers to the process
of converting a weighted functional connectivity (FC) network
into a binary network. This means connections (edges) between
brain regions (ROIs) are either considered “present” (connected)
or “absent” (not connected) based on a chosen threshold value. We
used a threshold of 0.15. This selection aims to balance capturing
strong, relevant connections while minimizing weak or spurious
ones. Choosing a very high threshold might exclude important
connections, while a very low threshold could introduce noise
and irrelevant connections. The value of 0.15 is a common choice
in the field (Whitfield-Gabrieli and Nieto-Castanon, 2012). The
p-FDR (False Discovery Rate) correction was applied to control
the false discovery rate when performing multiple comparisons,
as described by Benjamini and Hochberg (1995) using CONN
toolbox utility. This is a statistical method, which is used to correct
for the likelihood of false positives, when conducting multiple
hypothesis tests.

2.3 Network feature selection

Graph theory-based network parameters have been evaluated
for connectomes to study the topological organization of the
brain. As mentioned above, the brain was divided into 166 nodes
corresponding to the 166 ROIs in AAL3 atlas (Supplementary
Table 5). Pertinent to note that the total number of parcellations
in AAL3 is 166 having the maximum label number 170. The
anterior cingulate cortex (no. 35, 36) and thalamus (no. 81, 82)
in previous version of atlas, AAL2 have been left empty in AAL3,
since finer parcellations of these regions were provided in AAL3
(Rolls et al., 2020).

For each node, six local graph metrics were calculated, which
are average path length (APL), betweenness centrality (BC),
clustering coefficient (CC), degree centrality (DC) or cost, global
efficiency (GE) and local efficiency (LE) (Achard and Bullmore,
2007). The definition of these parameters, along with formulae are
described in the Supplementary Table 4. We obtained a total of
996 features (166 ROIs x 6 network parameters) for each subject.
To reduce the dimensionality and select the most relevant features
for classification, we used a random forest algorithm for feature
selection (Pedregosa et al., 2011). Random forest algorithm is a
machine learning technique that uses an ensemble of decision trees
to rank the features based on their importance and accuracy.

2.4 Machine learning

In this study we employed different machine learning
algorithms from the Scikit-learn library to classify the data
and identify the optimal model parameters. The algorithms
implemented such as Random Forest (Breiman, 2001), Logistic
Regression (Wang et al., 2019), XGBoost v1.7.6 (Chen and
Guestrin, 2016) and Support Vector Machine (SVM) (Pradhan,
2012), using Pandas v1.5.1, matplotlib v3.5.1, NumPy v1.23.5, SciPy
v1.10.1, Scikit-learn v1.1.2, and seaborn v0.12.1 (Pedregosa et al.,
2011). In all the models, the datasets were divided into training and
test sets, in 80:20 ratio.

To evaluate the best classification model, a variety of
algorithms with different hyperparameters were used. For Random
Forest, 100 decision trees (n_estimators = 100) was used to
improve robustness and combat overfitting. To obtain class
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TABLE 2 Demographic details of datasets used in the present study#.

Data Subjects Gender
(female, male)

Age
range

SALD (adult) 40 22F, 18M 21–50

SALD (aging) 36 22F, 14M 53–76

OASIS (AD) 36 18F,18M 64–95

#Further information is given in section “2 Materials and methods.”

probabilities in SVM, probability estimates (probability = True)
were enabled. In Logistic Regression, L2 regularization was
used to manage model complexity. In XGBoost, we used its
default hyperparameter selection to optimize performance. Each
algorithm’s performance was evaluated using accuracy, precision,
specificity, recall, and F1 score.

2.5 Cross validation

To ensure the generalizability and robustness of developed
models, a rigorous k-fold cross-validation approach was employed.
In this technique, the training data is systematically divided into
k equal subsets, or “folds.” The model is then trained k times,
each time using a different fold for validation and the remaining
folds for training (Berrar, 2019). In our case, we utilized k = 5, i.e.,
the training dataset was split into 5 equal subsets, and the model
was trained and evaluated five times, providing a comprehensive
assessment of its performance across different data distributions.

