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Machine learning (ML) methodologies for detecting Mild Cognitive Impairment 
(MCI) are progressively gaining prevalence to manage the vast volume of processed 
information. Nevertheless, the black-box nature of ML algorithms and the heterogeneity 
within the data may result in varied interpretations across distinct studies. To avoid 
this, in this proposal, we present the design of a decision support system that 
integrates a machine learning model represented using the Semantic Web Rule 
Language (SWRL) in an ontology with specialized knowledge in neuropsychological 
tests, the NIO ontology. The system’s ability to detect MCI subjects was evaluated 
on a database of 520 neuropsychological assessments conducted in Spanish and 
compared with other well-established ML methods. Using the F2 coefficient to 
minimize false negatives, results indicate that the system performs similarly to 
other well-established ML methods (F2TE2 = 0.830, only below bagging, F2BAG = 0.832) 
while exhibiting other significant attributes such as explanation capability and 
data standardization to a common framework thanks to the ontological part. On 
the other hand, the system’s versatility and ease of use were demonstrated with 
three additional use cases: evaluation of new cases even if the acquisition stage is 
incomplete (the case records have missing values), incorporation of a new database 
into the integrated system, and use of the ontology capabilities to relate different 
domains. This makes it a useful tool to support physicians and neuropsychologists 
in population-based screenings for early detection of MCI.
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1 Introduction

Alzheimer’s disease (AD) is the most common cause of dementia affecting the elderly 
(Jitsuishi and Yamaguchi, 2022; Sherimon et al., 2021; Zekri et al., 2015), and its incidence is 
expected to continue to increase as the population ages (Ivascu et al., 2015; Zhang et al., 2014). 
Mild Cognitive Impairment (MCI) has attracted a great deal of attention as a transitional stage 
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between normal aging and AD (Jitsuishi and Yamaguchi, 2022; Panza 
et al., 2005; Zhang et al., 2014). Early detection of this stage is of vital 
importance for appropriate early intervention to help slow disease 
progression and improve patients’ quality of life (Ivascu et al., 2015; 
König et al., 2018). Therefore, significant efforts have been dedicated 
to identifying more efficiently early features and symptoms of MCI 
(Petersen et al., 2014) which has produced an exponential growth of 
biomedical data (Hoehndorf et al., 2015).

In recent years, ML techniques have been used to obtain an early 
diagnosis of MCI, either using MRI imaging (Jitsuishi and Yamaguchi, 
2022) or neuropsychological tests (Clark et al., 2016; Linz et al., 2017; 
López-de-Ipiña et al., 2018) due to their capability of handling large 
amounts of information and obtaining clinically relevant knowledge 
(Sherimon et al., 2021; Weakley et al., 2015). But for this information 
to be useful, and the results obtained in studies with ML models to 
be generalizable, the data must be in a standardized format (Gomez-
Valades et al., 2021; Sherimon et al., 2021; Zhang et al., 2014). This 
allows efficient retrieval of data (Patrick and Li, 2012; Sahoo et al., 
2022), shareability between different centers (Gomez-Valadés et al., 
2019), and univocal interpretation (Sherimon et al., 2021). Otherwise, 
the analyses could lead to different interpretations at centers other 
than where the data came from, or even in the same center because 
inexperienced staff may not be familiar with the original guidelines, 
or the population distribution changes over time. This is extremely 
critical in the healthcare field (Sherimon et al., 2021).

In this scenario, ontologies play a critical role in the management 
and interoperability of information, allowing the consistent 
representation of knowledge, standardizing data acquired and stored 
under different formats and protocols (Costa, 2014; Hoehndorf et al., 
2015), providing a unique meaning to each element (Sherimon et al., 
2021), avoiding interoperability problems (Gomez-Valadés et  al., 
2019; Kulmanov et al., 2020), easing the retrieval of information and 
records (Patrick and Li, 2012), and improving data analysis and 
efficiency of clinical diagnostic support systems (Shoaip et al., 2019).

Thus, on the one hand, ML models are used to obtain knowledge 
by searching for patterns of interest in large volumes of data (Tsymbal 
et al., 2007; Weakley et al., 2015), while, on the other hand, ontologies 
provide the basis for reusing and unambiguously integrating domain 
knowledge within applications (Jensen et al., 2013; Kang et al., 2019; 
Tsymbal et al., 2007). Our proposal seeks to leverage the benefits of 
both technologies, which separately have their inconveniences. In the 
case of ML models, it is usually difficult or even impossible to know 
the logical process behind a decision (Tsymbal et al., 2007; Weakley 
et al., 2015). Moreover, as they do not check data integrity, they can 
operate with conceptually but not technically incorrect data, leading 
to erroneous patterns when working with poorly curated databases 
(Sherimon et  al., 2021). In the case of ontologies, a high-level 
representation for the formalization of knowledge (Tsymbal et al., 
2007) can reach levels of abstraction and complexity that make their 
use impractical or not viable in real-world scenarios (Zekri et al., 
2015). Although significant efforts have been made to combine both 
technologies (Kulmanov et al., 2021; Robinson and Haendel, 2020), 
methods that integrate them into decision support systems are still 
under development (Kulmanov et al., 2020).

