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Advancements in multichannel recordings of single-unit activity (SUA) in

vivo present an opportunity to discover novel features of spatially-varying

extracellularly-recorded action potentials (EAPs) that are useful for identifying

neuron-types. Traditional approaches to classifying neuron-types often rely on

computing EAP waveform features based on conventions of single-channel

recordings and thus inherit their limitations. However, spatiotemporal EAP

waveforms are the product of signals from underlying current sources being

mixed within the extracellular space. We introduce a machine learning approach

to demix the underlying sources of spatiotemporal EAP waveforms. Using

biophysically realistic computational models, we simulate EAP waveforms and

characterize them by the relative prevalence of these sources, which we use as

features for identifying the neuron-types corresponding to recorded single units.

These EAP sources have distinct spatial and multi-resolution temporal patterns

that are robust to various sampling biases. EAP sources also are shared across

many neuron-types, are predictive of gross morphological features, and expose

underlying morphological domains. We then organize known neuron-types into

a hierarchy of latent morpho-electrophysiological types based on di�erences

in the source prevalences, which provides a multi-level classification scheme.

We validate the robustness, accuracy, and interpretations of our demixing

approach by analyzing simulated EAPs from morphologically detailed models

with classification and clustering methods. This simulation-based approach

provides a machine learning strategy for neuron-type identification.

KEYWORDS

extracellular action potentials, machine learning, neuron-type prediction, simulated

EAP, neuron models

1 Introduction

Classifications based on morphology and spiking dynamics have demonstrated that
cortical neurons exhibit several distinct patterns that are robust across cortical areas
(Markram et al., 2004, 2015; Spruston, 2008; Gouwens et al., 2019; Kanari et al., 2019).
However, the study of waveform features and dynamics of extracellularly-recorded action
potentials (EAPs) has lagged. Researchers using EAP features such as trough-to-peak
duration or trough half-width have shown that binary classifications (regular/fast spiking
or broad/narrow spiking) provide a practical approach to studying putative excitatory
and inhibitory single-unit activity (SUA) in cortex (McCormick et al., 1985; Andermann
et al., 2004; Barthó et al., 2004; Mitchell et al., 2007; Marques-Smith et al., 2018; Jia et al.,
2019). Novel approaches that train machine learning models on additional features (e.g.,
repolarization slope) have resulted in moderate improvements beyond previous binary
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classifications (Jia et al., 2019; Trainito et al., 2019). Despite these
apparent limitations in identifying neuron-types using extracellular
recordings, multiple studies suggest that particular EAP attributes
may predictably vary based on the recording location relative to
the specific morphology of the neuron (Gold et al., 2006, 2007;
Marques-Smith et al., 2018; Teleńczuk et al., 2018; Bakkum et al.,
2019).

A convention adopted for single-channel recordings is to
analyze EAPs that exhibit a canonical waveform shape (McCormick
et al., 1985; Andermann et al., 2004; Barthó et al., 2004; Mitchell
et al., 2007; Marques-Smith et al., 2018; Jia et al., 2019). This
“canonical” waveform consists of a prominent negative trough
correlated with the negative of the first derivative of the intracellular
action potential (IAP) at the soma (Henze et al., 2000; Anastassiou
et al., 2015; Neto et al., 2016). The negative trough is typically
followed by a prominent positive peak associated with the
repolarization phase of the IAP. However, this canonical waveform
has a non-linear relationship with the recording location along
the somato-dendritic axis of the neuron, where displacement
from the soma leads to increased contributions from non-somatic
morphological domains (Gold et al., 2007; Pettersen and Einevoll,
2008). The increased contribution from different morphological
domains influences the ratio of the negative trough to the
subsequent positive peak, as well as the time between them
(Gold et al., 2007). This is determined by the change in inward
and outward currents at specific locations during the different
electrophysiological phases of the action potential (Gold et al.,
2007). In other words, a negative trough can be accounted for by
the inward sodium or calcium current phase and a positive peak
accounted for by an outward potassium current phase. This phase-
based analysis can be extended even further. The appearance of
a prominent positive peak prior to a negative trough indicates a
large contribution of a local capacitive current to the EAPwaveform
(Gold et al., 2007; Teleńczuk et al., 2018). Moreover, the variability
in amplitude of simulated EAPs at fixed distances relative to the
soma is explained by variability in total cross-sectional area of
neurites where they meet the soma (Pettersen and Einevoll, 2008).
It is plausible that such relationships could be exploited to detect
asymmetries in neurite geometry for single neurons.

