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Brain white matter is a dynamic environment that continuously adapts and

reorganizes in response to stimuli and pathological changes. Glial cells,

especially, play a key role in tissue repair, inflammation modulation, and neural

recovery. The movements of glial cells and changes in their concentrations

can influence the surrounding axon morphology. We introduce the White

Matter Generator (WMG) tool to enable the study of how axon morphology

is influenced through such dynamical processes, and how this, in turn,

influences the di�usion-weighted MRI signal. This is made possible by allowing

interactive changes to the configuration of the phantom generation throughout

the optimization process. The phantoms can consist of myelinated axons,

unmyelinated axons, and cell clusters, separated by extra-cellular space. Due to

morphological flexibility and computational advantages during the optimization,

the tool uses ellipsoids as building blocks for all structures; chains of ellipsoids

for axons, and individual ellipsoids for cell clusters. After optimization, the

ellipsoid representation can be converted to a mesh representation which can

be employed in Monte-Carlo di�usion simulations. This o�ers an e�ective

method for evaluating tissue microstructure models for di�usion-weighted

MRI in controlled bio-mimicking white matter environments. Hence, the WMG

o�ers valuable insights into white matter’s adaptive nature and implications for

di�usion-weighted MRI microstructure models, and thereby holds the potential

to advance clinical diagnosis, treatment, and rehabilitation strategies for various

neurological disorders and injuries.
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1 Introduction

The neuronal network of the brain is a dynamic structure, constantly adapting to

internal and external stimuli. Within the white matter, the local environment of neurons

is found to modulate their axon morphology (Andersson et al., 2020). Especially glial

cells play a significant role in this modulation. While the glial cells do not directly

participate in neuronal signaling, they carry out crucial supporting tasks: myelination

(oligodendrocytes), maintaining an appropriate chemical environment for neuronal

signaling (astrocytes), and removing cellular debris from sites of injury or normal cell
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turnover (microglial) (Purves et al., 2001). To carry out these tasks,

the glial cells move through the tissue. Such dynamic behavior has

been observed with microscopy (Davalos et al., 2005; Nimmerjahn

et al., 2005; Tønnesen et al., 2018). Furthermore, it has been

found that the morphology of axons adapts in response to these

environmental changes (Andersson et al., 2020). Moreover, there is

a relation between the morphology and function of the individual

neurons. Morphological factors that affect the axonal conduction

velocity include the axon diameter (Hursh, 1939; Skoven et al.,

2023), the myelin sheath thickness (Sanders and Whitteridge,

1946), and the length and spacing of nodes of Ranvier (Arancibia-

Cárcamo et al., 2017). Quantifying the morphology of axons and

brain white matter in general is thus of great interest for enhancing

our understanding of various brain processes, and can provide a

potential biomarker of disease.

The most promising method for assessing axon morphology

non-invasively, is diffusion-weighted MRI (dMRI). dMRI reflects

the morphological properties of the underlying tissue by measuring

diffusion properties of water molecules within the tissue (Basser

et al., 1994; Beaulieu, 2002; Alexander et al., 2019; Novikov et al.,

2019). To advance the method even further, we need access to

extensive experimentation for scan sequence optimization and

biophysical model validation informed by known ground truths.

This is unfeasible to obtain with either preclinical or clinical MRI

due to the limited spatial resolution.

It is therefore of great interest to supplement dMRI research

with numerical simulations, because these come with a ground

truth. dMRI canwith advantage be simulated based onMonte Carlo

(MC) diffusion simulations (Hall and Alexander, 2009; Rafael-

Patino et al., 2020). The level of realism in simulations is crucial for

the specificity and applicability obtainable by the models developed

based on them (Nilsson et al., 2012; Andersson et al., 2020; Brabec

et al., 2020; Lee et al., 2020).

Mimicking the highly complex tissue of white matter is a

great challenge. White matter has commonly been represented

as idealized straight, coaxial, infinitely long, and non-touching

cylinders (Novikov et al., 2019). However, from recent advances

in 3D histology, it has been validated that the white matter

has a much more complex configuration (Tønnesen et al., 2018;

Abdollahzadeh et al., 2019; Lee et al., 2019; Andersson et al.,

2020)(Abdollahzadeh et al., 2021). While individual axons are

found to express non-circular cross-sections, longitudinal diameter

variations, and tortuosity, axons on the ensemble scale are found

to express orientation dispersion and crossing fibers. Furthermore,

recent studies show that such characteristics have a crucial impact

on the diffusion signal and modeling (Nilsson et al., 2012;

Andersson et al., 2020; Brabec et al., 2020; Lee et al., 2020;

Winther et al., 2023), and should therefore be incorporated into our

simulations to improve the realism.

Two primary approaches have been taken to generate

realistic numerical white matter phantoms: segmentation (both

semiautomatic and automatic) from 3D histology of tissue

(Abdollahzadeh et al., 2019; Lee et al., 2019, 2021; Andersson

et al., 2020), and numerical synthesis (Balls and Frank, 2009; Hall

and Alexander, 2009; Budde and Frank, 2010; Landman et al.,

2010; Mingasson et al., 2017; Ginsburger et al., 2019; Callaghan

et al., 2020; Villarreal-Haro et al., 2023). Segmentation of white

matter tissue provides a very high degree of realism. However, it

can be very resource-consuming with respect to time for manual

editing and the sacrifice of animal lives. Furthermore, this approach

provides little flexibility in the morphological variation of the tissue

and only provides static snapshots thereof. In contrast, numerical

synthesis allows for much lower resource consumption and allows

for a high degree of morphological flexibility. However, the outputs

are based on assumptions of what the anatomy looks like (Dyrby

et al., 2018).

Various tools have been developed for numerical synthesis of

white matter phantoms with complex morphological properties.

Recent tools include MEDUSA (Ginsburger et al., 2019), ConFiG

(Callaghan et al., 2020), and CACTUS (Villarreal-Haro et al., 2023).

MEDUSA (Ginsburger et al., 2019) enables the representation

of the most diverse tissue elements by allowing multiple

compartments including axons, astrocytes, oligodendrocytes,

nodes of Ranvier, and myelinated axons. All structures are

represented as spheres. While the sphere representation allows for

high representational power of the longitudinal axon morphology

characteristics, it does not allow for eccentric cross-sections

documented by histology (Abdollahzadeh et al., 2019; Lee et al.,

2019; Andersson et al., 2020). Meanwhile, both ConFiG (Callaghan

et al., 2020) and CACTUS (Villarreal-Haro et al., 2023) allow

only for the inclusion of myelinated axons. However, due to

a higher refinement of the axonal cross-sections, these possess

higher realism compared with the otherwise circular cross-sections.

CACTUS (Villarreal-Haro et al., 2023) stands out for its superior

computational efficiency, which in turn enables the creation of

larger and more dense phantoms. However, none of these tools

considers the dynamic aspects of white matter tissue which has

a crucial influence on axon morphology (Andersson et al., 2020).

