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Brain magnetic resonance imaging (MRI) scans are available in a wide variety

of sequences, view planes, and magnet strengths. A necessary preprocessing

step for any automated diagnosis is to identify the MRI sequence, view plane,

and magnet strength of the acquired image. Automatic identification of the

MRI sequence can be useful in labeling massive online datasets used by

data scientists in the design and development of computer aided diagnosis

(CAD) tools. This paper presents a deep learning (DL) approach for brain MRI

sequence and view plane identification using scans of different data types

as input. A 12-class classification system is presented for commonly used

MRI scans, including T1, T2-weighted, proton density (PD), fluid attenuated

inversion recovery (FLAIR) sequences in axial, coronal and sagittal view planes.

Multiple online publicly available datasets have been used to train the system,

with multiple infrastructures. MobileNet-v2 offers an adequate performance

accuracy of 99.76% with unprocessed MRI scans and a comparable accuracy

with skull-stripped scans and has been deployed in a tool for public use. The

tool has been tested on unseen data from online and hospital sources with a

satisfactory performance accuracy of 99.84 and 86.49%, respectively.

KEYWORDS

brain MRI, sequence identification, view plane, deep learning, computer aided
diagnosis, assistive tool

1 Introduction

Neurological disorders are among the top three causes of death globally (World
Health Organization [WHO], 2018). Since the past decade, medical experts and data
scientists have been working in collaboration to design systems that can assist in timely
and accurate diagnosis of such disorders. This has immense importance to cure or contain
the progression of diseases, specially in case of neurodegenerative disorders (Miotto et al.,
2018). Brain MRI is a widely used, non-invasive and informative modality when it comes
to diagnosis of such disorders (Bento et al., 2022). There exists a wide variety of such scans
ranging from structural to functional MRI. In addition to the “Gold Standard” analysis
of brain MRI scans by neuroradiologists for differential diagnosis, this modality has been
widely employed to train artificial intelligence (AI) based systems to assist medical experts
as CAD tools (Tăuţan et al., 2021). In this direction, a tremendous amount of research
can be seen catering single disease diagnosis, whereas only a handful of systems capable
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of handling CAD of multiple neurological disorders exist (Rudie
et al., 2020). Extensive research can also be seen in prior art
catering preprocessing of such scans. These systems include
brain extraction/skull-stripping (Hoopes et al., 2022) and lesion
segmentation (Hashemi et al., 2022), among others. Skull stripping
can assist in the removal of extra-cranial tissue. Such artifacts
including skull, neck and orbitals might hamper the disease
classification performance of a CAD system which requires
focus on the brain region only. In addition, operations like
lesion segmentation can assist in the differential diagnosis of
demyelinating diseases which result in plaque formations in the
brain (Ma et al., 2022). Similar brain lesions can develop in diseases
like multiple sclerosis (MS) and neuromyelitis optica (NMO),
making the differential diagnosis using brain MRI alone quite
tedious for medical experts (Xin et al., 2020). AI, statistical and
topological analysis (Xin et al., 2020) can be helpful in such
scenarios. In order to train deep networks for classification of
multiple neurological disorders, a large, labeled training dataset
is mandatory (Zaharchuk et al., 2018). Substantial datasets are
publicly available online to help data scientists train such CAD
tools. However, these datasets are generally acquired from various
medical centers across the globe and given the wide set of
variations available in radiological imaging, in addition to the
different manufactured models of MRI acquisition hardware, there
is an absolute need of sorting the MRI scans, specially based
on the sequence type. This is important as a particular MRI
sequence and view plane might be required while building a large
cohort to train a CAD system (Helm et al., 2024). To handle
such situations, some MRI file types [e.g., digital imaging and
communications in medicine (DICOM), widely used in clinical
practice] offer metadata pertaining to the scan in file headers
(Na et al., 2023). These headers contain information like MRI
sequence, body part scan, magnet strength, etc., mostly entered
manually by technicians at the time of acquisition. However,
the information contained in such headers might not always
be consistent and accurate and even absent in some files, and
is therefore not a reliable source for big data management.
According to literature, approximately 16% of the information
present in such headers is found to be inaccurate. In addition,
to ensure anonymity in research settings, the DICOM tags are
removed, rendering important information for data management
unavailable (Baumgärtner et al., 2023). Other MRI data types
commonly available in online sources include Neuroimaging
Informatics Technology Initiative (NIfTI) volumetric data, and
Jpeg/Png, etc., which do not contain such metadata. The only
possible way to avoid such misclassifications from inaccurate
DICOM headers information or absence of metadata, is the
“Gold Standard” manual examination by radiologist, which
can be a very tedious and time-consuming process given the
massive data available online (Baumgärtner et al., 2023). In such
scenarios, automatic identification of the MRI sequence and slice
view plane from raw MRI data can prove to be of immense
significance in sorting these massive datasets out for training DL
models (Pizarro et al., 2019; Liang et al., 2021). This research
is a humble endeavor in this direction. Multiple 12-class DL
models are trained, ranging from simple 4-layer convolutional
neural networks (CNNs) to more sophisticated models and
transfer learning, using raw and skull-stripped MRI scans. The
12 classes include T1-axial, T1-coronal, T1-sagittal, T2-axial,