All python codes implemented in the present work and
associated data are available upon request from authors.
Sensitivity analysis were assessed to examine the robustness
of the models to variations in feature compositions. The results
shown in Supplementary Figure 1 and Supplementary Table 2
highlight the good performance. The circular plots were drawn
using CONN toolbox.

3 Results and discussion

In the present study, publicly available rs-fMRI datasets,
SALD and OASIS, were examined, which cover different stages of
cognitive decline of the lifespan dataset. The demographic details
are summarized in Table 2. In view of paucity of fMRI data, several
studies in the past have utilized data from multiple sources or by
concatenating the data (Guo et al., 2017; Liu et al., 2021). Recently,
a systematic attempt has been made to evaluate results, derived

from concatenated data obtained from multiple sources. The study
found that concatenating segments from the same state had a clear
advantage over concatenating segments from different states (Cho
et al., 2021). The present research is aimed at employing ML and
graph theory metrics derived from fMRI data to predict AD and
unravel the changes in the functional connectome. We calculated
the following metrics for all the generated models, accuracy, recall,
specificity, precision, and F1 score (Table 3).

Feature Importance and Ranking: Feature importance score
of all the 996 features were calculated using random forest
algorithm. A total of 265 features were selected using the Random
Forest feature selection method. Feature importance signifies the
contribution of each feature to predict AD using the random
forest regressor (score values of top 20 features (top20) and all 265
features are provided in Supplementary Tables 6, 7, respectively).
Feature importance values indicate their greater significance in
the predictive model and they play essential role in the model’s
decision-making. Feature importance plot (Figure 1) visualizes the
significance of top20 features in predicting outcomes.

A brief summary of all ML models using 5-fold cross-validation
is described in Table 3 (and Supplementary Tables 1, 2). All
the models demonstrated high accuracy, sensitivity, precision and
specificity, suggesting their potential for accurate AD prediction.
All the models achieved reasonably good performance, with
SVM attaining the highest accuracy of 92%, followed by Logistic
Regression. The Random Forest and XGBoost model had a
slightly lower accuracy of 87.4% and 82.9%, respectively. The high
performance scores with SVM could be due to its ability to deal with
complex, high-dimensional datasets, and avoid over-fitting (Noble,
2006; Han and Jiang, 2014).

The top20 features corresponding to the most important
13 regions (top13ROI) are as follows: left inferior frontal
gyrus, opercular part (abbreviated as IFG-L, AAL3 atlas region,
Frontal_Inf_Oper_L 7), bilateral Heschl’s gyri (HG-R and HG-
L, Heschl_R 84/L83), bilateral superior frontal gyri, medial
orbital (SFG-L and SFG-R, Frontal_Med_Orb_L 21/R_22), left
substantia nigra, pars reticulata (SNr-L, SN_pr_L163), left nucleus
accumbens (NAc-L, N_Acc_L157), left superior temporal gyrus
(STG-L, Temporal_Sup_L 85), left supramarginal gyrus (SMG-
L, SupraMarginal_L 67), left ventral posterolateral of thalamus
(VPL-L, Thal_VPL_L 129), right cerebellar hemisphere (lobule IV-
V) (CER-R IV-V, Cerebellum_4_5_R 102), right substantia nigra,
pars compacta (SNc-R, SN_pc_R162) and right mediodorsal lateral
parvocellular of thalamus (MDl-R, Thal_MDl_R 138).

The present study attempts to decipher the changes occurring
in functional connectome as a result of AD using ML approaches
and graph theory. To understand the mechanistic point of
view of these important regions in AD as revealed from the

TABLE 3 Model statistics (5-fold cross validation) as obtained from different ML algorithms#.