In this work, we present the White Matter Generator (WMG);

a new tool for generating interactive numerical phantoms for

Monte Carlo dMRI simulations. The interactivity of the WMG

tool enables the mimicking of brain white matter dynamics. The

phantoms can consist of multiple compartments: unmyelinated

axons, myelinated axons, (here defined as fibers), and cells,

separated by extra-cellular space. The key assumption for the

synthesis is that axon morphology is modulated by the local

environment, as observed with XNH imaging in our previous work

(Andersson et al., 2020, 2022). Due to morphological flexibility

and computational advantages during the optimization, the tool

uses ellipsoids as building blocks for all structures during the

synthesis; chains of ellipsoids for fibers, and individual ellipsoids

for cells. Thereby, fibers can obtain non-circular cross-sections,

longitudinal diameter variations, and tortuosity as observed in

3D histology. To mimic a dynamic tissue environment, the

tool allows the user to generate phantoms at consecutive time

points by interactively changing parameters and tissue composition

during the optimization process. The output is in the format

of PLY surface meshes, which makes them directly compatible

with existing Monte Carlo diffusion simulators such as the widely

used MC-DC Simulator (Rafael-Patino et al., 2020) and Camino

(Hall and Alexander, 2009). We demonstrate examples of various

tissue configurations: varying degrees of fiber dispersion, types

of bundle crossings, demyelination, inclusion of static cells, and

cell dynamics. The biological relevance of the outputted axons is
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evaluated based on a set of morphological metrics and compared

with those observed with XNH imaging of monkey brain white

matter in our previous work (Andersson et al., 2020, 2022).

2 Methods

Phantoms can consist of myelinated axons, axons, and

cells, separated by extra-cellular space. To obtain morphological

flexibility and computational advantages during the optimization,

the tool uses ellipsoids as the building blocks for all structures

during the synthesis; chains of ellipsoids for fibers, and individual

ellipsoids for cells.

The optimization is based on a force-biased packing algorithm,

first introduced by Altendorf and Jeulin (2011), where the

phantoms are obtained as an equilibrium between repulsion forces

(for avoiding overlap between individual axons and cells) and

recover forces (for ensuring the structure of the individual axons)

between the ellipsoidal building blocks.

Different brain regions and types of cell dynamics can be

mimicked by adapting the configuration w.r.t. fiber diameter

distributions, fiber volume fractions (FVF), cell volume fractions

(CVF), global dispersion (ǫ), bundle crossings, and interactive

changes. Changes to the configuration can be made interactively

and at any time during the optimization.

An optimization starts with one configuration file (config-file)

and ends with another updated config-file. Thereby, the updated

config file can be easily adapted and given as input for another

round of optimization according to these adaptations. A conceptual

flow chart is seen in Figure 1, and each compartment is described

in more detail later in this section.

The WMG tool is written in TypeScript, whereas supporting

functions for configuration and post-processing are written

in Python 3. A simplified version of the WMG tool is

available as a graphical web interface at https://map-science.

github.io/WhiteMatterGenerator. This version allows one to

get a more intuitive feeling of the tool and its parameters

while testing out different configurations. The full version is

available as a command line interface which can be installed

by following the instructions at https://map-science.github.io/

WhiteMatterGenerator/help/cli. This version enables automation

and large-scale production, and this is the version we will be

focusing on here. The supporting functions for configuration and

post-processing are available at https://github.com/MaP-science/

WhiteMatterGenerator.

2.1 Configuration

There are two types of parameters: phantom parameters,

which specify the content and limits of the phantom, and

optimization parameters, which specify the optimization criteria

of the phantom. As long as the config-file follows the correct

formatting, the user can configure the phantom in any way they

like. Below is a guide to the options provided with the WMG.

The phantom parameters are:

• Voxel:

– Outer (larger) voxel dimensions: Defines the spatial

restriction of phantom content as a cuboid.

– Inner (smaller) voxel dimensions: Defines the cuboid

volume wherein the FVF is optimized and represents

the field-of-view of the phantom. This voxel is necessary

because the discontinuation at the outer voxel boundary

will lead to biased morphology at that boundary.

• Fibers:

– Initial base point (b) and direction (r): fibers are initialized

as chains of ellipsoids arranged in straight lines defined

with a direction and one fixed base point. The fixed points

are uniformly distributed along the axis of primary fiber-

orientation .

– Global fiber dispersion (ǫ): fiber directions are uniformly

sampled on the surface of a spherical cone, where the height

of the cone cap is scaled by ǫ. ǫ = 0.0 allows disperson of 0

deg and ǫ = 1.0 allows dispersion of 90 deg.

– Crossing bundles: Can be configured either as adjacent

sheets (Kjer et al., 2023) or interwoven (see Figure 5).

Specified by the number of bundles, their primary direction

and the fraction of fibers they contain.

– fiber-ellipsoid separation

(mapFromMaxDiameterToEllipsoidSeparation):

The ellipsoid separation within each fiber is defined from a

user-specified mapping function which takes the maximum

allowed fiber-diameter as input.

– Allowed diameter ranges for the individual fibers

(mapFromMaxDiameterToMinDiameter): To

enable closer packing of the axons, it is possible to

allow the diameter of each ellipsoid to vary. The range

is defined by a user-specified mapping function which

takes the maximum allowed fiber-diameter as input. We

set the allowed diameter range of the individual axon

as a margin around its targeted diameter. The targeted

diameters come from an idealized packing of straight

parallel cylinders with diameters that follow the targeted

gamma-distribution. This initial packing is obtained with

the CylinderGammaDistribution() function of

the MC-DC Simulator (Rafael-Patino et al., 2020). By

initializing all fibers with a diameter which is significantly

lower than that of the idealized packing, the axons are able

to move more freely during the initial iterations of the

optimizations and thereby achieve a more dense packing.

– g-ratio: When the ellipsoid-representation is converted to

the mesh-representation the fiber is compartmentalized

into axon and myelin based on this g-ratio. That is, the

myelin diameter matches that of the fiber, while the axon

diameter is scaled in relation to the fiber’s diameter through

the g-ratio.

– Contract speed (contractSpeed): How much the fibers

contract per step, i.e., how stiff the axons are. This number

should be≥ 0.

– Deformation factor

(mapFromDiameterToDeformationFactor):

How much the fiber-ellipsoids should deform (change
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FIGURE 1

The WMG tool can be divided into four compartments. Configuration: A config-file is generated based on a set of phantom parameters and

optimization parameters. Within the config-file, all structures are represented by ellipsoids. Optimization: The optimization runs based on the

config-file, and is carried out by iterating over the axonal ellipsoids. Cellular ellipsoids remain static. Maintaining consistency between the input and

output format makes interactive adaptation of the configuration convenient. Re-configuration: After a round of optimization, the config-file can be

adapted by changing phantom parameters (e.g., CVF and cell positions), and/or optimization parameters (e.g.,ellipsoidDensity, growSpeed and

maxIterations). It can then be used as input for another round of optimization. Post-processing: After a round of optimization, the config-file can

be post-processed to obtain a mesh-representation from the ellipsoid-representation. Furthermore, it is often beneficial to perform a Garland

Heckbert simplification of these meshes to remove redundant vertices to reduce the computational load of e.g., Monte Carlo di�usion simulations.

diameter and eccentricity) as opposed to change position

when a collision occurs. The deformation is a number

between 0 and 1, and is defined by a user-specified mapping

function which takes the current fiber-diameter as input.