T2-coronal, T2-sagittal, PD-axial, PD-coronal, PD-sagittal, FLAIR-
axial, FLAIR-coronal and FLAIR-sagittal. Various publicly available
datasets and resources from hospitals have been used to train
and test the models. Ultimately, a MATLAB app (with the best
performing model MobileNet-v2) has been developed to help
data scientists manage and organize big medical imaging data
for CAD research.

The organization of this paper is such that the research
conducted in this direction is given in section “2 Prior art.”
Section “3 Methodology and materials” provides the details of the
hardware, software, datasets and algorithms used. The results and
graphical user interface (GUI) design of the developed tool are
presented in section “4 Results and discussion,” whereas the paper
is concluded in section “5 Conclusion.”

2 Prior art

Medical imaging has proved to be an irreplaceable asset to
experts for the diagnosis of multiple disorders. Among the various
modalities available, brain MRI is widely used for diagnosis of
neurological disorders by neuroradiologists. Brain MR images
possess very similar features specially in case of neurodegenerative
disorders (Avants et al., 2008), and some disorders in their
infancy might get overlooked (Nemoto et al., 2021). Intelligent
systems for identification of diseases can play a pivotal role
in such scenarios (Miotto et al., 2018). The open sharing of
MRI data in the neuroscience community has granted us access
to big data. But with big data comes a definite need for
fast and automated data organization and management. Multi-
center neuroimaging databases consistently receive MRI data with
unlabeled or incorrectly labeled contrast (Pizarro et al., 2019).
There is a need for automated labeling of such vast data in order to
save valuable resources and time spent if done manually by visual
inspection. To date, very limited research in this direction has been
observed while reviewing the literature. The study in Helm et al.
(2024) proposes an automated method to classify chest, abdomen
and pelvis MRI using DenseNet-121. Their system claims to achieve
an F1 score of 99.5% at classifying 5 MRI types obtained from
three Siemens scanners. Another study (Baumgärtner et al., 2023)
employs 3D ResNet18 to classify 10 MRI sequence types using
prostate MRI volumes from 1,243 patients. The accuracy achieved
by this system is 99.88% ± 0.13%. A similar study in Lim et al.
(2022) uses image based CNN for cardiac MRI sequence type and
imaging plane classification. Using 434 patients from 3 centers,
they achieved a classification accuracy 86.6% when tested on data
not seen during training. Such studies, although not designed for
human brain MRI, build the confidence in developing DL systems
capable of classifying brain MRI sequences and view planes. An
important aspect to observe here is the generalizability issue of
such systems. Although they perform well on the test subsets of the
training data, their accuracy tends to reduce when tested on unseen
data from different sources.

Liang et al. (2021) explored the possibility of MRI sequence
identification using metadata. They employed Random Forest and
concluded that machine learning can be used to predict MRI
sequence with an accuracy of 99.9%. A similar study (Na et al.,
2023) proposes a self-supervised ML approach for MRI sequence
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type classification using DICOM metadata. They use a total of 1,787
brain MRI scans and claim to have achieved an accuracy of up
to 99.7% using multi-center datasets. Such systems hugely rely on
the metadata entries in the DICOM file headers, and are prone
to absolute failure in case of inaccuracies in the header entries. In
addition, such systems cannot be employed if MRI data is available
in other file formats including NIfTI volumes (with no metadata)
which is predominantly preferred in research settings.