In this paper, we propose to integrate a set of bootstrap aggregated 
(or bagged) decision trees for early diagnosis of MCI, which are 
represented as rules using the Semantic Web Rule Language (SWRL), 
with an already defined Ontology Web Language (OWL) ontology 

with specialized knowledge in neuropsychological tests, NIO (Gomez-
Valades et al., 2021). In this way, the integrated system eases data 
standardization while providing a fast and interpretable first 
assessment of the cognitive status of subjects, saving physicians and 
neuropsychologists time and allowing them to reach a wider 
population during the screenings.

The rest of the paper continues as follows: Section 2 summarizes 
the state of the art of other approaches integrating ontologies and ML; 
Section 3 describes the methodology used to build the integrated 
system, detailing the ontology, the learning model, and the integration 
method, as well as the database; Section 4 details the performance 
results, compares them with other well-established ML models, and 
presents three use cases that show some advantages of this integration; 
Section 5 introduces the discussion of these results; and finally, Section 
6 closes with the conclusions.

2 State of the art

Ontologies and ML models conform the two main technologies 
for extracting, manipulating, and obtaining new knowledge within a 
domain (Kulmanov et al., 2020; Sahoo et al., 2022; Tsymbal et al., 
2007). It seems logical that proper integration between them would 
result in an overall improvement in the performance of decision 
support systems (Kulmanov et al., 2020; Sahoo et al., 2022; Zhang 
et  al., 2014). However, both technologies are usually employed 
separately (Tsymbal et al., 2007), although recently there has been an 
increased effort to combine them (Kang et al., 2019). This combination 
is performed following different objectives, such as the automatic 
completion of ontologies (Mežnar et al., 2022), the search for emerging 
knowledge in ontologies using ML techniques (Kulmanov et al., 2021; 
Robinson and Haendel, 2020), or the improvement of diagnosis in 
decision support systems.

Within this last group, some studies use ontologies and ML models 
sequentially: an ontology is first used to standardize and add semantic 
knowledge to a database, which is subsequently used to train the 
automatic system (Lakshmi et al., 2019; Sahoo et al., 2022; Tsymbal 
et al., 2007). Other studies focus on the integration of the predictive ML 
model in an ontology. Thus, a compact decision support system is 
generated. In this area, one of the first approaches appears in the work 
of Zhang et al. (2014) with Ontology-Driven Decision, which combines 
an ontology with a decision tree to create a decision support system for 
the early diagnosis of AD employing MRI images. In that system, the 
ontology is used to standardize the data and reduce subjectivity, while 
the decision tree generates the diagnosis. To integrate both parts, the 
decision tree rules were transformed into RDF rules, and the diagnosis 
was obtained using a reasoner. The work of Shoaip et al. (2021) proposes 
the integration of an existing ontology, ADDO (Shoaip et al., 2020), with 
a set of rules extracted from both a decision tree and a Repeated 
Incremental Pruning to Produce Error Reduction (RIPPER) method 
(Fürnkranz and Widmer, 1994) to differentiate between four categories 
(healthy, significant memory concern, early MCI, and late MCI). Unlike 
the other studies, which use their own database, they use a heterogeneous 
dataset obtained from the ADNI database (Petersen et al., 2010). This 
dataset includes neuropsychological tests, imaging tests, and chemical 
and genetic biomarkers which, together with the sociodemographic 
variables, are collectively called “biomarkers.” The rules obtained from 
ML were translated to SWRL rules to integrate them into the ontology. 
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They also link different properties defined in the ontology using SWRL 
to give rules more expressiveness. Another approach also based on 
SWRL rules is the one proposed by Massari et al. (2022c) for diabetes 
detection, which combines a decision tree with ontologies. The diagnosis 
is obtained through inference using a reasoner. The system described 
was adapted afterward for the early detection of breast cancer (Massari 
et al., 2022a) and covid-19 (Massari et al., 2022b).

These papers showed that a proper integration of both, ontologies 
and ML algorithms, allows heterogeneous data to be accessed and put 
into a standardized framework, improving the performance of 
automatic models, and facilitating the exchange of data and results. 
However, there are still problems that need to be addressed. The first 
is the need to reuse or adapt previous ontologies in some studies that 
create their ontologies from scratch. Therefore, they may have 
redundancies and inconsistencies with prior ontologies. The second 
one is the selection of a decision tree or a RIPPER as the ML model, 
which was made to ease its translation and integration to rules (SWRL 
or RDF), something not possible with more complex ML models due 
to their black box structure. However, decision trees have strong 
training set dependency (Zhang et al., 2014), RIPPER methods have 
problems with noise and complex databases and need categorical data 
(Kotelnikov and Milov, 2018), and both methods are prone to 
overfitting if not pruned properly. Shoaip et al. (2021) mention using 
a decision tree and a RIPPER method to create SWRL rules but need 
to explain how they combine both sets of rules to function as one. 
Another problem is that of missing values. The most common ways to 
deal with missing values are either deleting the affected records or tests 
or imputing the missing values. However, there is an inherent risk of 
altering the database and hence the results.