A deformation factor of 0 means that the axonal ellipsoid

cannot be deformed at all and hence remains as is. A

deformation factor of 1 means that the ellipsoid will

deform as much as possible rather than change the position

of its center. By adjusting this map between stages of an

optimization scheme, the diameters and cross-sections of

axons can be fixed such that only the axon trajectories will

adapt according to later cell mobility.

• Cells:

– Target CVF (targetCVF): Cells can be added based on

ellipsoidal dimensions randomly sampled from normal

distributions. One cell is sampled and placed at a time.

Cells are added until the targetCVF is met. When

placed, a cell may overlap with axons but not cells. In the

following optimization, the axons will then adapt to avoid

any overlap.

– Position: Defines the center of the cell.

– Shape: Specifies the 3× 3 transformation matrix used when

going from a unit sphere to an ellipsoid. This ellipsoid will

be the shape of the cell.

• Output format:

– Radial resolution of outputted meshes: Determines how

detailed the output mesh will be.

– Extend fibers around the voxel: Defines whether or not

to extend the fibers around the voxel to create mirrored

intra-axonal compartments.

The optimization parameters are:

• Target FVF (targetFVF): The targeted FVF.

• Grow speed (growSpeed): How much the fibers grow per

optimization step. 0 means no growth, and 1 means that the

axon will grow to 100% of its target size in 1 step.

• Maximum number of iterations (maxIterations): Even if

the targetFVF is not reached at this point, the optimization

will terminate here.

• Output interval (outputInterval): Interval with which

an output with the current configuration is provided.

It is beneficial to apply optimization schemes that start out

with higher growSpeed (bigger steps) and lower intra-fiber

ellipsoid density (less computationally demanding), and go toward

lower growSpeed (smaller steps) and higher intra-fiber ellipsoid

resolution (more computationally demanding). An example is

illustrated in Figure 2. Furthermore, it is crucial to choose realistic

parameters to obtain a successful phantom optimization.

2.2 Optimization

2.2.1 Initialization of voxels, fibers, and cells
Each fiber is initialized with a base point, b, and a direction,

r. A ray is traced along r and −r until the voxel boundary is hit.

Frontiers inNeuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2024.1354708
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Winther et al. 10.3389/fninf.2024.1354708

FIGURE 2

Example of an optimization scheme. At initialization, the phantom consists of an outer-voxel (for spatial restriction), an inner voxel (for the

computing optimization metric FVF), straight fibers, and cells. Initially, smaller diameters are assigned to the fibers to allow for more flexibility as they

grow into their converged morphology. (A) Inter-fiber ellipsoids grow step-wise toward their maximum allowed diameter while adapting to their

surroundings as a consequence of collisions with these. (B) The fiber-ellipsoid density is increased. (C) Growth is repeated. (D) Steps (B) and (C) or

variations thereof can be repeated. (E) Once optimized to the user’s liking, the ellipsoid-representation can be converted to a mesh-representation

and then applied in e.g., Monte Carlo di�usion simulations.

The two points hit by the ray define the endpoints of the fiber.

The straight line connecting the two endpoints is then filled with

ellipsoids according to the specified ellipsoid density andminimum

fiber diameter. Each cell is represented by a single ellipsoid. They

cannot move or deform, but otherwise act in the same way as fibers.

Each ellipsoid has two properties: a position vector and a shape

matrix. With no deformation, the shape of an ellipsoid is a unit

sphere S2 = {q ∈ R
3 | ‖q‖ = 1}. The deformation of the sphere is

represented by a 3×3matrix, S, such that the surface of the resulting

ellipsoid is E = {Sq+ p | ‖q‖ = 1} where p is the position.
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Initially, the matrix S = µI where µ is given by the allowed

minimum radius for the given fiber. For increased flexibility, µ

should be very small relative to the voxel size.

Hence, each ellipsoid, j, on each fiber, i, is represented by a

position vector, pi,j, and a shape matrix, Si,j, and the surface of the

ellipsoid is thus defined by

Ei,j =
{

Si,jq+ pi,j | ‖q‖ = 1
}

. (1)

Ellipsoids are deformed by applying a deformation matrixD =

srrT+I . Multiplying (the points on) a surface byD thereby results

in a scaling of 1+ s along r where s ∈ R and r ∈ R
3, ‖r‖ = 1. This

can be seen by taking an arbitrary point p and transforming it using

D

Dp =

(

srrT + I
)

p = s
(

rrT
)

p+ p = s
(

rTp
)

r+ p . (2)

After n deformations of an ellipsoid the shape matrix will have the

form S = Dn...D2D1.

2.2.2 Growth, contraction, and redistribution for
fiber-ellipsoids

The growth step considers each ellipsoid j of each fiber i. The

shape matrix of the updated ellipsoid Snew is set to a weighted

average between the current shape Sold and the target shape (i.e.,

a sphere having the maximum radius rmax) by

Snew = (1− a)Sold + armaxI (3)

where a ∈ [0, 1] is the growSpeed.

A contraction step adjusts the curve on which the ellipsoids lie.

The force along the fiber is dependent on the contraction coefficient

κ . A value of κ = 0 will do nothing, and a value of κ = 1 will

move the position pi,j of the ellipsoid all the way over to c =
1
2 (pi,j−1 + pi,j+1) making this segment of the fiber a straight line.

For any value of κ ∈ [0, 1] the position is updated to (1−κ)pi,j+κc.

A redistribution step is then performed to prevent ellipsoids

from clumping together and thereby creating gaps in the ellipsoid

chain. This is done by updating the position of each ellipsoid in a

chain such that they are evenly distributed along the trajectory of

the fiber. Furthermore, the endpoints of the fibers are moved to the

nearest side whenever they are inside the voxel to make sure that

the fiber spans the entire voxel.

2.2.3 Collisions: fiber-voxel, fiber-fiber, and
fiber-cell

Fiber-voxel collisions (outer voxel) are checked for each

ellipsoid independently. Whenever an ellipsoid’s center is outside

of the voxel it is projected back onto the boundary. fiber-fiber

collisions are checked by computing the potential overlap between

each ellipsoid of a fiber and all other ellipsoids of all other fibers.

fiber-cell collisions are checked by likewise computing the potential

overlap between each ellipsoid of a fiber and all cells.

To compute overlaps between ellipsoids (see Figure 3), we

utilize that finding the surface point of an ellipsoid furthest away

along a vector r is the same as finding the surface point which has

the normal r. When deforming an ellipsoid using the matrix D,

the normals are transformed by D−1. Since after n deformations

Di, i ∈ {1, ..., n} the shape has the form S = Dn...D2D1, the

corresponding transformation matrix N for the normals is

N = D−1
n ...D−1

2 D−1
1 =

(

(

DT
n ...D

T
2D

T
1

)T
)−1

=

(

(Dn...D2D1)
T
)−1

=

(

ST
)−1

(4)

since each Di is symmetric. When going from a normal on an

ellipsoid to the corresponding normal of the original sphere, the

normal should be transformed by the inverse, i.e., N−1 = ST .