Researchers in van der Voort et al. (2021) design a CNN to
recognize 8 different brain MRI sequences including T1w, contrast
enhanced T1w (T1c), T2w, PD, T2w-FLAIR, diffusion-weighted
imaging (DWI) and perfusion-weighted dynamic susceptibility
contrast (PWI-DSC). They use online data sources for training
and testing using brain tumors and Alzheimer’s datasets and
claim to achieve an accuracy of 98.5%. Data from actual clinical
settings usually have different acquisition parameters including
slice spatial and temporal resolutions and magnet strengths, and
hence the accuracy generally drastically reduces when such systems
are tested on data from hospital sources. Although the number
of sequences handling capability of this system is impressive, it
has no provision to cater view plane classification. The study
in Pizarro et al. (2019) propose a CNN architecture to infer
MRI contrast from multiple MRI slices with less than 0.2%
error rate, but they also suggest that smaller datasets employed
during training caused the DL system to lose generalizability.
Researchers in Gao et al. (2023) develop a content-based brain
MRI sorting and artifacts detection system. They use 22,092 MRI
volumes from 4,076 patients containing T1w, T1c, T2w and FLAIR
sequences. Although the dataset employed is reasonable, their
system provides an accuracy of 99.1% which still has a room for
improvement. A similar study in Ranjbar et al. (2020) employs
DL to classify T1w, T1w post-gadolinium contrast (T1Gd), T2w
and FLAIR MRI sequences, but use only 9,600 images of brain
tumor patients for training. The accuracy claimed by this system
on the test subset of the same dataset (2,400 images) is 99% but
generalizability remains the most prominent limitation of this
system. Similarly, the research in de Mello et al. (2020) proposes
ResNet architecture to classify volumetric brain scans as FLAIR,
T1w, T1c or T2w. They used publicly available datasets (BraTS
and TCGA-GBM) to train the system producing a test accuracy of
96.81%. The performance of this system using data from clinical
sources or other online datasets not incorporated during training
has not been evaluated and is deemed to degrade due to poor
generalizability of such systems. No work has been found to
cater slice view plane identification. ResNet-50 has been found
to produce popular results for classification systems with brain
MRI as input. Multiple researches were found in literature using
transfer learning with ResNet-50 architecture for various multiclass
classification applications ranging from brain tumor detection
(Divya et al., 2020) to diagnosis of Alzheimer’s disease (Fulton et al.,
2019). It has therefore been included in the experiments conducted
in this research along with other architectures. In addition,
MobileNet-v2 can be an interesting choice given its lightweight
architecture which enables deployment in mobile devices with
limited computational resources.

The datasets and methods used in the development of MRI
sequence and view plane identification system are given in the
subsequent section.

3 Methodology and materials

The flow of the system developed in this research is given in
Figure 1. The system can accept brain MRI scans in multiple file
formats including JPEG, PNG, BMP and DICOM. Once the input
is provided, it is preprocessed to match the input requirements
and passed to the DL model. The DL model extracts features
and infers the sequence and view plane of the MRI scan. In
addition, the relative position of the brain slice is also identified
using non-zero pixel elements in the image and thresholding. If
the slice is identified to be a near skull (not mid-brain) slice,
it is recommended to manually verify the inference by visual
inspection by an expert, since it is quite difficult to distinguish
between multiple MRI sequences and view planes if there is very
little brain content in the scan. The details of the datasets used
for training, validation and testing, the DL architectures employed
in this research, the hardware used for training and development,
along with the graphical user interface (GUI) are also provided in
this section.

Magnetic resonance imaging (MRI) scans from three publicly
available datasets, the neurofeedback skull-stripped (NFBS)
Repository (Puccio et al., 2016), the SynthStrip dataset (Hoopes
et al., 2022) and MICCAI 2016 Challenge Dataset (MSSEG)
(Commowick et al., 2021b) were used for training, validation
and testing. T1, T2-weighted, FLAIR and PD MRI sequences in
axial, coronal and sagittal view planes were used in this study. The
number of slices extracted from the publicly available datasets for
different sequences and view planes are given in Table 1. MR scans
are available as NIfTI volumes in these datasets and individual
slices were extracted for training.