Therefore, in this work we propose a decision support system that 
integrates a set of decision trees that work together as an ensemble to 
provide a diagnosis based solely on neuropsychological tests with an 
already established ontology, NIO. We used neuropsychological tests 
for being cheaper, faster, and less invasive than the alternatives while 
keeping a good diagnostic capability, making them the most suitable 
for population screenings. The ontological part will allow the data to 
be  standardized and placed in a semantic context, and the tree 
ensemble will establish a diagnosis that combines the explainability of 
decision trees with the power and robustness of an ensemble method. 
The system is also designed to operate directly with databases with 
missing values without the need for prior preprocessing by deleting or 
imputing records.

3 Materials and methods

3.1 System modeling

To generate the decision support system that supports the 
diagnosis, the process was split into three stages, as shown in the 
diagram in Figure  1: (1) ontology selection and adaptation, (2) 
generation of the ML model (tree ensemble), translation to SWRL 
rules and integration within the ontology, and (3) the database is 
loaded into the ontology, and a reasoner compatible with the SWRL 
rules is used to infer the diagnosis. Note that in this approach the set 
of rules is particularized for the specific neurological test battery used 
in that dataset. Within the decision support system, different sets of 
rules could coexist, one for each test battery. The results aggregation 

rule that establishes the final diagnosis only uses the trees associated 
with a particular neuropsychological test battery, excluding any other 
decision trees that might be present. The following sections explain 
the detailed process followed in each stage.

3.1.1 Database
To show how the integrated system works, we used an anonymized 

database formed by a sample from a large longitudinal study on the 
incidence of incipient MCI in the Autonomous Community of Madrid 
(Spain; Díaz-Mardomingo et al., 2017; Díaz-Mardomingo and Peraita, 
2008; García-Herranz et al., 2016, 2019; Peraita et al., 2011). Subjects 
with a previous diagnosis of neurodegenerative disease, disabling 
chronic disease, psychiatric disorders such as major depression, 
established neurological abnormality, severe sensory impairment, 
diabetes, stroke, or loss of consciousness were excluded from the 
database. The cognitive and emotional status of the subjects was 
assessed using the Spanish version of the Mini-Mental State 
Examination (Lobo et al., 1979) and the Geriatric Depression Scale 
(Yesavage et al., 1982). The diagnosis of MCI was established based on 
the Petersen criteria, considering tests that evaluated different 
cognitive abilities (García-Herranz et al., 2016). The study gathered 
data from 233 monolingual Spanish subjects aged between 58 and 
93 years and with an educational level between 0 and 22 years of study. 
Each subject underwent from one to three evaluations, spaced 
approximately 1 year apart, classified on each one as Healthy or 
MCI. This process yielded a total of 520 cases, which we considered as 
independent in this study to make the most of the small sample. 
Table 1 shows the summary of the sociodemographic variables in 
the database.

3.1.2 Ontology and rule system
The NIO ontology (Gomez-Valades et al., 2021) was selected for 

this project because it includes many neuropsychological tests. As 
NIO is a large ontology with many classes and axioms, it was 
analyzed and reduced to the appropriate Classes for the study to 
ease its handling and prevent its size from slowing down the 
reasoner. We  used SWRL to integrate the ML model into the 
ontology since it allows writing rules for reasoning and inferring 
new knowledge in OWL. We select the SWRL because, since it is 
rule-oriented, is possible to translate certain machine learning 
systems such as decision trees as a rule set, that can be integrated 
inside an ontology. Finally, to enable the rules to function with the 
data, the tests were defined as Individuals, and the scores and 
sociodemographic variables as Data Properties associated with 
these Individuals.

3.1.3 ML model
Decision trees emerge as the most suitable ML models because 

their rules can be expressed as a concatenation of conditionals. This 
allows easy translation to other types of rule systems and simple 
inference interpretation. However, decision trees are unstable and 
prone to overfitting, which could lead to inaccuracies and make 
them less competent for complex problems (Ho, 1995). An 
improvement is bagging, an ensemble learning method based on a 
set of bootstrap aggregated decision trees whose combined 
classification is more robust and accurate than the individual 
decision trees that comprise it and is commonly used to 
reduce variance.
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To train the model, we used 80% of the dataset for training and 
20% for testing. From the training set, various sampling subsets of the 
same size (25% of the training set) were obtained by sampling with 
replacement to train different decision trees. To keep the explainability 
of the bootstrap, a reduced number of decision trees was defined. The 
final classification was obtained by voting, using an odd number of 
decision trees to avoid ties. The threshold was defined as the minimum 
number of trees that maximized recall without falling into a 
trivial classification.

Once the model was obtained, it was translated into SWRL rules. 
The SWRL rule system is monotonic, which has the 
following implications:

 a The system uses deductive reasoning.
 b Rules always move from antecedent to consequent.
 c A rule is only activated if all parts of the antecedent are true, so 

the consequent is also true.
 d The system uses valid and known elements, not incomplete or 

unknown facts.
 e The results are always true, so there is no possibility of 

modification or retraction. Therefore, the addition of new 
knowledge does not modify the previous knowledge of the 
model, unlike non-monotonic systems, which can change 
according to situations or conditions consistent with 
new knowledge.

FIGURE 1

Scheme of the creation of the integrated support decision system between the ontology and ML.

TABLE 1 Summary of the sociodemographic variables of the database, as well as their performance on the MEC (Spanish version of the MMSE).