After this transformation, the resulting vector can be normalized.

Since we now have a unit normal on a unit sphere, the position on

that sphere is given by the same vector. To get the corresponding

position on the ellipsoid, one can simply multiply by S. Hence

the point with the normal r on the ellipsoid with shape S and

center at the origin is x(r) = S STr
‖STr‖

. Given the ellipsoid j of

fiber i and a direction r the extremal point is thus ei,j(r) = pi,j +

xi,j(r). This extremum is used to compute the overlap between

two ellipsoids.

Define the overlap of two ellipsoids j1 and j2 belonging to the

fibers i1 and i2 respectively along an axis r as o(i1 ,j1),(i2 ,j2)(r) =

rT(ei1 ,j1 (r)−ei2 ,j2 (−r)). If one can find a separating axis (Gottschalk

et al., 1997), r, such that o(i1 ,j1),(i2 ,j2)(r) < 0, the ellipsoids

do not overlap. If o(i1 ,j1),(i2 ,j2)(r) > 0 for all values of r, the

ellipsoids overlap, since they are convex. To check whether two

ellipsoids overlap, one can find the minimum overlap and check

if it is positive or negative. The ellipsoids overlap if and only if

minr o(i1 ,j1),(i2 ,j2)(r) > 0. The minimum is computed numerically

starting with the initial guess r = pi2 ,j2 − pi1 ,j1 .

When the axis r providing the least overlap o(i1 ,j1),(i2 ,j2)(r) is

found, it is checked if o(i1 ,j1),(i2 ,j2)(r) < 0. If so, nothing should

be done. In the case where o(i1 ,j1),(i2 ,j2)(r) > 0 the ellipsoids

should be updated such that the new value of o(i1 ,j1),(i2 ,j2)(r) is 0.

This is done by updating both the positions and shapes of the

ellipsoids depending on the deformation factor. In practice, a small

constant is added to o to make sure that there is a minimum

distance between fibers in order to avoid overlaps in the final

mesh-representation.

The overlaps are computed at each iteration of the algorithm.

In most cases, the overlap will be negative since most ellipsoids are

far apart. To avoid the need for computing the overlap between

all pairs of ellipsoids, a hierarchy of axis-aligned bounding boxes

(AABB) is computed for each axon. If the AABBs of two axons

do not overlap, then the overlap computation of all the pairs of

ellipsoids between these two axons can be skipped. If the AABBs do

overlap, the AABBs will be recursively split into smaller AABBs and

checked for overlap until the bottom of the hierarchy is reached. In

this case, the ellipsoid overlap is computed.

2.2.4 Updating shapes and positions of
fiber-ellipsoids

The key assumption, that axonmorphology is influenced by the

local environment (Andersson et al., 2020, 2022), is implemented

by requiring each axonal ellipsoid to adapt both shape and position
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FIGURE 3

2D visualization of the concept applied for checking for potential overlap of two ellipsoids. In the example, we have two ellipsoids centered at p1 and

p2, respectively. The objective is to check if there exists a set of hyperplanes, P1(r) and P2(−r), which separates the ellipsoids. This is done by finding

the surface point e1(r) for which the normal is parallel with r, and the surface point e2(−r) for which the normal is parallel with −r. Now, if the dot

product between the vector rT [lying in the plane P1(r)] and the vector e1(r)− e2(−r) is <0, the planes P1(r) and P2(−r) must separate the two

ellipsoids. i.e., if there exists an r such that rT · (e1(r)− e2(−r)) < 0, the two ellipsoids are not overlapping.

according to its local environment in order to avoid overlapping

structures. Each ellipsoid will have a specified deformation factor

δ(‖xi,j(r)‖) ∈ [0, 1] depending on the specified deformation factor

map. Each fiber has a minimum allowed radius µi specifying

that it should hold for any ellipsoid j that ‖xi,j(r)‖ ≥ µi. The

overlap o(i1 ,j1),(i2 ,j2)(r) is divided in two equally big parts, and each

part is handled by each of the two ellipsoids. So the deformation

of an ellipsoid will result in a decrease in its size of at most
1
2o(i1 ,j1),(i2 ,j2)(r). This will ensure that the ellipsoids will not have

a negative overlap after being deformed. Since multiplying by a

deformation matrix corresponds to a scaling along r, the distance

that the extremal point should be moved has to be divided by

the current size along r to get the scaling factor s. So in the

case with ellipsoid j1 of fiber i1 the value of s would be s1 =
−δ(‖xi1,j1 (r)‖)

1
2 o(i1,j1),(i2,j2)(r)

‖xi1,j1 (r)‖
= −

δ(‖xi1,j1 (r)‖)o(i1,j1),(i2,j2)(r)

2‖xi1,j1 (r)‖
. In the case

where this deformation would make the ellipsoid’s size smaller than

the minimum µi, a less negative value of s is chosen such that the

resulting size is exactly µi: s2 =
µi−‖xi1,j1 (r)‖

‖xi1,j1 (r)‖
=

µi
‖xi1,j1 (r)‖

− 1. So the

resulting value of s is s = max(s1, s2). So the deformation matrixD1

for ellipsoid j1 isD1 = max(s1, s2)rr
T+I. Now the shapematrix can

be updated by calculatingD1Si1 ,j1 . The equivalent computations are

performed for ellipsoid j2.

Secondly, the positions of the ellipsoids are updated. Each

ellipsoid is treated as if they had equal “mass", i.e., the center of their

positions is conserved. The total distance to move the ellipsoids

apart is equal to the overlap o(i1 ,j1),(i2 ,j2)(r) after the shapes have been

updated. Bymoving the two ellipsoids by the same amount, the new

positions are updated to pil ,jl + (−1)l 12o(i1 ,j1),(i2 ,j2)(r)r for l ∈ {1, 2}.

2.2.5 Computational complexity
In the worst case, all ellipsoids are close to each other

and the number of overlaps that need to be computed will be

O(ellipsoidCount2). Since the number of ellipsoids is proportional

to (1) the number of axons, (2) the voxel size, and (3) the ellipsoid

density, this could also be written as O((axonCount · voxelSize ·

ellipsoidDensity)2).

2.3 Post-processing

A phantom is outputted in two formats: an ellipsoid-

representation and a mesh-representation. The ellipsoid-

representation is the updated config-file where the shape and

position of each ellipsoid is specified. This config-file can be

edited and used as input for further optimization. The mesh-

representation is acquired from the ellipsoid-representation by

generating tube-like mesh-segments to connect all ellipsoidal

cross-sections within a fiber. The user specifies the number of

radial segments that the tubes should have (radial resolution).

The number of longitudinal segments is equal to the number of

ellipsoids on the fiber. The cells are exported as they are—i.e.,

meshes having the shape of the corresponding ellipsoids. The

mesh-representation can be outputted as individual files for each

fiber and cell, or as one combined file containing all elements.