Table 2 presents the dataset summary with the total images
extracted in each category to be used for training, validation
and testing. A 90/10/10% train, validate and test split was used
for training. It can be seen from Table 2 that FLAIR sequences
in sagittal view plane have the least number of images (7,576)
and hence 750 images (10%) from each class were separated for
validation and testing. The MR images were then rotated by 90, 180,

FIGURE 1

System flowchart.
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TABLE 1 Images acquired from MRI scans in three publicly
available datasets.

Axial Coronal Sagittal

NFBS dataset

T1 2,000 2,000 2,000

SynthStrip dataset

T1 16,840 18,532 16,645

T2 11,071 11,125 8,593

FLAIR 389 0 0

PD 10,210 10,414 8,057

MSSEG 2016 dataset

FLAIR 11,302 15,205 7,576

TABLE 2 Summary of the dataset used for training, validation and testing.

Axial Coronal Sagittal

T1 18,840 20,532 18,645

T2 11,071 11,125 8,593

FLAIR 11,691 15,204 7,576

PD 10,210 10,414 8,057

and 270◦ before training making a total 535,823, 36,000 and 36,000
images used for training, validation and testing, respectively.

In addition, 3 subjects were taken for testing from different
publicly available datasets [IXI (Imperial College London, 2022),
MICCAI 2021 (MSSEG-2) (Commowick et al., 2021a) and ADNI
(Bernick, 2022)] which were not used in training. The details of
subjects are given in Table 3. Also, an additional 3 cases acquired
from Advanced International Hospital (AIH) Islamabad were used
for testing, and the scans and view planes used for subjects 1, 2 and
3 were T1 axial, T2 sagittal and FLAIR coronal, respectively. The
summary of these cases is given in Table 4.

ResNet-50, AlexNet, MobileNet-v2 and two additional 4- and
7-layer CNNs were chosen to train 12-class classification models
with T1 axial, T1 coronal, T1 sagittal, T2 axial, T2 coronal, T2
sagittal, PD axial, PD coronal, PD sagittal, FLAIR axial, FLAIR

coronal and FLAIR sagittal as the classes. The learnable parameters
of the afore mentioned architectures were found to be ranging
from 1.5 to 60.9 M. NeuroImaging volumetric extractor (NIVE)
(Khuhed, 2023) was used for skull stripping. Both grayscale and 3-
channel images were used as input to the models with a resolution
of 256 × 256 and 224 × 224.

This research was carried out using Intel R© CoreTM i7-9750H
CPU @ 2.60GHz 2.59GHz Lenovo Legion Y545 with 16GB RAM
and 6GB NVIDIA GeForce GTX 1660 Ti. Another Linux based
machine with 12GB NVIDIA GeForce RTX 2080 Ti was also
used for training with MATLAB r2022b. MATLAB graphical user
interface development environment (GUIDE) was used to design
the user interface (UI) of the tool with the deployed DL model. The
UI is shown in Figure 2. The results of the MRI sequence and view
plane identification tool are presented in the following section.

4 Results and discussion

This section mainly presents the results of the model
(MobileNet-v2) with optimum performance accuracy and speed,
among the various models trained in this research. A comparative
analysis and the journey taken to MobileNet-v2 is presented at
the end of this section (section “4.4 Discussion”). The first model
was trained with MRI scans without removing the extra-cranial
tissue. This model was trained for 4 epochs with a learning rate
of 0.01. Further details are given in section “4.1 Performance
evaluation with original (with-skull) MRI scans.” The second
model was trained with the same learning rate for 4 epochs
using the skull-stripped versions of the same MRI dataset. NIVE
was used to carry out brain extraction automatically. In this
case, however, some of near-skull MRI slices were discarded
before training the model, since such images contained very little
or no brain content for the DL model to make sense of and
hence were expected to degrade the performance. The details
are given in section “4.3 Performance evaluation with skull-
stripped MRI scans.” The performance comparison with and
without using ImageNet weights during training is given in section
“4.2 MobileNet-v2 performance comparison with and without

TABLE 3 Test subjects from online datasets.