Classification No. of subjects Men/Women Age mean (std.) Scholarity mean (st) MEC mean (std)

Healthy 309 80/229 70.69 (6.03) 11.64 (5.18) 32.94 (2.06)

MCI 211 59/152 73.00 (6.96) 9.19 (6.06) 30.69 (3.12)
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Taking that into account, to translate each decision tree to SWRL, 
each leaf of the tree was converted into a SWRL rule (Massari et al., 
2022a; Shoaip et al., 2021). Here is an example:

The leaf of the decision tree:

“if (Praxias_cons < = 9.5) and (cal_rey < = 24.5) and (TrailATi > 32.5) 
and (cal_rey > 14.75) then class: MCI (proba: 81.16%).”

was translated to:

“Subject(?p) ̂  has_praxias_score (?p, ?PC) ̂  swrlb:lessThanOrEqual 
(?PC, 9.5) ^ has_Rey_complex_figure_score (?p, ?CR) ^ 
swrlb:lessThanOrEqual (?CR, 24.5) ^ has_Trail_Making_test_A_
score (?p, ?TMA) ^ swrlb:greaterThan (?TMA, 32.5) ^ has_Rey_
complex_figure_score (?p, ?CR2) ^ swrlb:greaterThan (?CR2, 
14.75) - > pred_n(?p, 1).”

To aggregate the decisions of different trees and give the final 
diagnosis, it is not possible to use the “count” operation because it is 
not supported in SWRL (the variable “count” would have to change 
every time an increment occurs and, according to implication e) of the 
monotonic systems defined above, this is not allowed. Instead, the 
final classification is established through the “sum” of each tree 
prediction, which should always be numerical (e.g., 0 for Healthy and 
1 for MCI). The rule that adds up the individual classifications of each 
tree is always executed after all trees have issued a decision.

To identify the optimal threshold of the system, both the ROC 
curve and the Precision-Recall (P-R) curve were analyzed. To detect 
the threshold that maximizes the system sensitivity to the target Class 
(MCI), the F-score curve was analyzed for different values of β. The 
F-score is a relation between precision and recall in which, depending 
on the value of β, both metrics contribute equally to the score (β = 1) 
or more importance is given to precision (β < 1) or to recall (β > 1).

3.1.4 System implementation
We used the following environments to implement the system: 

Python 3.4 with the Scikit-Learn (Pedregosa et al., 2011) module was 
used to generate the decision trees and their automatic translation into 
SWRL rules; Protégé 5.6.1 (Musen, 2015) for ontology management 
due to its ease and wide use; the Protégé SWRL Tab plugin 2.1.0 
(O’Connor et al., 2005) for the incorporation and management of 
SWRL rules; the Cellfie plugin to load the database into the ontology; 
and Pellet (Sirin et al., 2007) as the reasoner to establish inferences 
since it is capable of operating with SWRL rules.

4 Results

The reliability of the integrated system in identifying cases with 
MCI was assessed by evaluating its performance in accurately 
classifying the cases. The versatility and ease of use of the system were 
also demonstrated through three additional practical use cases based 
on real-world scenarios: screening of new cases with the possibility of 
missing records, incorporation of a new database into the system, and 
the use of ontological capabilities to link different domains and 
generate new knowledge.

4.1 Tree ensemble performance

Establishing a rule-based decision system allows fast and 
direct modification of the threshold to suit it to the context of the 
study (initially, screening). First, both the ROC and the Precision-
Recall curves were used to identify the optimal threshold. As it is 
shown in Figure  2, the inflection point in both curves is at 
threshold 5 (th = 5). Next, the behavior of the F-score curves was 
analyzed to establish the threshold to optimize the recall, i.e., the 

FIGURE 2

ROC curve (orange) and P-R curve (blue) for all possible thresholds of the system.
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minimum number of decision trees necessary to classify a sample 
as MCI that maximizes recall while keeping precision high. These 
curves are shown in Figure 3. Excluding the trivial option of th = 0, 
for all curves with β > 1, an inflection is observed at th = 2. It is also 
shown that majority voting leads to lower F-scores for all β > 1, 
ratifying the results obtained in the analysis of the ROC and the 
P-R curves.

Different numbers of decision trees were evaluated, and the 
number of 11 decision trees was selected for our system since it 
obtained the best performance while maintaining a manageable 
number of trees. Table 2 shows the comparison between the average 
performance of the 11 trees independently and the tree ensemble 
for three different thresholds: the majority voting option (th = 6), 
the overall most efficient threshold obtained by the ROC and P-R 
curves (th = 5), and the best threshold to reduce false negatives 
(th = 2). It demonstrated that there is an overall improvement in the 
tree ensemble concerning the average performance of the individual 
decision trees. Between the three thresholds, th = 6 is outperformed 
by both th = 5 and th = 2  in all metrics except precision. The 
comparison of system performance between th = 5 and th = 2 yields 
better results for th = 2 in F2 and recall, while th = 5 presents better 
results in accuracy, precision, and ROC-AUC, as expected. However, 
F1 remains the same for both thresholds. Using F2 as the 
discriminant metric, the tree ensemble (TE) with th = 2 was selected 
as the most appropriate for evaluating performance (F2TE2 = 0.830), 
widely surpassing both th = 6 (F2TE6 = 0.691) and th = 5 
(F2TE5 = 0.730).