2.3.1 Optimization of meshes for Monte Carlo
di�usion simulations

The higher the ellipsoid-density, the smaller deviation is

reached between the ellipsoid-representation and the mesh-

representation due to gaps between ellipsoids. Hence, a high

ellipsoid density is required to avoid overlapping fibers after

conversion to the mesh-representation. This means that the

resulting meshes have a likewise high longitudinal resolution.

Especially if the meshes are intended for Monte Carlo simulations

of dMRI, this is unfavorable since each mesh element comes

with a computational cost due to the extensive collision-detection

involved. Meanwhile, the high mesh resolution is often redundant.

By performing Garland Heckbert simplification (Garland

and Heckbert, 1997) of each myelin and axon mesh, we
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reduce the number of faces and vertices significantly. The

reduction depends on the initial resolution and the allowed

deviation between the initial and the simplified mesh. We

allow a deviation of minDistance/2 − 0.0005 µm, where

minDistance is the minimum distance allowed between

ellipsoids of different fibers. For a radial resolution of 16 segments

and ellipsoidDensityScaler of 0.20, the GarlandHeckbert

simplification decreases the number of faces by around 50%.

Before employing the phantoms in Monte Carlo diffusion

simulations, the ends of the meshes are sealed to obtain “water

tightness".

The intra-axonal compartment can be extended by making two

extra copies of the ellipsoids mirrored through each of the fiber’s

endpoints without the requirement of further optimization.

2.4 Morphological analysis

To demonstrate the biological relevance of the morphological

features expressed in the numerical phantoms generated with the

WMG, we compare themorphology of a set of numerical phantoms

with real axons. The real axons originate from a monkey brain,

and have been quantified by segmentation from XNH-volumes

in previous work (Andersson et al., 2020). A total of 58 axons

with lengths between 120 and 304 µm were segmented. The

meshes are available at www.drcmr.dk/powder-averaging-dataset.

The morphological metrics quantify axon diameter variations,

cross-sectional eccentricity, and tortuosity. All metrics are sampled

with ∼375 nm spacing along axon trajectories (some variation due

to tortuosity).

2.4.1 Axon diameters
We quantify axon diameter (AD) by the equivalent diameter

as in Abdollahzadeh et al. (2019). i.e., axon diameters reported

here are the diameter of a circle with an area equal to that of the

axonal cross-section perpendicular to its local trajectory. For the

real axons, the metric is extracted from the segmentation. This

method is described in more detail in Andersson et al. (2020).

For the WMG-generated axons, the metric is extracted from the

ellipsoid-representation.

For individual axons, mean AD [mean(AD)] is calculated over

all measurements along an axon, and the standard deviation of the

AD [std(AD)] quantifies the variation of these values.

2.4.2 Cross-sectional eccentricity
We quantify cross-sectional eccentricity based on elliptic

parameterization by e =
√

1− b2/a2 where a is the major axis

and b is the minor axis (see Figure 10). For the real axons, the

circumference of the segmentation is sampled by 24 points. The

length of the major and minor axes of a corresponding ellipse

is then extracted by fitting a Principal Component Analysis to

the sampled points. The results depend on the resolution and

smoothing of the images. For the WMG-generated axons, the

lengths of the major and minor axes are extracted directly from the

ellipsoids.

TABLE 1 Optimization scheme used to generate the phantoms presented

in the Section 3.

Stage ellipsoidDensityScaler growSpeed maxIterations

1 0.50 0.02 50

2 0.50 0.01 500

3 0.25 0.01 100

4 0.25 0.01 10

For individual axons, mean eccentricity [mean (eccentricity)]

is calculated over all measurements along an axon, while the

standard deviation of the eccentricity [std (eccentricity)] quantifies

the variation of these values.

2.4.3 Tortuosity
We quantify tortuosity based on the tortuosity factor and

the maximum deviation. The tortuosity factor is given as the

ratio between the geodesic length of the centerline of an

axon, and the Euclidean length between the end points of the

centerline (see Figure 11). The maximum deviation is given by the

maximum Euclidean distance between the centerline and a straight

line spanning the endpoints of the centerline when measured

perpendicular to the straight line (see Figure 11).

2.5 Phantoms presented here

All phantoms included in this paper, are generated based on the

optimization scheme shown in Table 1.

The growth in the first stage is rougher (i.e., lower

ellipsoidDensityScaler and higher growSpeed),

and then gets finer through the stages (i.e., higher

ellipsoidDensityScaler, and lower growSpeed).

Different optimization schemes may yield different FVFs and

generation times. The following parameters are kept constant and

equal for all phantoms:

• targetFVF = 0.8

• mapFromMaxDiameterToMinDiameter =

---{’from’ : [0.2, 0.5, 1.25], ’to’ :

[0.2, 0.2, 0.5]}

Some phantoms include cells with CVF = 0.05. The size and

shape of the cell clusters are determined by randomly sampling

the ellipsoid axes from normal distributions. Each primary axis

l1 is sampled from the distribution l1 ∼ N(µ = 13 µm, σ =

2 µm), while the secondary l2 and tertiary l3 axes are set

to be equal, and sampled from the distribution l2 = l3 ∼

N(µ = 5 µm, σ = 1 µm). This results in a mean fractional

anisotropy of 0.54. The dispersion angles of the cell clusters (i.e.,

orientation relative to the primary axis of axons) are sampled

from a uniform distribution over the interval (−23, 23) deg. This

is in accordance with observations of CVF, anisotropy and fiber

dispersion in Andersson et al. (2020), where cell clusters from
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FIGURE 4

Demonstration of the global fiber dispersion parameter ǫ and the presence of cells (blue ellipsoids). The unit spheres on the left show the global

dispersion associated with each ǫ. A cut is made at 1/3 of the voxel’s height to enhance the visualization of individual fiber morphology. Above this

height, the meshes are pruned such that only 7% are left. The black voxel marks the boundary of the ellipsoid centers, while the gray voxel marks the

volume for which the FVF is optimized. The two voxels are used to avoid boundary e�ects within the optimized volume. Cross-sections and

individual axons are visualized in Supplementary Figure S1.
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FIGURE 5

Demonstration of two crossing bundle configurations. The black voxel marks the boundary spatial limit of the ellipsoid centers, while the gray voxel

marks the volume for which the FVF is optimized. In both examples, the number of fibers is split equally between the two perpendicular bundles. The

split and fiber directions can be varied, and the number of crossing bundles can be increased. (A) Sheet configuration where the fibers of each

bundle are separated into sheets. (B) Interwoven configuration where the fibers of each bundle are interwoven with each other.

healthy monkey white matter were approximated as ellipsoids

(or tensors).

3 Results

To demonstrate the applications of the interactive feature of

the WMG, we focus on two scenarios: general cell mobility

and inflammatory response. Firstly, we demonstrate the

biological relevance of the morphological features expressed

in the numerical phantoms generated with the WMG, by

comparing the morphology of a set of numerical phantoms with

real axons. The real axons originate from a monkey brain, and have

been quantified by segmentation from XNH-volumes in previous

work (Andersson et al., 2020). Then, by interactively changing

the cell configurations over time, we show the morphology of

the surrounding fibers changes consequently. We quantify the

changes by analyzing longitudinal axon diameter variations,

longitudinal variations of cross-sectional eccentricity, and

tortuosity of fibers.