Dataset Subject File Sequence View plane Slices

IXI IXI-002-Guys-0828-PD NIfTI PD Axial 86

Coronal 131

Sagittal 125

IXI IXI-002-Guys-0828-T2 NIfTI T2 Axial 86

Coronal 131

Sagittal 126

MSSEG-2 (2021) 2a_isovox
“Unsupervised folder”

NIfTI FLAIR Axial 106

Coronal 96

Sagittal 101

ADNI 1.5 Tesla 002_S_0413 NIfTI T1 Axial 71

Coronal 131

Sagittal 86
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TABLE 4 Test subjects from Advanced International Hospital (AIH) Islamabad dataset.

Subject Gender Age File View plane Sequence Slices

1 Male 27 DICOM Axial T1W 19

Clinical information: Diagnosed case of HIV. Presented with fits, desaturation and hypotension

2 Female 26.2 DICOM Sagittal T2W 20

Clinical information: Seizure disorder

3 Male 36.1 DICOM Coronal FLAIR 35

Clinical information: Fits

pre-trained weights.” The app user interface and features are given
in section “4.5 App user interface and features” along with the
inference speed comparison.

4.1 Performance evaluation with original
(with-skull) MRI scans

The training progress of MobileNet-v2 is given in section
“4.2 MobileNet-v2 performance comparison with and without
pre-trained weights.” The validation and testing accuracies were
evaluated to be 98.28 and 99.76%, respectively. The confusion
matrix of the developed model on 10% testing data split from
the same publicly available datasets used in training is shown in
Figure 3. From Figure 3, it can be observed that some classes have
been predicted flawlessly, nonetheless some inaccuracies can still
be seen. 37 PD axial images have been misclassified as T1 axial,
and some PD sagittal have been misclassified as T2 sagittal. It
can be noticed here that at least, as expected, the view plane has
been inferred correctly by the DL model in these cases. Further
investigation suggested that the presence of near skull slices (with
very little cranial tissue) was the cause of these inaccuracies. Since
it is very difficult to judge the sequence and view plane of a
near skull brain MRI slice even by visual inspection. The system

FIGURE 2

UI designed in MATLAB. The “input MRI” pushbutton accepts MRI
file in a dialog box. The “input big data” pushbutton requests for a
path to multiple MRI scans and classifies them, thereby reducing
time and requiring minimum human intervention. The sequence,
view plane and relative slice position are displayed along with the
inference time.

performs perfectly for deep brain slices. Figure 4 shows the near
skull and deep brain slices for all sequences and view planes.
Since the extracranial tissues do not help much in the diagnosis of
neurological disorders and the brain content in such edge slices is
either zero or very less, these slices can be discarded. Traditionally,
this is achieved using skull stripping/brain extraction tools like
SynthStrip (Hoopes et al., 2022) and NIVE. Discarding only 0.5%
of these near skull images resulted in an improvement in the
validation and test accuracy. The trained model was then deployed
in a tool/app in MATLAB. To cater the prediction inaccuracies in
near skull images, the app has a feature to distinguish between near
skull and deep brain slices. The inference for near skull images can
therefore be cross-examined manually by experts to rule out any
misclassifications by the system.

4.1.1 Testing on unseen online data
The developed system was tested on unseen data available

online from different sources are detailed in Table 3. Four subjects
taken from IXI, MICCAI 2021 and ADNI in all view planes
were used during this test. The results obtained from testing the
developed system were quite promising with an accuracy of 99.84%.
The confusion matrix is given in Figure 5. It can be observed that
out of 1,276 images, only 2 were incorrectly classified. It is worth
mentioning that the sagittal view planes of these two images were
correctly classified nevertheless, despite the confusion between
FLAIR and T1 sequences.