Because spatiotemporal profiles of EAPs vary with electrode
location and cell type, it is not possible to infer neuron-type from
the snapshot obtained in a single-channel recording. However,
given that subcellular differences impact phase-based features of
EAP waveforms, the use of high-density recording probes has
an important advantage over single-channel probes. Multichannel
recordings maintain the spatial relationships among isolated
EAPs, and these spatial relationships, in principle, hold additional
information about neuron-types. In an experimental study using
high-density recordings, Jia et al. (2019) detect backpropagation
across multiple channels and demonstrate that spatiotemporal
features, such as waveform amplitude spread and the velocity of
the EAP trough above and below the soma, are important features
for identifying putative neuron-types. Moreover, both experiments
and neuron modeling studies show that spatial patterns of
EAPs reflect information about the spatial relationship between
neuron and recording probe (Somogyvári et al., 2005, 2012;
Szymanska et al., 2013; Delgado Ruz and Schultz, 2014; Buccino
et al., 2018; Marques-Smith et al., 2018), the orientation of the

somato-dendritic axis (Somogyvári et al., 2012; Delgado Ruz and
Schultz, 2014; Buccino et al., 2018), gross morphology (Somogyvári
et al., 2012; Delgado Ruz and Schultz, 2014; Buccino et al., 2018),
and nearby morphological domains (Gold et al., 2007; Radivojevic
et al., 2016; Teleńczuk et al., 2018). Thus, subcellular differences in
neuronal electrophysiology and morphology are observable across
EAPs centered around the soma.

These results illustrate a gap in studies of neuron classification
based on morphology and fast timescale electrophysiology.
We address this gap by systematically studying sources of
spatiotemporal EAP waveforms (EAP sources) from simulated
extracellular recordings. Here, detailed biophysically-based neuron
models are simulated using computational protocols that mimic
high-density, linear probe configurations. These computational
models provide repeatability, the ability to look at many different
neuron-types, and the possibility to link EAPs to details of
the neuron morphology and membrane mechanisms. Distinct
spatial and multi-resolution temporal patterns are discovered using
a combination of computational modeling, automated feature
engineering, and machine learning.

EAP sources are typically mixed due to the superposition
of EAP waveforms from subcellular domains of neuron
morphologies (Figure 1A). In this study, we apply tensor
components analysis (Williams et al., 2018) to features extracted
through multiresolution wavelet analysis (Mallat, 1989; Quiroga
et al., 2004) to demix the relative prevalence of these EAP sources
in simulated extracellular recordings (Figure 1B). The result is a
low-dimensional representation for recorded units that describes
how EAP sources vary across single-units, relative recording site,
and phases of the action potential (Figure 1B, bottom). Here, we
find that four EAP sources best characterize waveform patterns
shared across a diverse population of cortical neuron-type families.
We demonstrate how the demixed representations can be used as
features to predict population-level distributions of morphological
properties and to identify reliable morpho-electrophysiological
(ME) types given biophysical constraints for recordings of SUA
(Figure 1C). Finally, we show how our demixing strategy performs
on the problem of unsupervised discovery of excitatory and
inhibitory neuron models.

Our systematic, data-driven pipeline uses an unsupervised
method to extract patterns spanning channels and timescales
while also representing individual units. We simulate extracellular
recordings of diverse cortical neuron-type models at many spatial
locations. We find multiple unique spatial templates where
combinations of these templates provide representations of single-
units that are predictive of variations in the underlying neuron-
types, and we link these to morphology. These results can provide
higher precision analyses for in vivo extracellular electrophysiology
recordings given the fundamental constraints of the field’s existing
techniques.

2 Methods

All analyses and simulations are implemented in the Python
programming language. Standard Python modules that are critical
for the pipeline include: Numpy (Harris et al., 2020), Pandas
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FIGURE 1

High-level overview of neuron-type identification strategy. (A) Cartoon of instantaneous extracellular potential of canonical waveforms at time of

spike. The shape, extent, and polarity at di�erent locations of EAPs reflect di�erences in morphology. (B) Schematic of demixing using

spatiotemporal EAP waveforms, X, from multichannel recordings with S channel locations, T time points, and N recorded units associated each of

the probe locations for each model. The inputs to the demixing step are the W coe�cients for the multiresolution wavelet representation for each

channel and unit, denoted by F. Demixing reveals multiple EAP sources describing how factors (space, time, and units) contribute to EAP waveforms.