Model Accuracy Sensitivity/recall Specificity F1 score Precision

SVM 92 ± 1.78 78 ± 6.54 99 ± 2.66 86 ± 3.29 97 ± 5.7

Logistic regression 91.94 ± 3.2 83 ± 4.28 96 ± 3.2 87 ± 4.65 91 ± 6.99

Random forest 87.35 ± 3.48 66 ± 11.86 97 ± 3.26 76 ± 7.67 93 ± 8.59

XGBoost 82.85 ± 4.55 58 ± 13.6 95 ± 2.66 68 ± 11.02 84 ± 9.17

#Recall, also known as sensitivity, refers to the percentage of individuals correctly identified as having Alzheimer’s disease. Precision pertains to the accuracy with which the diagnosis excludes
individuals without the disease. The F1 score is a balanced mean of precision and recall, whereas accuracy indicates the overall rate of correct classification among the population.
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FIGURE 1

Feature Importance plot using Random Forest method. The plot shows the relative importance of each feature on the horizontal axis, and the
names of the features on the vertical axis. The detail description of AAL3 region numbers are provided in Supplementary Table 5.

FIGURE 2

Number of connections among three different cohorts, Adult, Aging and AD, between each of the important 13-regions (top13ROI) and rest of the
ROI in AAL3 atlas. Numerals on top of each bar indicate percent of connection changes with respect to Adult (considered as 100%). Negative values
correspond to drop in connections & vice versa for positive values. On the x-axis, AAL3 atlas labels are indicated in order and their corresponding
regions are described in text (section “3 Results and discussion”).
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present study, we therefore examined their connectivity patterns.
Upon observation of the total number of connections within
top13ROI, significant reductions were noticed in AD data as
compared to Adult and Aging for all these 13 regions. The
drop in these regions in AD (as compared to Adult) were
observed as much as 70%. Except IFG-L and STG-L, substantial
drop (∼35–70%) were observed in almost all the regions. As
much as 60–70% reductions were noticed in SNr-L, SNc-R and
NAc-L and about 50% for VPL-L (Figure 2). In contrast, in
Aging data (as compared to Adult), maximum 50% reduction
was found for NAc-L and even slight gain were observed for
few regions. The massive disruptions of functional connections
occurring in these regions of the brain among AD cohorts
corroborate with the previous studies which is suggestive of a
crucial biomarker of the disease. SNc-R and SNr-L located in the
midbrain, plays a crucial role in dopamine production, which is
essential for movement control and coordination (Sonne et al.,
2023). Both the regions are also involved in the mesostriatal

and mesolimbocortical systems, which are related to sensorimotor
processing and limbic mechanisms. A previous study focusing
on AD and Parkinson’s disease indicated that the number of
neurons were reduced by 78–97% as compared to control in
the medial to lateral substantia nigra, pars compacta (Zarow
et al., 2003) Furthermore, it has been found that AD patients
showed significant reductions in the left and right nucleus
accumbens volumes (Pievani et al., 2013). Another study have
demonstrated significantly reduced cortical thickness and surface
area in these regions (Yang et al., 2019). Similarly, VPL and MDl
of thalamus act as a relay station, sending sensory information
from the body to the cortex. Medidorsal thalamus has been
previously implicated in modulation of cognitive performance
(Ferguson and Gao, 2015). In AD, the VPL atrophy was also
observed in previous studies (Paskavitz et al., 1995; Forno et al.,
2023). Heschl’s gyrus possess strong and positive functional
connectivity with many regions involved in sensory, sensorimotor,
and cognitive brain networks. Altered functional connectivity