4.1.2 Testing on AIH Islamabad data
The developed system was tested on data from AIH Islamabad

as detailed in Table 4. Results showed that T1 axial images were
perfectly classified. However, the FLAIR coronals can be seen
misinterpreted as T1 coronals and T2 sagittals being mixed up with
T1 sagittals. Figure 6 shows the confusion matrix for classification
using AIH data. The performance accuracy was evaluated to be
86.49%. The performance of the developed system on AIH data
was further investigated and it was observed that the data has
low spatiotemporal resolution which may be the reason for low
accuracy. Therefore, to verify the generalizability of the developed
tool, an additional dataset was acquired from Pakistan Institute
of Medical Sciences (PIMS) Pakistan. The details are given in the
subsequent section.

4.1.3 Testing on PIMS data
To test the developed system for all classes, another set of test

data was requested from PIMS hospital with one subject belonging
to each of the twelve classes. The test subjects had different
pathologies with a higher spatiotemporal resolution. The number
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FIGURE 3

Confusion matrix for 12-class classification system (with skull).

FIGURE 4

(A) Near skull images with high probability of invalid inferences (B) deep brain images resulting in optimum performance.

of slices per sequence is given in Table 5. The developed tool tested
on PIMS data resulted in a reasonably higher accuracy of 96.41%
compared to AIH data. The confusion matrix is given in Figure 7.
Testing on a varied data builds confidence in the generalizability of
the developed system.

It can be observed from the results in Figure 7 that almost
all sequences and slice view planes have been correctly classified.

On further analysis of the confusion matrix, it was interesting
to observe that although some of the MRI sequences were
misclassified, the view plane were still correctly classified. For
example, two PD coronal slices were classified as T1 coronal
slices. Similarly, two FLAIR sagittal slices were classified as T2
sagittal slices. This poses a challenge to the classification algorithm
where the FLAIR sequence is very similar the T2 sequence,
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FIGURE 5

Confusion matrix on test data from IXI, MICCAI 2021 and ADNI datasets (with skull).

FIGURE 6

Confusion matrix on test data from AIH Islamabad (with skull).

other than the normal cerebrospinal fluid (CSF) attenuation. In
addition, it can be quite challenging to infer the sequence and
slice view plane in case of near-skull images, with very little brain
content. This nevertheless is a concern which can be addressed
by increasing training dataset and adding more MRI scans from
different sources/hospitals, and acquired from different hardware.
This will result in better generalizability of the trained model. The

TABLE 5 12 cases obtained for PIMS for further testing.

Sequence T1 T2 FLAIR PD

Slices 61 75 56 59

Total 251

performance of the system on the data from three online sources
not used during training, and from consultant radiologists in
clinical settings at two different institutions builds our confidence
in the generalizability of the system.

4.2 MobileNet-v2 performance
comparison with and without
pre-trained weights

In the series of experiments, MobileNet-v2 architectures were
trained with and without using ImageNet pre-trained weights for
transfer learning. The training processes are shown in Figures 8, 9,
respectively. It can be observed that the model using pre-trained
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FIGURE 7

Confusion matrix on PIMS additional test data.

FIGURE 8

MobileNet-v2 Training for 4 Epochs (with skull) using transfer learning.

weights has learnt faster with a higher accuracy. Multiple test
accuracies for both models are given in Table 6 for comparison.

4.3 Performance evaluation with
skull-stripped MRI scans

After extracting brain from the entire dataset (training,
validation, and testing), non-zero pixels were counted in each
image. Any image with a total of less than 5,000 non-zero pixels
were discarded from the process. This is because the (near-skull)
MRI slices with very little brain content are difficult to categorize
in terms of sequence and view plane. Table 7 shows the total
images discarded using the criteria mentioned above. The dataset
was augmented with rotated images in the same way as done
with un-preprocessed (with skull) MR images. All the models used
in this research were retrained with the skull-stripped version
of the dataset and produced comparable results with their (with
skull) counterparts. Numeric values of accuracies have not been

provided here since some near skull MR slices were discarded
while training this model, hence a statistical comparison is not
possible here. Since no substantial leaps in accuracy were observed,
the developed app has been embedded with the MobileNet-v2
model trained using the un-preprocessed version of the dataset.
The skull-stripping experiment was fruitful in establishing that
sequence and view plane classification is also possible for skull-
stripped MRI data.