4.2 Performance comparison with other 
ML models

Table 3 shows the comparison of the integrated system with 
th = 2 with seven ML models widely used in biomedical data 
analysis: Adaboosting (ADAB), Bagging (BAG), Multilayer 
perceptron (MLP), Logistic Regression (RLog), Random Forest 
(RF), Support Vector Machine (SVM), XGBoosting tree (XGB). Ten 
repetitions of the analysis were performed with different 
initialization seeds to ensure the robustness of the results. To allow 
proper comparisons between all systems, the thresholds for each 
system were adjusted to optimize F2. As can be seen in Table 3, the 
performance of F2TE2 for the tree ensemble exceeds all the other ML 
models except for the BAG (F2TE2 = 0.830 vs. F2BAG = 0.832). 
Although the difference was expected as both methods are based on 
the same type of ensemble and the BAG uses a larger number of 
components, the difference is dim, and our proposal facilitates the 
explainability of the results and can be used within the ontology 
without affecting its performance.

4.3 General system operation

NIO is an ontology with many Classes, so it was first reduced to 
the necessary Classes for the study. Additionally, to compare the 
results of the tree ensemble integrated into the ontology with the 
original ML model, we  added those Classes corresponding to the 

FIGURE 3

F-score curves for different B for all possible thresholds of the system.
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confusion matrix: “TN_Scores” (true negatives), “FN_Scores” (false 
negatives), “FP_Scores” (false positives) y “TP_Scores” (true positives). 
Finally, all restrictions related to the range of available values for each 
test were checked to minimize as much as possible the incorporation 
of database mistakes.

The rules were integrated into the ontology through the Protégé 
SWRL plugin, while the database was incorporated through Cellfie. A 
fragment of this integration that shows the rules corresponding to 
decision tree #10, the confusion matrix, and the aggregation of the 
individual tree decisions is shown in Figure 4.

The reasoner was activated once the rules and the database were 
incorporated into the ontology, generating the diagnosis. Figure 5 
shows the results inferred by the reasoner for case 107, with “Healthy” 
and “MCI” corresponding to Healthy and MCI Classes, respectively. 
Each individual tree prediction can be  seen under “Property 
assertions,” where “pred_(n)” is a tree, (n) is the ID of the tree, and the 
number following is the classification (0 for Healthy and 1 for MCI). 
For example, “pred_1 0” means that tree 1 classifies case 107 as 
“Healthy.” The results of the individual trees are added and stored on 
the Data Property “sum.” In this case, it is 0, and the final classification 
of that case is “Healthy” since it is less than the threshold (th = 2).

Finally, Figure 6 shows part of the reasoning followed to establish 
the diagnosis for case 107. This allows the experts to know the process 
followed by the system to classify a case as “Healthy” or “MCI.”

4.4 Other use cases

In addition to the usual classification of individuals belonging to 
the same population distribution as the sample, the integrated system 
was evaluated in three other situations to demonstrate its usefulness 
and versatility:

 • To evaluate new cases even when records have missing values.

 • To incorporate a new database in the ontology, evaluating 
similarities and differences between both databases, and making 
inferences about the new database to obtain a diagnosis.

 • To relate different domains and generate emergent knowledge 
that relates the performance of subjects in certain tests with 
cognitive domains and associated brain areas already modeled in 
the ontology.

4.4.1 Screening of new cases
During population screening, a large volume of tests is generated. 

Those tests need to be  evaluated individually, slowing down the 
screening process. Those tests may lack results in certain parts or 
subtests due to several factors, such as the refusal or inability of some 
person to perform a test or a test being applied later in the follow-up. 
In this case, a decision support system provides an initial classification 
that can be used to make a first filtering and focusing of the subsequent 
study. Efficiency increases if the system can handle records with 
missing data, speeding up the process by avoiding the need to 
eliminate or preprocess those records beforehand.

To exemplify this use case, a new database consisting of 354 
cases belonging to the same project but not yet classified will be used. 
To bring this use case closer to a real screening scenario, this 
database will be  incorporated directly into the system without 
preprocessing, including those cases with missing records. The data 
was incorporated into the ontology using Cellfie, running the 
reasoner next. The threshold used was th = 2. The inferred results can 
be seen in Figure 7. The first thing that can be appreciated is that 
none of the Classes has all 354 cases except the Class referring to the 
test subject identifier (“Study_Subject”). This indicates the presence 
of records with missing data, as shown in Figure  8 for specific 
case 570.

In the cases in which the system issued the final diagnosis, 197 
cases were classified as healthy and 143 as MCI, making a total of 340 
cases. Figure 9 shows one of these cases, along with the individual 

TABLE 2 Comparison of the performance of the individual decision trees concerning the ensemble using the thresholds corresponding to majority vote 
(th  =  6), ROC/PR curve (th  =  5), and Fβ curve.