3.1 The WMG mimicking di�erent tissue
compositions

The global fiber dispersion is controlled by the parameter

ǫ. Examples of varying degrees of dispersion are shown both

with and without cells in Figure 4. When increasing ǫ, the fibers

are forced to bend and deform more to achieve a higher FVF.

Similarly, the presence of the static cells forces the fibers to adapt

around them.

Crossing fiber bundles can be generated in two

configurations—sheets (Kjer et al., 2023) and interwoven.

Examples are shown in Figure 5.

Demyelination can be mimicked by selectively stripping the

myelin from axons and adding cells to mimic an inflammatory

response as shown in Figure 6. This can be done either between

optimization steps by decreasing the allowed diameter range of a

fiber to that of the corresponding axon, or by removing the myelin

mesh after optimization.

3.2 Performance of the WMG

Figure 7 shows the obtained FVFs and the processing time

for the parameters and optimization scheme described in Table 1.

We achieve mean (FVF) ≥ 0.72 for phantoms of all degrees of ǫ

without cells and mean (FVF) ≥ 0.66 with cell clusters (CVF =

0.05). It is seen that the processing time increases with ǫ. This is a

consequence of the increased fiber dispersion leading to a higher

frequency of collisions of the chain of ellipsoids comprising the

axons. Each collision necessitates correction, leading to a longer

optimization time. Likewise, the increased dispersion complicates

dense packing and results in lower FVF. Similarly, the presence

of cells (CVF = 0.05) results in a much increased processing time

compared to phantoms which have otherwise identical parameter

configurations. This is due to the additional volume taken up by the

static cell clusters further complicating the packing and resulting in

lower FVF.
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3.3 Morphological variation of
WMG-generated phantoms

To demonstrate that the morphological features expressed in

the WMG-generated phantoms are relevant in relation to real

3D morphology, we compare the morphology of the axons with

real axons quantified from XNH-volumes. The comparisons are

based on longitudinal axon diameter variations, cross-sectional

eccentricity, and tortuosity— all metrics which are reflected in the

dMRI signal.

3.3.1 Longitudinal axon diameters
Figure 8 shows an example of target and output distributions

of mean axon diameters for individual axons. Much flexibility in

morphology parameters is required to obtain the high FVFs. Hence,

some deviation from the target is to be expected. For the parameters

and optimization scheme described in Table 1, the meanµ values of

the distributions are within 0.6 µm of that of the target distribution

with µ = 1.8µm.

Figure 9 shows a positive correlation between the std (AD)

and mean (AD). We compare with the XNH-samples and see an

overlap of the metrics and a likewise positive correlation. We see

that std (AD) can be regulated both by varying ǫ and CVF. The

higher ǫ forces the individual axons to deform more to pack to

the dispersing environment—and vice versa. Similarly for increased

CVF (see “ǫ = 0.0, CVF=0.00" vs. “ǫ = 0.0, CVF=0.05"), where the

presence of cells force additional ellipsoid deformation in order to

obtain the dense packing.

3.3.2 Axonal cross-sectional eccentricity
Figure 10 shows the variation in cross-sectional eccentricity

along WMG-generated axons as a function of the mean cross-

sectional eccentricity along the axons. Both the mean (eccentricity)

and the std (eccentricity) can be regulated by varying ǫ and CVF.

Again, because the higher ǫ forces the individual axons to deform

more to pack to the dispersing environment—and vice versa.

Similarly for increased CVF (see “ǫ = 0.0, CVF=0.00" vs. “ǫ = 0.0,

CVF=0.05"), where the presence of cells force additional ellipsoid

deformation to obtain the dense packing. The types of eccentricities

in the XNH-segmented axons and the WMG-generated axons are

different in nature. While the cross sections of the XNH axons

are asymmetric and squiggly by nature, the cross sections of the

synthetic WMG axons are limited to being elliptic due to the

axon being comprised of ellipsoids. Hence, while the eccentricity

measure does provide a rough estimation of the dominating cross-

sectional eccentricity in both cases, it is not directly comparable

across the two.

3.3.3 Axonal tortuosity
A positive correlation between maximum deviation and

tortuosity both for axons from the WMG and XNH is observed.

This is shown in Figure 11. The tortuosity can be regulated by the

dispersion parameter ǫ and by adding cells. The higher dispersion

and CVFmean that the axons have to bendmore around each other

to not overlap and vice versa.

FIGURE 6

Demonstration of demyelination showing a demyelinated version of

the phantom shown in Figure 4 (ǫ = 0.2, with cells). The black voxel

marks the boundary for the ellipsoid centers, while the gray voxel

marks the volume for which the FVF is optimized.

3.4 Interactive configuration allows the
mimicking of dynamic environments

Dynamic cells are mimicked by interactively changing the

cell configuration during phantom optimization and letting the

fibers adapt accordingly. Figure 12 shows how a dynamic cell

environment can influence the morphological metrics of the

surrounding axons. In the right column, we see how moving cells

are causing an increase in axon diameter variations, eccentricity,

and tortuosity over time. In Figure 13, we see a similar trend when

the CVF is increased over time—except that in this example, the

axons are generally straight and have non-eccentric cross-sections

at the first time point due to CVF = 0.00.

4 Discussion

With the development of the WMG tool, we enable the

generation of interactive numerical white matter phantoms

composed of the compartments of axons, myelin, cells and extra-

cellular space. This allows us to mimic the dynamic nature of

white matter by interactively changing the configuration of the

cell clusters within a given phantom while the surrounding axon

morphology adapts accordingly. With these phantoms, we can

thereby analyze how specific cell dynamics [such as mobility

and inflammation (Davalos et al., 2005; Nimmerjahn et al.,
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FIGURE 7

Performance of the WMG in terms of achieved axonal volume fraction (FVF) and processing time. Each point is based on five samples/repetitions.

Mean (FVF) > 0.66 is achieved for all configurations. The complexity of the phantom configuration is increased by increasing dispersion (ǫ), adding

cell clusters, and introducing fiber crossings. The higher complexity makes it more challenging to achieve higher FVFs.

FIGURE 8

Target vs. outputted distributions of mean axon diameters for individual axons mean(AD). Gamma distributions are fitted to the histogram bins of the

outputted mean axon diameters. The desired diameter of each axon is sampled from a gamma distribution (the desired distribution). Due to the

packing procedure, some deviation is expected for the outputted distributions. Here, deviations of mean values are within 0.6 µm.
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FIGURE 9

Longitudinal axon diameter variation. Each marker represents one axon from a given sample, while the lines are the linear fits of all axons in a

sample/numerical phantom. The standard deviation of the mean axon diameter per axon [std (AD)] correlates positively with the mean axon diameter

per axon [mean (AD)]—both for the XNH and WMG axons. Note that the distribution of axon diameters of the XNH axons is not representative of the

tissue as a whole, but biased toward the larger axons due to those axons being more clear on the XNH images.

FIGURE 10

Cross-sectional eccentricity. We achieve an overlapping degree of eccentricity for the WMG-generated axons as we observed for the XNH axons.