4.4 Discussion

This section sheds light on the journey taken through alternate
workflows and the motivation for using MobileNet-v2. The task
of classifying different MRI view planes seems pretty straight
forward for DL to handle because of the absolutely vivid differences
between axial, coronal and sagittal view planes. These differences
are fairly simple to identify even for people not familiar with
the MRI technology and scans, and can be correlated to being
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FIGURE 9

MobileNet-v2 Training for 4 Epochs (with skull) without using pre-trained weights.

as simple as distinguishing a cat from a tree. Distinguishing
between MRI sequences (like T1 and T2-weighted) on the other
hand might be slightly tricky for people not related to the
field. Nevertheless, this task is extremely easy when compared
to distinguishing between MRI scans of an Alzheimer’s and a
Parkinson’s disease patient. These neurodegenerative disorders do
not produce plaques, lesions or instantly visible scars on the brain
like those seen in cases of multiple sclerosis or brain tumors.
Keeping this context in mind, a simple 4-layer CNN was designed
consisting of 3 convolutional layers and a fully connected layer
to carry out this job. Fewer convolutional layers would just look
at the bigger picture and ignore the more intricate and subtle
features which in this case were not required. This would result
in a reduction of learnable parameters and computational times.
Grayscale input images (256 × 256 resolution) were used to train
this network. A learning rate of 0.01 was maintained throughout
the experiments. The results after 4 epochs of training were not
convincing, with a validation and test accuracy of 78.29 and
77.19%, respectively. The accuracy of this model on AIH dataset
was 2.70% which led to the addition of 3 more convolutional
layers in the next experiment. Although the validation and test
accuracies rose to 91.71 and 93.61%, respectively, the AIH data
was still not being classified reasonably (accuracy 12.16%). No
further hyper-parameter tuning and experimentation was carried
out in this direction, and hence, transfer learning and the existing
architectures including AlexNet, ResNet50 and MobileNet-v2
were explored.

Structural brain MR images appear to be grayscale images and
do not contain color information. Therefore using 3 channels in
an MRI image seems redundant and a computational overhead for
a DL regimen. Keeping that in mind, AlexNet and ResNet50 were
modified to accept a single channel input rather than the default
3 channel input. The number of output classes was also changed
to 12. They produced comparable results for validation and test
accuracies ranging from 94.77 to 99.78% with multiple trainings

TABLE 6 Comparison of testing accuracies with and without the use of
ImageNet weights.

Accuracy MobileNet-v2 (without
using weights)

MobileNet-v2
(with weights)

Validation 95.27% 98.28%

Test 97.51% 99.76%

Online test 83.93% 99.84%

AIH test 64.86% 86.49%

and various changes in training data. They were separately trained
using both with-skull and skull-stripped input, and retrained
after eliminating 4–6% near-skull images (which are harder to
classify because of very little information). The unfortunate part
was their performance on AIH data which produced an accuracy
ranging from 17.57 to 28.38%. Additional models were trained
with and without zero-centered normalization producing no
difference on accuracy.

A breakthrough in accuracy of classifying AIH data was
seen after the addition of 90, 180, and 270◦ rotated MR images
in the training dataset using ResNet50. The accuracy increased
drastically in both with-skull and skull-stripped models. With the
hope of further increasing the performance, more training data
augmentations were introduced. A ± 10% scaling, a ± 30 pixels
translation and an x/y flip were introduced during training but
resulted in very slight accuracy improvement.

Finally, MobileNet-v2, a CNN architecture that seeks to
perform well on mobile devices, with its 3.5 M learnable
parameters, was chosen since its TFLite version can be embedded
in android apps to produce fast and accurate inferences. It was
trained with the dataset and training configurations that produced
the best results from the previous experiments with and without
using the pre-trained weights. The model trained using transfer
learning learnt faster and produced an accuracy enhancement of
3.01, 2.25, 15.91 and 21.63%, respectively for validation, test, test on

TABLE 7 Near skull images excluded from training, validation and
testing dataset.