Method F2 Accuracy F1 Recall Precision ROC-AUC

Tree average 0.651 0.746 0.669 0.635 0.721 0.744

Tree ensemble with th = 6 0.691 0.817 0.725 0.630 0.875 0.785

Tree ensemble with th = 5 0.730 0.820 0.750 0.700 0.826 0.801

Tree ensemble with th = 2 0.830 0.775 0.751 0.896 0.654 0.797

TABLE 3 Comparison of a total of 7 ML models: adaboosting (ADAB), bagging (BAG), multilayer perceptron (MLP), logistic regression (RLog), random 
forest (RF), support vector machine (SVM), XGBoosting tree (XGB) using the thresholds that maximize their performance for F2.

Methods F2 F1 Accuracy Recall Precision ROC-AUC

ADAB th = 0.4 0.800 0.628 0.542 0.985 0.464 0.623

BAG th = 0.3 0.832 0.772 0.798 0.880 0.711 0.812

MLP th = 0.2 0.790 0.694 0.701 0.872 0.578 0.733

RLog th = 0.2 0.767 0.644 0.618 0.884 0.552 0.667

RF th = 0.4 0.820 0.806 0.845 0.830 0.788 0.844

SVM th = 0.3 0.770 0.707 0.734 0.821 0.626 0.751

XGB th = 0.4 0.824 0.816 0.852 0.826 0.812 0.851

Tree ensemble with th = 2 0.830 0.751 0.775 0.896 0.654 0.797
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diagnoses from the decision trees and the sum used to generate the 
final diagnosis.

Nine of those 14 cases that did not include the diagnosis only had 
the records of ID, evaluation number, and sex, as shown in Figure 8. 
Therefore, no classification could be obtained for those cases. The 
remaining five cases had missing values in some of their records that 
prevented obtaining a result in one or more trees. Figure 10 shows 
one of those cases, where trees #0, #1, and #7 were not activated. 
However, the result shown by the rest of the decision trees that make 
up the tree ensemble [encoded in the properties “pred_(n)”] would 
allow a final diagnosis of MCI for that case, by summing the 
classifications and then comparing it with the established threshold 

(th = 2). This way the ensemble manages the missing values, which 
focus on the data it has without altering the original database and 
allows a first insight into the cognitive state of the subjects. However, 
such classifications should be treated with caution, especially if the 
number of total activated trees is low and the result is under the 
threshold (which would give a preliminary and unsafe assessment 
of healthy).

This use case shows how the decision support system can be used 
for the evaluation of new cases obtained during cognitive screening. 
The system allows the classification of several hundred cases in a few 
minutes, even handling cases with missing data in one or more tests 
and obtaining the final classification from the activated decision trees.

FIGURE 4

Fragment of SWRL rules corresponding to a complete decision tree (Tree #10), rules for integrating the ensemble predictions, rules of the final 
diagnosis, and rules defining the confusion matrix (for evaluation purposes).

FIGURE 5

Results inferred by the reasoner, showing in the central window the number of Individuals classified as “Healthy” or “MCI” and the results of the 
confusion matrix. An example is case 107, showing the prediction per tree (window “Property assertions: 107”) as well as the final diagnosis (inferred in 
the window “Description: 107”).
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4.4.2 Incorporation of another database into the 
system

A significant objective of decision support systems is that their 
structure is functional in contexts other than those in which they are 
designed. To show how a different database can be coupled into this 
integrated system, we  used a new anonymized database from the 
Dementia Disease Initiation (DDI) study (Fladby et  al., 2017), a 
Norwegian MCI cohort composed of data collected across different 
medical centers and hospitals in Norway and focused on early 
detection of Alzheimer’s and other neurodegenerative dementias. This 
database integrates biomarkers, MRI, and neuropsychological tests. 
However, for this example, only Classes corresponding to raw scores 
on neuropsychological tests were selected. The sociodemographic data 
of the selected cases are detailed in Table 4.

First, the tests in both databases were analyzed for equivalences. 
Although the tests used in the Norwegian dataset encompassed 
similar objectives to those in the Spanish dataset, the divergence in test 
types, each with its own rules, scoring systems, and execution 
methods, hindered their classification as identical assessments. For 
example, the COWAT is a type of verbal fluency test but composed of 
different subtests than those used in the Spanish battery. The exception 
is the Trail Making Test A and B, being the same test in both databases. 
Therefore, it was necessary to repeat all the steps to adapt the system 
to the new database. First, the NIO ontology was reviewed to ensure 
that all tests presented in the Norwegian database were already 
modeled. Next, a new set of decision trees was generated, so they 
could establish a diagnosis from this new test battery. The same steps 
were followed as for the Spanish database: use of the bagging method 
for the generation of 11 decision trees, selection of the most efficient 
threshold, translation into SWRL rules, incorporation of these rules 
into the ontology, and evaluation of the performance of the system 

regarding six machine learning models (Table 5). The most efficient 
threshold was used to maximize recall for all models.

FIGURE 6

Justification of the reasoning for case 107.

FIGURE 7

Diagnosis of new cases.
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As in the Spanish database, the most efficient threshold was th = 2. 
As expected, the tree ensemble outperforms the individual tree 
average as in the Spanish database. In comparison with other ML 
systems, the tree ensemble performance is in the middle of the other 
systems, scoring the best F2 the BAG with F2 = 0.900, and the third 
method in having both the highest F2 and recall (F2TE2 = 0.889, 
recallTE2 = 0.927) surpassed only by BAG (F2BAG = 0.900, 
recallBAG = 0.954) and MLP (F2MLP = 0.896, recallMLP = 0.937).