Each EAP source describes the contribution of a pattern across spatial locations, S, as well as the corresponding timescales and times, W. The

remaining factor N describes the prevalence of the corresponding sources across all units. The prevalences of these sources for each unit (n1, n2, n3)

provide input features for neuron-type identification. (C) Construction of the latent morpho-electrophysiological (ME) space relies on N where

di�erences in the prevalence of sources are correlated with local morphometrics (like cross-sectional area) and gross morphological properties

(such as location of terminal ends of basal dendrites).

(McKinney, 2020), Scipy (Virtanen et al., 2020), and Scikit-Learn
(Pedregosa et al., 2011).

2.1 Simulations of neuron-type models

Neuron-type models were obtained from the NeuroML
Database (NeuroML-DB.org) using the database API (Birgiolas
et al., 2023). The database hosts single neuron models in multiple
model formats and provides numerical details for running models.
Models were downloaded in the HOC format for simulation
and the NeuroML format for morphometric analyses. We chose
models that were previously developed from studies of rat primary
somatosensory cortical neurons as part of the Blue Brain Project
(Markram et al., 2015). NeuroML-DB model IDs for these models

are provided in Supplementary Table 1. Each multicompartmental
model consists of multiple, detailed morphological domains:
soma, axon initial segment (AIS), basal dendrites, and possibly,
apical dendrites. The AIS for each model is composed of two
compartments of equal length and diameter. One compartment
is the stem of the axon and is connected to the soma. The
other is connected to the stem compartment and extends in
the same direction as the stem. The dendritic domains are
highly detailed, consisting of hundreds or even thousands of
compartments. In total, we obtained 105 neuron models—five
morphological variants for 21 neuron-type families. These families
include 11 types of excitatory pyramidal cells and 10 types
of inhibitory interneurons. These model families were chosen
due to their availability, detail, and development within one
research laboratory.
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The neuron-type models were simulated using the Python
package NetPyNE (Dura-Bernal et al., 2019) with the NEURON
simulator (Carnevale and Hines, 2006). The model-based bias
current amplitude and rheobase were obtained from the NeuroML
Database (Birgiolas et al., 2023). Steady state membrane potentials
were attained by simulating a bias current injection for 1,000 ms

prior to applying a 50 ms duration current at 3x the rheobase to
initiate an action potential.

For each model, the extracellular space was defined as a 3D
grid centered at the soma. The Y-axis was oriented with positive
and negative values reflecting more superficial and deeper locations
relative to the soma, respectively (Figures 2A, C). In other words,
the Y-axis reflects relative position of the soma along the cortical
depth. Similarly, the XZ-plane was defined perpendicular to the
Y-axis and centered at the soma. Extracellular potentials were
computed within the 3D space using built-in functions from
NetPyNE. NetPyNE uses a transmembrane current-based forward
modeling scheme (Agudelo-Toro, 2012; Lindén et al., 2014).

2.2 Constraining extracellular space

In typical extracellular recording studies, single units are often
excluded if they do not meet an amplitude threshold sufficient
to overcome background noise (Gray et al., 1995; Henze et al.,
2000; Segev et al., 2004). In this study we first wanted to identify
the region of modeled extracellular space where simulated EAPs
are consistent with experimental conditions. To that end, we
characterized the detectability of neuron-types and identified those
with EAP amplitudes <20 µV at distances of ∼10 µm from the
soma. This detectability threshold was conservative relative to the
accepted convention of using signal-to-noise levels that are above a
value that is 3–4 times the noise floor or 50–60 µV (Abeles, 1991;
Henze et al., 2000; Segev et al., 2004). Thus, simulation studies
of EAPs were performed in two stages: (1) EAPs were simulated
to uncover the detectability limit for each neuron-type model and
(2) EAPs for the studies described here were simulated within this
detectability limit.