Sequence View plane Train Validation Test

FLAIR Axial 1,507 82 117

Coronal 2,151 92 99

Sagittal 985 119 129

PD Axial 1,682 144 127

Coronal 1,406 73 122

Sagittal 739 99 106

T1 Axial 2,678 129 136

Coronal 3,092 150 146

Sagittal 2,132 84 90

T2 Axial 1,799 123 127

Coronal 1,479 127 132

Sagittal 818 195 98

Total deleted 20,468 1,327 1,429
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online dataset (not used in training), and AIH Islamabad dataset.
The premise of not using the pre-trained weights and training the
architecture from scratch was that the 1,000 classes of ImageNet do
not contain any class related to Brain MRI. But despite that, the
pre-trained weights were found to be helpful in this 12 class MRI
classification application.

The developed system performed almost flawlessly, with an
accuracy of 99.84%, on testing data acquired from online sources
not used in training. Nevertheless, in order to ensure the reliability
of the developed system for practical use, it was mandatory to test
it on data acquired from hospitals. Data (labeled by consultant
radiologists) from two hospitals (AIH and PIMS) was acquired for
this purpose and the corresponding test accuracies were found to
be 86.49 and 96.41%, respectively. It was also observed that the
misclassifications that resulted in the accuracy drop were partially
correct. The reason being that despite the incorrect classification of
MRI sequence in some cases, yet the slice view plane was correctly
classified. The explanation for incorrect sequence classification is
that specially in the near-skull slices, containing very little brain
content, it is difficult to distinguish between similar sequences
like T2-weighted and FLAIR. To cater for this issue in the near-
skull slices, a feature was added in the system to identify such
slices and warn for an additional manual inspection by experts. In
addition, one of the possible reasons for the lower accuracy on AIH
data as compared to PIMS data could be the lower spatiotemporal
resolution of the scans obtained from AIH. The overall satisfactory
performance of the developed algorithm led to its deployment into
an app for public use. The user interface (UI) and features of the
app are given in the subsequent section.

The limitations of the developed system include the
deployment in MATLAB which is a licensed software and might
not be freely accessible to scientists and medical professionals.
Python and Android versions of the app have also been developed
and will be released publicly after further testing and peer reviews.
In addition, currently the system is capable of handling only 4
commonly employed MRI sequences (T1w, T2w, FLAIR and PD)
which can be extended to classify other sequences also including
Diffusion-weighted imaging (DWI), perfusion-weighted imaging
(PWI), susceptibility weighted imaging (SWI) and short tau
inversion recovery (STIR), among others.

4.5 App user interface and features

The UI is extremely user friendly with a push button
to input MRI. The MRI file types accepted by the tool
include JPG, PNG, BMP and DICOM. Digital imaging and
communications in medicine (DICOM) files are generally preferred
by radiologists/neurologists and are accessed using specialized
software like RADIANT DICOM Viewer (Medixant, 2023). After
receiving the MRI file from user, the app displays the MRI
image along with information including sequence, view plane,
deep brain/near skull image and time taken to process the image.
A sample of the app’s performance is shown in Figure 10. Notice
that in Figure 10A, the MRI is deep brain slice as opposed to near
skull slice correctly identified in Figure 10B. Also notice that the
time taken per slice analysis is around 1.15 seconds when tested
on a machine with 6GB NVIDIA GeForce GTX 1660 Ti. This time

FIGURE 10

MRI Sequence Identification UI. Correct classification of (A) deep
brain FLAIR axial slice (B) near skull T1 coronal slice.

was up to 1.9 seconds when tested using ResNet50. This is version
1.0 of the app which can identify MRI sequences and view planes.
The next version of this app will include further models for detailed
analysis (Version 2.0 of this app has a provision to handle big data,
with the addition of a pushbutton “Input Big Data,” as shown in
Figure 2. This provision allows users to input path to a folder with
multiple MRI files which can be collectively sorted without human
intervention, making it a fast and easy process).

5 Conclusion

This research presents a system for classification of multiple
brain MRI sequences and slice view planes. MRI sequence
and view plane identification using MobileNet-v2 is a fast and
accurate publicly available tool. It can prove to be very useful
specially to data scientists and medical experts working on CAD
systems for neurological disease diagnosis using brain MRI. The
developed app can assist experts in automatically, quickly, and
accurately labeling massive online MRI datasets for various diseases
(neurodegenerative and otherwise), which would be an extremely
tedious job if done manually. These labeled scans can then be used
to train pipelines of CAD models for better performance. This can
result in accurate and timely diagnoses saving precious lives.
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