Meanwhile, the std (eccentricity) shows a higher degree of variation than the XNH samples. We see a higher degree of eccentricity in the crossing

fiber (CF) compared to the corpus callosum (CC) quantified from the XNH images.

2005; Tønnesen et al., 2018)] influence the morphology of the

surrounding axons. Furthermore, the very same phantoms can be

employed as mesh inputs for Monte Carlo diffusion simulations.

This enables us to study how these finer detailed morphological

changes affect the dMRI signal and to evaluate microstructure

models.

When comparing morphological metrics between axons

generated with the WMG tool and real axons segmented from

XNH-imaging of a vervet monkey brain (corpus callosum and

crossing fiber), we see an overlap with the metrics of axon

morphologies from the corpus callosum. However, the WMG tool

does not offer the degree of tortuosity observed for the crossing

fiber region.

Based on the assumption that real white matter

morphology carries a history of dynamic events, the

WMG tool provides an improved understanding of the

dynamics of white matter morphology—both for healthy and

diseased tissue.

4.1 WMG-generated axons possess
histology-resembling morphological
metrics

We analyzed the morphology of the individual axons from

phantoms by the WMG tool. Based on the metrics for longitudinal

diameter variations (Figure 9), longitudinal variations of cross-

sectional eccentricity (Figure 10), and tortuosity (Figure 11), we

show that the WMG tool is capable of generating axons with

morphology closely resembling that observed for axons from the

corpus callosum of a vervet monkey brain with XNH imaging
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FIGURE 11

Tortuosity. We quantify the tortuosity of the axons based on the tortuosity factor and the maximum deviation (both metrics are explained in the

figure) to compare with the real axons segmented from XNH-imaging of corpus callosum (CC) and crossing fiber (CF) from a monkey. It is possible to

reach overlapping tortuosity factors for the synthetic WMG axons as is observed for the real XNH axons from the corpus callosum (CC) region.

However, we do not match the high tortuosity factors and maximum deviations observed for the crossing fiber (CF) region. a, b, c, and d show

examples of 2D projections of the axonal centerlines at di�erent ends of the spectrum.

in Andersson et al. (2020, 2022). These morphological metrics

have been found to influence the dMRI signal from individual

axons (Nilsson et al., 2012; Andersson et al., 2020, 2022; Brabec

et al., 2020; Lee et al., 2020; Winther et al., 2023), and are hence

essential when generating numerical white matter phantoms with

the purpose of evaluating microstructure models for dMRI.

The longitudinal axon diameter variation (Figure 9, y-axis)

and the longitudinal variations of cross-sectional eccentricity

(Figure 10), and the tortuosity factor (Figure 11, x-axis) reached

by the WMG tool, are in agreement with that of the XNH-

imaged corpus callosum. The maximum deviations (Figure 11, y-

axis), however, are generally much higher in the XNH-imaged

corpus callosum. Meanwhile, the XNH-imaged crossing fiber is

more challenging to match. Here, only the degree of eccentricity

(Figure 10) is in agreement. To obtain a higher degree of tortuosity,

and especially the maximum deviation, the ellipsoid chains that

make up the foundation of the axons would have to be initialized

with an initial tortuosity rather than in a straight line. While this is

not a standard configuration of the WMG tool, it can be obtained

through manual configuration. No other tools for the numerical

synthesis of whitematter phantoms are known to output this degree

of tortuosity.

Because the low signal-to-noise ratio of the XNH volumes

challenged a robust manual segmentation of axons with mean

diameters smaller than 2 µm, the segmented axons are not

representative of the underlying distribution w.r.t. diameter

(Andersson et al., 2020). This quantification does, however, provide

valuable insight into the realistic range ofmorphological metrics for

the larger axons.

For extra-cellular space, we targeted a volume fraction of 0.2

(i.e., targetFVF = 0.8) in agreement with what has been reported

for normal adult brain tissue-which is between 0.15 and 0.30, and

typically 0.20 (Syková and Nicholson, 2008). Figure 7 shows that

all WMG phantoms without cells, reach well within the targeted

range for all degrees of fiber dispersion. More precisely, we obtain

FVFs between 0.83 ± 0.00 and 0.80 ± 0.01 for single fiber bundle

phantoms with dispersion between 0 and 18 deg (ǫ of 0.0 and

0.2, respectively), and FVF of 0.72 ± 0.01 for dispersion 90 deg

(ǫ of 1.0). Meanwhile, the MEDUSA tool (Ginsburger et al.,

2019) reaches FVFs between 0.72 and 0.62 for single-fiber-bundle

phantoms with dispersion between 0 and 20 deg, and the ConFiG

tool (Callaghan et al., 2020) reaches FVFs between 0.75 and 0.71 for

single-fiber-bundle phantoms with dispersion between 7.75 ± 4.23

deg and 17.46 ± 9.92 deg. Although the CACTUS tool (Villarreal-

Haro et al., 2023) reaches impressive FVFs between 0.91 and 0.95

for single-fiber-bundle phantoms with dispersion between 0 and 25

deg, such high volume fractions are not necessarily relevant.

4.2 Axon morphology is modulated by cell
dynamics

By exploiting the interactive component of the WMG tool

to mimic cell dynamics in the form of general cell mobility and
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FIGURE 12

General cell mobility: The CVF is kept constant while cells are moved around over time. (A) Visualization of three temporal snapshots of a phantom. A

cut is made at 1/3 of the voxel’s height to enhance the visualization of individual axon morphology. Above this height, the meshes are pruned such

that only 7% are left. The black voxel marks the boundary of the ellipsoid centers, while the gray voxel marks the volume for which the FVF is

optimized. (B) Morphological metrics computed for the phantom snapshots seen in (A). When starting from otherwise straight axons, the moving

cells cause increasing diameter variations (top), eccentricity (middle), and tortuosity (bottom) over time. For an explanation of metrics for eccentricity

and tortuosity, see Figures 10, 11, respectively.

cell increase, we show how axon morphology can be modulated

over time by these expected dynamics (Figures 12, 13). Under the

assumption that real white matter follows similar principles, we can

thereby use the WMG tool to study expected tissue response in

various physiological or pathological scenarios involving dynamic

cell behavior. No other tool offers this feature.
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FIGURE 13

Cell increase: the CVF is increased in steps of 0.035 from 0.00 to 0.14 over time. (A) Visualization of three temporal snapshots of a phantom. A cut is

made at 1/3 of the voxel’s height to enhance the visualization of individual axon morphology. Above this height, the meshes are pruned such that

only 7% are left. The black voxel marks the boundary of the ellipsoid centers, while the gray voxel marks the volume for which the FVF is optimized.

(B) Morphological metrics computed for the phantom snapshots seen in (A). When starting from otherwise straight axons, the increasing cell fraction

causes increasing diameter variations (top), eccentricity (middle), and tortuosity (bottom) over time. For an explanation of metrics for eccentricity and

tortuosity, see Figures 10, 11, respectively.