FIGURE 3

(Continued)
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FIGURE 3

Number of connections among three different cohorts, Adult, Aging and AD, between group-1 (top13ROI) and group-2 [(A) thalamus,
(B) Cerebellum, (C) DMN, (D) FPN, (E) ACC, (F) Cingulate Cortex, (G) Frontal Lobe, (H) Parietal Lobe, (I) Occipital Lobe, (J) Temporal Lobe, (K) Insula,
(L) Vermis, (M) Limbic System, (N) Midbrain, and (O) Brainstem implicated in AD], Numerals on top of each bar indicate percent of connection
changes with respect to adult (considered as 100%). On the x-axis, AAL3 atlas labels are indicated in order and their corresponding regions are
described in text (section “3 Results and discussion”).
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has been observed in right Heschl’s gyrus (Fitzhugh et al.,
2019; Biswas and Sripada, 2023). The IFG, which is a part of
Broca’s region is essential for language generation and voice

processing. It also helps to understand voice tones in spoken
languages. Research on, AD patients had found reduced gray
matter volume and altered functional connections in the right

FIGURE 4

Circular plot of connections among three different cohorts, Adult, Aging and AD, for SNr-L, SNc-R, VPL-L and Mdl-R. AAL3 atlas labels are indicated
on the circumference and their corresponding regions are described in text (section “3 Results and discussion”).
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opercular portion (Thompson et al., 2003; Vidoni et al., 2010;
Zhu et al., 2023).

Several studies on AD in the past have focussed on examination
of role of RSNs, particularly DMN and FPN in cognition, and
their altered FC (Badhwar et al., 2017; Contreras et al., 2019;
Farràs-Permanyer et al., 2019). Hence, it would be worthwhile to
examine changes in the connection patterns between top13ROI
and individual RSNs (DMN and FPN), as well as with different
brain lobes (frontal, parietal, occipital, temporal, cerebellum,
and thalamus) and important regions, which were previously
implicated in AD. Supplementary Table 3 lists these groups and
included AAL3 atlas regions. These connections were computed
between top13ROI and all the regions defined in Supplementary
Table 3. Figure 3 highlights relative strengths of functional
connections among Adult, Aging and AD data. The trend is

similar to general connectivity pattern of top13ROI as described
in Figure 2. In all the bar graphs Figures 3A–O, significant
drop in connections for SNr-L, SNc-R and NAc-L have been
observed. As shown in Circular plot (Figures 4, 5) and bar
graph (Figure 3A), majority of losses for top13ROI regions
(prominently for SNr-L, SNc-R, NAc-L and HG-L/R and SMG-
L) were noticed with the thalamus region. It is striking to note
that connection strengths with top13ROI has dramatically gone
up (Figure 5) in Aging data in comparison to Adult, while
decline was seen in AD data. It appears that such hyperactivation
in the certain cortical and sub-cortical regions among healthy
aging individuals may act as a compensatory mechanism to
cope with the challenges faced by declining brain (Dickerson
and Sperling, 2008). Aging individuals lacking this lead to such
neurodegenrative disorders.

FIGURE 5

Circular plot of connections among three different cohorts, Adult, Aging and AD, for two important resting-state cognitive networks, DMN, and FPN
and top13ROI. AAL3 atlas labels are indicated on the circumference and their corresponding regions are described in text (section “3 Results and
discussion”).

Frontiers in Neuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2024.1384720
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-18-1384720 June 13, 2024 Time: 17:6 # 10

Karim et al. 10.3389/fninf.2024.1384720

Two of the RSN, DMN and FPN have received enormous
attention in biomarker development for AD (Badhwar et al.,
2017; Farràs-Permanyer et al., 2019; Zhukovsky et al., 2023).
AD patients exhibit a broad decline in brain activity consistent
with symptoms such as memory loss, with the largest reductions
occurring in regions associated with the DMN. Studies indicate
that AD pathology could initiate in the DMN prior to the onset
of clinical symptoms, hence giving rise to the hypothesis that
malfunctions in this network could play a pivotal role in the
advancement of the illness. Similarly significantly loss of FC in FPN,
which is strongly associated with executive function and cognitive
control were reported (Marek and Dosenbach, 2018; Wei et al.,
2018). In the present work, substantial loss of top13ROI with DMN
were observed primarily for SNr-L, SNc-L, NAc-L and MDl-R, and
with FPN losses were noticed for MDl-R, NAc-L and SFG-L/R
(Figure 3).