2.2.1 Detectability limit
For the first stage, using a forward modeling scheme for each of

the models, we computed the extracellular potential, Ve, at 1,050
locations. The XZ-coordinates of these locations were circularly
distributed at 10 angles along the XZ-plane that were chosen
uniformly at random. For each angle, we used 21 radial distances
from the origin along the XZ-plane, ranging between 10–120 µm

at 5 µm increments. This process was repeated, resulting in radial
grids at 20, 10, 0, −10, and −20 µm from the origin along the Y-
axis. Each neuron-typemodel was subjected to the current injection
protocol described above. We then computed a detectability limit
for each separate model based on amplitudes computed from
individual EAPs at these 1,050 locations. Here, the amplitude was
taken to be the absolute difference between the trough and peak of
an EAP, where the trough and peak were defined as the minimum
and maximum values of an EAP, respectively.

The detectability limit was taken to be the average radial
distance resulting in an amplitude of at least 20 µV . The average
detectability range across all neuron-type models was ∼35 µm (µ
= 35.48, σ = 14.71). By fitting the average maximum amplitudes to
exponential curves,<2% (2/105) of models were unable to generate
EAPs with amplitudes >20 µV at locations one micron from the
soma. These two models were from the Layer 2/3 small basket cell
and Layer 2/3 double bouquet cell neuron-type families and had
peak amplitudes of 8.4 and 1.95 µV , respectively. We excluded
these two models from subsequent analyses.

2.2.2 Simulating EAPs for further study
The model-specific detectability limits for the remaining 103

models from 21 neuron-type families were used to construct the
simulation dataset used for all further analyses. For each model,
we first chose 100 different locations where we place the linear
probe for recording simulated EAPs. For these locations, the
radial distances from the origin in the XZ-plane were uniformly
distributed between 10 microns and the associated detectability
limit. The angle for each location was also selected from a uniform
distribution. Each of these 100 locations were taken as the center
of a 64-channel linear probe with channel locations spaced every
10 µm along the Y-axis, where center channels were jittered
using a uniform distribution with bounds of ±5 µm along the
Y-axis centered at the origin. The current injection protocols
described above were used to generate EAPs at channel locations.
Additionally, we recorded the somatic membrane potential for
each simulation.

2.3 Waveform pre-processing

Action potentials are classically divided into intervals, or
phases, of interest. These intervals are associated with the
depolarization, repolarization, and recovery phases, reflecting the
activation and inactivation of inward and outward currents. A non-
classical phase of interest is the capacitive phase associated with
spike initiation in the axon initial segment and propagation into
the soma (Gold et al., 2006; Radivojevic et al., 2016; Teleńczuk
et al., 2018). The effects of these phases also can be seen in EAPs
(Figure 5A). Using the average EAP (white curve, bottom panel
Figure 5A), we determined the average spike width (∼1.4 ms),
defined as the time between the trough and following peak. The
duration of snippet windows for further analysis of EAPs was taken
to be a multiple of the average spike width. To include all phases
of interest, the extracellular action potential was extracted using
a total snippet window of 5.6 ms with a 1.4 ms pre-spike interval,
where the spike time is defined as the time the somatic membrane
potential achieved its peak value during an action potential. The
extracted spike snippets were then used to construct the mean
spike-aligned waveform.

Extracellularly recorded signals around a neuron appear to
exponentially decay with recording distance (Rall, 1962; Gray et al.,
1995; Segev et al., 2004; Pettersen and Einevoll, 2008). Thus,
recorded extracellular action potentials have signal-to-noise ratios
that decrease as background activity and electrical noise become
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FIGURE 2

Example spatiotemporal EAPs from simulated single-units. (A) Example model morphology from the thick-tufted pyramidal cell (TTPC) family. Inset

shows EAP waveforms from 31 adjacent channels (black) with center channel (red) at a radial distance of 16.3 microns from the soma. Schematic of

probe placement shows the location of the center channel (red dot) and the orientation of the channels above and below center. (B) Colormap

shows average EAP waveforms from the 50 closest (top, d = 10.41–16.28 microns) and farthest (bottom, d = 65.74–154.24 microns) units across the

TTPC neuron-type family. EAPs were normalized before averaging. Color scale adjusted to the maximum fluctuation of the EAP. Star indicates the

center channel and the intracellular spike time for all units. Center waveform depicted in white. Amplitudes for each channel used to normalize EAPs

(right) show amplitude spread for the n = 50 units. (C) Similar to (A) showing superficial pyramidal cell (PC) family. (D) Similar to (B) showing closest

(top, d = 10.23–13.88 microns) and farthest (bottom, d = 41.10–74.67 microns) units across PC neuron-type family.
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more prominent with increasing distance. This is the case for
both probes situated at large distances from the soma, as well as,
more distally located channels within probes situated closer to the
soma. In order to capture these noise relationships, we modeled
the noise component of extracellular action potentials as Gaussian
distributed noise with a 1/f power law spectrum, where f is the
frequency. A total of 200 independent noise signals were generated
for each channel, then scaled and averaged to match noise levels
fromNeuropixel recordings of rat somatosensory cortex (Marques-
Smith et al., 2018). This process was independently repeated across
all channels resulting in uncorrelated background noise. Finally,
each channel’s waveform was shifted by subtracting the median of
the waveform.