4.4.3 Relationship between different domains 
modeled in the ontology

NIO is an ontology designed to model four different interrelated 
domains: neuropsychological tests, cognitive domains, brain areas, 
and neurodegenerative diseases. In this use case, we took advantage 
of it to relate low performance in verbal fluency tests with potential 
alterations in cognitive functions and brain areas associated with these 
tests. First, we searched the literature for which cognitive functions 
and brain areas related to each neuropsychological test (Baldo et al., 
2006; Prescott et al., 2006), as well as the thresholds above which 

impairment is considered (García-Herranz et al., 2019). Next, the 
necessary relationships between the Classes and Data Properties 
involved were established through SWRL rules. Finally, the reasoner 
was activated to obtain the inference of those relationships, along with 
the “Healthy/MCI” classification.

The results can be seen in Figure 11, where 71 cases were classified 
with possible temporal lobe damage, 165 with frontal lobe damage and 
71 with possible semantic memory problems.

Figure 12 shows as an example two cases of Individuals who present 
potential alterations in semantic memory, one classified as “Healthy” 
and another as “MCI.” The system assigns the status of “impaired” to the 
associated Data Property of “has_semantic_memory_state,” and the 
status of “possible Damage” to the properties of “has_temporal_lobe_
state” (both cases) and “has_frontal_lobe_state” in one of them 
(case 920).

These complementary relationships would allow a deeper 
understanding of the cognitive and physical status of the subjects, 
allowing the refinement of both follow-up and diagnosis. This would 
lead to a more accurate identification of the type of MCI of each 

FIGURE 8

Example of a case with no tests results, showing only the subject ID, the evaluation and the code used for sex.

FIGURE 9

Example of a case diagnosed by the system.
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subject and which disease it is most likely to lead to. This use case also 
shows that the relationship established between performance and 
cognitive functions/brain areas is independent of diagnosis, allowing 
a complementary analysis using the semantic relationship between 
different domains given by the ontology.

5 Discussion

Owing to the operational mechanisms of the SWRL rules, the 
system meticulously records all intermediary decisions involved in 
deducing the final diagnosis from data. Its integration in an ontology 
allows the recovery of the inference process followed by the reasoner 

to reach a specific diagnosis. Using a decision tree ensemble instead 
of a single tree increases the system power, making it more accurate at 
identifying cases with MCI and less prone to overfitting the training 
set. Furthermore, the integrated system allows cases with missing data 
to be treated directly, without the need for prior data preprocessing. 
This avoids the possible inclusion of artifacts in the system.

Recall measures the model’s ability to retrieve positive samples 
(Gupta et al., 2021). Therefore, for our study, it is of great interest to 
increase recall to detect as many positive cases as possible. However, 
using recall alone without considering precision may result in a trivial 
model that would classify all subjects as MCI by default, while the goal 
of screenings is to reduce the number of subjects to focus on. F2 was 
selected as the most appropriate metric to evaluate the performance 

FIGURE 10

Example of a case with missing values that prevented the generation of the general diagnosis because the diagnoses for trees #0, #1, and #7 (“pred_0,” 
“pred_1,” and “pred_7”) could not be generated due to missing values.

TABLE 4 Summary of the Norwegian database.

Method No. of subjects Men/Women Age mean (std) Scholarity mean (std) MMSE mean (std)

Healthy 447 209/238 64.79 (9.35) 13.74 (2.98) 29.09 (1.25)

MCI 387 180/207 66.20 (9.35) 13.60 (3.31) 27.26 (3.03)

TABLE 5 Comparison between six machine learning models and the decision tree ensemble, using the threshold that maximize their performance for F2.

Method F2 F1 Accuracy Recall Precision ROC-AUC

ADAB th = 0.5 0.895 0.900 0.913 0.892 0.910 0.911

BAG th = 0.2 0.900 0.830 0.827 0.954 0.736 0.841

MLP th = 0.3 0.896 0.842 0.845 0.937 0.765 0.855

RLog th = 0.3 0.884 0.846 0.846 0.916 0.777 0.854

RF th = 0.2 0.881 0.766 0.766 0.961 0.663 0.787

SVM th = 0.3 0.894 0.856 0.856 0.926 0.787 0.863

Tree ensemble with th = 2 0.889 0.838 0.829 0.927 0.766 0.846

https://doi.org/10.3389/fninf.2024.1378281
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gómez-Valadés et al. 10.3389/fninf.2024.1378281

Frontiers in Neuroinformatics 12 frontiersin.org

FIGURE 12

Example of two cases marked as having possible damage in the cognitive domain of semantic memory, with one of the cases evaluated as Healthy, 
and the other as MCI.

of a screening method as it gives more weight to recall while keeping 
a balance between FP and FN. Higher F-score was discarded as it could 
turn the screening system into a trivial one.