Cell dynamics are continuously occurring in healthy tissue

in the form of general glial cell mobility (Davalos et al., 2005;

Nimmerjahn et al., 2005; Tønnesen et al., 2018). However, because

these changes are homogeneously distributed across the tissue, their

influence on morphological metrics should stabilize over time and

not cause net changes to the dMRI signal. Here, we mimic cell
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mobility by changing the configuration of cells over time while

keeping the CVF constant (Figure 12). By starting from straight

axons, we see how the continuous cell mobility induces an increase

in longitudinal morphological variation as the axons adapt to the

changing environment.

Cell dynamics are crucial during an inflammatory response

(Purves et al., 2001; Davalos et al., 2005; Nimmerjahn et al.,

2005; Tønnesen et al., 2018). With the WMG tool, inflammation

can be mimicked by the increase of cells (Figure 13). We show

how this dynamic behavior induces an increase in longitudinal

morphological variation as the axons adapt to the changing

environment—similar to the observations for general cell mobility

(Figure 12). Inflammation can also involve e.g., edema due to the

accumulation of fluid in the extra-axonal space (Nehring et al.,

2022). This will in turn cause an expansion of the extra-axonal space

and affect the compartmental volume fractions. Such changes were

not modeled here.

4.3 Synthesis method and tissue
configurations

The high morphological flexibility enabled by the ellipsoidal

building blocks of the WMG tool allows for a large variety of

different tissue configurations. Here, we show examples of varying

dispersion (Figure 4), fiber crossings (Figure 5), demyelination

(Figure 6), inclusion of static cells (Figure 4), general cell mobility

(Figure 12), and cell increase (Figure 13). A key assumption for

the WMG tool is that axon morphology is modulated to the

local environment, and thereby adapting according to surrounding

axons and cells.

The WMG tool is the first tool developed for generating

numerical white matter phantoms which includes an interactive

component to allow the mimicking of cell dynamics. However,

the tools MEDUSA (Ginsburger et al., 2019), ConFiG (Callaghan

et al., 2020), and CACTUS (Villarreal-Haro et al., 2023) do excel

when it comes to computational efficiency and more complex

morphological features.

Our concept of ellipsoidal building blocks is very similar to

that of MEDUSA (Ginsburger et al., 2019) where spherical building

blocks are used. While the sphere representation allows for a

high representational power of the longitudinal axon morphology

characteristics, it does not allow for eccentric cross-sections as

documented by histology (Abdollahzadeh et al., 2019; Lee et al.,

2019; Andersson et al., 2020). On the other hand, the ellipsoid

geometry allows for more degrees of freedom which, in turn,

enables eccentric cross-sections—although, still lacking cross-

sectional squigglyness to truly resemble histology. Both tools are

based on variations of a force-biased packing algorithm, first

introduced by Altendorf and Jeulin (2011), where the phantoms are

obtained as an equilibrium between “repulsion forces” (for avoiding

overlapping axons and cells) and “recover forces” (for ensuring

the structure of the individual axons). Similar mechanics are used

to shape the axons in CACTUS (Villarreal-Haro et al., 2023),

where each axon is represented by capsular building blocks during

the optimization of axon trajectories. However, the CACTUS tool

contains an additional step of radial optimization, which can

increase packing densities and increase the realism of the axonal

cross-sections by introducing the desired natural squigglyness.

Meanwhile, the ConFiG tool (Callaghan et al., 2020) focuses on

the initial growth and maturation of white matter by mimicking

how axons are guided by chemical cues and adapt to the available

space as they grow and extend from one end to the other. Hence,

rather than initializing all axons along straight lines that extend

the entire length of the voxel as done in the other tools, each axon

is grown stepwise from one end to the other. This is followed by

a radial optimization step similar to that of CACTUS (Villarreal-

Haro et al., 2023). A similar finishing radial optimization could

beneficially be applied in the WMG tool to obtain likewise more

realistic cross-sections.

4.4 Limitations and future work

4.4.1 Tissue representativity
Numerical phantoms from the WMG tool can include axons,

myelin, and glial cells. These are the most prominent structures in

brain white matter; both in regards to volume fractions and signal

contrast contributions in dMRI (Jelescu and Budde, 2017)..

However, additional structures present in the brain white

matter might affect water diffusion and hence the dMRI signal.

Such structures include microtubules, mitochondria, nodes of

Ranvier, neuron cell bodies, dendrites, glial cell processes, and

morphological changes related to pathology.. These will be

implemented in a future version of the WMG tool.

With the WMG tool, the g-ratio is modeled as constant

throughout the axon length. However, it has been found that

this ratio can vary across myelin segments (Andersson et al.,

2020). Demyelination in the WMG tool is mimicked by randomly

stripping myelinated axons from their myelin sheets and by

increasing CVF. The intermediate steps of the demyelination

process are not modeled.

The size of the phantoms is crucial for the representational

power of tissue features. For the WMG tool, the processing time is

the limiting factor. It has been shown that phantom sizes larger than

(200 µm)3 can reduce the sampling bias (Rafael-Patino et al., 2020)

and hence improve the representational power. Moreover, while

efforts are made to minimize structural boundary effects during

synthesis, complete avoidance is challenging.

The WMG tool does offer a way to extend the intra-axonal

compartment. All axon and myelin meshes can be mirrored

around voxel boundaries without the requirement of further

optimization. However, the added amounts of meshing do come

with a computational cost when applied in Monte Carlo diffusion

simulations—by 3-fold.

4.4.2 Improving the computational e�ciency
Creating phantoms is currently a time-consuming process with

28 ± 3 h spent on generating phantoms containing a single fiber

direction with ǫ = 0.2 and 55± 8 axons in a voxel size of 43.3±1.0

µm using one core (Figure 7). In comparison, for generating a

phantom of comparable configuration, the parallelizable CACTUS

tool (Villarreal-Haro et al., 2023) requires 4 h for generating a
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phantom of 33,478 axons in a voxel size of (500 µm)3 using

64 cores. However, since the optimization procedure for the

WMG tool relies on checking overlaps between ellipsoids, and

this is formulated with linear algebra, there presents an excellent

opportunity for leveraging GPUs to enhance efficiency. GPUs are

optimized for basic numerical linear algebra operations, and will

therefore in many cases outperform CPUs for tasks involving such

operations. Therefore, future efforts will focus on implementing the

WMG tool in a GPU-compatible manner to accelerate the phantom

generation.

While it is already possible to generate large and numerous

phantoms with the WMG tool, addressing the computational

efficiency will significantly expand the capacity. This enhancement

will be crucial for facilitating the generation of large-scale and

machine learning-friendly datasets.

4.4.3 Mimicking compression and stress of
fibrous tissues

The interactive config-files and the force-biased packing

algorithm of the WMG tool could further be applied to mimic the

compression and stress of tissue. Such events can be mimicked by

applying selective stretch or compression to a voxel and its content

through interactive changes to the config-file. Meanwhile, cell

elements can be added to mimic the accompanying necrotic debris

and cellular immune response. Applications lie within traumatic

brain injuries where tissue compression often arises due to external

forces, and/or swelling in one area causing compression in adjacent

regions (Knight and Kreitzer, 2020).
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