It has also been observed that early symptoms of AD appear
as atrophy in the ACC, which is also an important component
of the DMN (Xu et al., 2016; Chen et al., 2021; Tu et al., 2021).
This atrophy has been frequently observed as an early symptom in
clinical investigations (Lee et al., 2020; Yuan et al., 2022). Hence,
we specifically examined ACC and rest of the cingulate cortex
(PCC and MCC) with top13ROI. Our findings show a considerable
decline in network connectivity, particularly in SNr-L, SNc-R, NAc-
L and VPL-L (Figure 3). Furthermore, decline in connections were
also noticed for Insula, Cerebellum & Vermis for SNr-L, SNc-R,
VPL-L and MDl.

Based on these patterns, it appears that both cortical and
subcortical parts of neural networks are widely disrupted in AD,
which may explain some of the disease’s complicated symptoms.
The present study, highlighting that connection decline with
substantia nigra, pars reticulata, substantia nigra, pars compacta,
and nucleus accumbens could be a potential biomarker for early
prediction of AD.

4 Conclusion and limitation of the
study

In the present study, using graph theory metrics derived from
rs-fMRI data and machine learning, attempt has been made to
identify key features in the functional connectome that could serve
as biomarkers to predict AD. Utilizing 5-fold cross-validation, the
ML models demonstrated high accuracy, sensitivity, specificity, and
precision, and the SVM model demonstrated the highest accuracy
of 92%, proving its robustness in generalizing new data without
overfitting. The study highlights that left inferior frontal gyrus,
opercular part, bilateral Heschl’s gyri, bilateral superior frontal gyri,
medial orbital, left substantia nigra, pars reticulata, left nucleus
accumbens, left superior temporal gyrus, left supramarginal gyrus,
left ventral posterolateral of thalamus, right cerebellar hemisphere
(lobule IV-V), right substantia nigra, pars compacta and right
mediodorsal lateral parvocellular of thalamus are the most
important regions for AD. In these regions, connection strengths
with other regions of connectome has substantially dropped. In
particular drastic reductions were noticed for substantia nigra,
pars reticulata, substantia nigra, pars compacta, nucleus accumbens
and ventral posterolateral of thalamus among AD patients.

Further, prominent and consistent loss of functional connections
between these 13 regions and the thalamus is another noteworthy
indication of this study. The present findings corroborate with
the earlier studies, employing various neuroimagining techniques.
The present investigation is a comprehensive approach, integrating
ML, graph theory, and rs-fMRI data analysis to identify distinct
regions in AD subjects in comparision to healthy adults and Aging
individuals. The significant loss in these regions could be a potential
biomarker, which may improve early diagnosis and intervention
strategies for AD.

Despite that, the present study is limited in may aspects.
The study depends on a limited number of publicly available
fMRI datasets, which may introduce bias, as these datasets might
not fully represent the population’s diversity, and consequently,
may affect the generalizability of the results. The study also
uses a small independent validation dataset, which lowers the
statistical power and the model applicability. Additionally, it
has also been argued that pairwise correlations based functional
connectivity networks ignores higher-order relationships, and may
not effectively characterize the high-order interacons of many brain
regions. However, hypergraph modeling networks are very noise
sensitive limiting its applications (Dai and Gao, 2023). Recently
several attempts have been made toward this direction (Liu et al.,
2024a,b). Concern has also been raised with the choice of atlas
on result variability as different brain atlases lead to different
partitions. However, earlier attempt to carry out similar study on
MCI using different atlases noticed not much differences lying
within few percent (Long et al., 2018). More research is needed to
examine how the brain network characteristics are associated with
the disease progression and symptoms. In conclusion, our study
uncovers the important regions using machine learning and graph
theory, which certainly has the potential to server biomarkers for
prediction of AD.
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