Two conclusions were drawn from the analysis of the tree 
ensemble thresholds. First, the most efficient threshold for a scenario 
in which both recall and precision would be optimized with 11 trees 
corresponds to th = 5. This means that a minimum of 5 decision trees 

would be necessary to issue a diagnosis of MCI and classify a case as 
such. Second, the tree ensemble with th = 2 is the most efficient 
detecting MCI cases, with F2TE2 = 0.830 just after the BAG 
(F2BAG = 0.832), as shown in Table 3. Therefore, the performance of the 
system is suitable to identify MCI subjects. It is worth noting that, in 
general, the thresholds in all machine learning models were low (from 
th = 0.2 to th = 0.4). This could indicate that when MCI symptoms are 
still mild, a low threshold would help detect a higher number of MCI 
cases that otherwise would have been classified as healthy.

The following can be inferred from the three use cases shown. In 
the first one, the integrated system can issue a diagnosis of new cases 
fast and without the need for preprocessing that could alter the data. 
The system also allows physicians and neuropsychologists to review 
each case and the inference followed if necessary. It is also possible to 
establish a diagnosis in those cases with missing data, even though the 
final diagnosis could not be obtained, using the “partial diagnosis” of 
the activated trees. The use of the original records, without the need 
for prior preprocessing to remove or impute missing values before 
analysis, allows experts to focus on the evaluation and diagnosis of the 
subjects. This shows the system’s ability to be used as a population 
screening tool, saving time in the diagnostic evaluation and, therefore, 
allowing more people to be reached.

In the second use case, the use of another database revealed the 
great heterogeneity present in the field of early detection of Alzheimer’s 
disease through neuropsychological tests. Because almost none of the 
tests presented in the Spanish and Norwegian databases matched, it was 
necessary to first check that all tests were modeled in the ontology. It 
was also necessary to generate a new tree ensemble model able to 
establish a classification from the new database. However, the process 
of creating and evaluating the new tree ensemble was faster as the entire 
system methodology was already defined. The performance analysis 
showed that the system with threshold th = 2 was among the best models 
when considering both F2 and recall for detecting MCI cases. Also, all 
methods present a clear improvement compared to the results with the 
Spanish database. Future analyses are needed to determine the reasons 
for the discrepancies in the performance of both databases.

The last use case showed how the ontology’s semantic relationship 
capabilities can be  used to relate data from different domains. 

FIGURE 11

Inference of possible cognitive or brain alterations from the set of 
cases without diagnosis.

https://doi.org/10.3389/fninf.2024.1378281
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gómez-Valadés et al. 10.3389/fninf.2024.1378281

Frontiers in Neuroinformatics 13 frontiersin.org

Specifically, to identify cognitive problems and potentially affected 
brain areas using their test performance. This complementary analysis 
can help to highlight the main cognitive problems of a subject 
regardless of his or her diagnosis. However, the information that links 
neuropsychological tests with both cognitive processes and brain areas 
is scarce, scattered, and often contradictory (Gomez-Valades et al., 
2021), even in widely used and studied tests such as verbal fluency 
tests. Therefore, although an increase in this type of relationships may 
help to refine the MCI diagnosis, identifying the type of MCI and what 
kind of neurodegenerative disease is more likely to lead based on the 
test performance, in-depth modeling of this type of relationships is a 
project in its own, and it is left as future work.

5.1 System limitations

The system can make inferences on cases with missing data and 
issue diagnoses from the decision trees not affected by the missing 
data. However, because both OWL and SWRL rules assume an open 
world, the system is not able to establish an automatic final diagnosis 
in case missing values cause one or more of the rule sets corresponding 
to a decision tree fail to activate. In such cases, the diagnosis is 
obtained semi-automatically, where partial classification are obtained 
automatically(the results given by the SWRL rules of the activated 
decision trees), and the final diagnosis must be obtained manually by 
summing them and comparing the result with the established 
threshold. Of course, this classification should be treated with caution 
because it is based on partial information and it is only conclusive 
when the classification threshold is exceeded.

Finally, we are aware that the ML system’s performance is not 
optimal because most of the subjects with MCI were at a very early 
stage, presenting very mild symptoms that could be mistaken for 
normal aging, and the small size of the sample does not allow for the 
training of a robust and reliable ML model.

6 Conclusion

This paper presents the design of a decision support system that 
integrates an ontology with a tree ensemble written under SWRL. The 
system allows the explainability of the generated diagnosis while 
maintaining performance on par with other well-established ML 
systems. Its ontological base allows the system to operate within the 
ontological framework: integrating the data in the ontology allows the 
standardization and univocal interpretation of the stored data, and 
defining value limits for each test minimizes the inclusion of tests with 
erroneous values. The use of a small tree ensemble to obtain the diagnosis 
allows us to combine the explainability and translation capacity of the 
decision tree with the power of a bagging method. Integrating it within 
the ontology allows a reasoner to explain the reasoning process. The use 
cases show its practical utility in three additional contexts: direct 
cognitive screening from a dataset without requiring previous 
preprocessing, such as the one obtained during real population 
screenings which can have missing values; integrating the necessary rules 
so that the system can generate diagnoses from information in a different 
database; and establishing relationships between different domains based 
on the performance of subjects in the tests.

It demonstrates the ability of the system to be used to perform a 
preliminary automatic diagnosis of subjects, using the available results 

obtained in the neuropsychological tests. The system is designed to 
filter out as many suspected cases of MCI as possible, allowing its use 
as an initial screening method in primary care units for older adults. 
We also showed its ability to be extended with new knowledge, and to 
employ semantic capabilities for inference of new knowledge.
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