2.4 Selecting canonical multichannel
waveforms

Typically, studies using multichannel recordings of EAPs with
linear probes designate a single channel as nearest to the soma then
orient additional channels symmetrically relative to this channel,
i.e., centering the waveform along the probe. Waveforms are often
excluded from analysis if they do not exhibit a canonical shape,
i.e., if the waveform does not exhibit a prominent negative trough
preceding a prominent positive peak. Our goal is to select centered,
canonical waveforms for further analysis.

Usually, the channel designated as the center channel is the
channel with the largest amplitude waveform (Buzsáki and Kandel,
1998; Somogyvári et al., 2005, 2012; Delgado Ruz and Schultz, 2014;
Jia et al., 2019). However, high-resolution empirical findings and
modeling of EAPs near the axon initial segment (AIS) indicate that
the current dipole created by AP propagation from the AIS to the
soma contributes more to the amplitude of the EAP than the soma
alone (Teleńczuk et al., 2018; Bakkum et al., 2019). Thus, the largest
amplitude waveforms occur between the distal end of the AIS and
the soma.

Because we know the location of the channel closest to the
soma in these modeling studies, we also assessed the reliability of
selecting the channel with the largest amplitude waveform as the
center. This process is complicated by the fact that there may be
multiple channels with comparable large amplitudes. For example,
this can occur when the center channel is sufficiently far from the
soma but a different channel is close to the axon initial segment
(AIS). In this case, the waveforms from the channel located close to
the axon initial segment have spike troughs that occur earlier than
the intracellular voltage peak used for spike detection. With this
in mind, we developed a set of heuristics to center multichannel
waveforms using the amplitude profile from across a linear probe
(Figures 2B, D). We collected each peak in the amplitude profile
that exceeded 60% of the maximum amplitude of the probe. If there
was only a single peak, we took this to be the center channel. If there
were high amplitudes associated with waveforms from multiple
channels, we considered the two locations with the largest peak. The
two waveforms were characterized as inverted or not, based on Ve

at the intracellular spike time. If the potential at the spike time was
greater than the median value of the waveform, then the waveform
was taken to be inverted and rejected as the center channel. After
the center channel was selected, we retained 31 channels for further

analysis—the center channel along with 15 channels above and 15
channels below.

Spike detection often involves defining a negative threshold
for recorded extracellular potentials and taking the nearby trough
as the spike time. Since we have access to the intracellular spike
time, the selected center channel EAP waveforms were classified as
canonical or non-canonical based on potential values around the
intracellular spike time (t = 0 ms) so that non-canonical waveforms
could be excluded from further analysis. In a typical experimental
setting, such waveforms would not be excluded from analyses if
detected; however, we made this choice to ensure that the center
channel waveform was not dominated by the axonal spike nor
inverted due to the soma-AIS current dipole (Teleńczuk et al.,
2018). The known spike time was compared to the time when the
extracellular potential achieved its minimum value. We computed
upper and lower tolerances based on the mean and standard
deviation of the waveform (µ± σ ). We defined waveforms as non-
canonical if they: (1) had a prominent positive deflection greater
than the upper tolerance during the pre-spike interval (−0.21 to 0
ms), (2) had a minimum value that occurred earlier than the pre-
spike interval, or (3) did not have a prominent negative deflection
less than the lower tolerance during the post-spike interval (0–0.42
ms). Non-canonical waveforms comprised <3% of all waveforms
based on these heuristic criteria.

Finally, to ensure the same number of simulated probe
locations for each neuron-type family in our further analysis, the
final dataset consisted of 400 probe locations for each neuron-type
family. These locations were chosen randomly from all simulated
data associated with a given neuron-type family with center channel
waveforms that have the canonical waveform shape.

2.5 Demixing steps

Next we use a machine learning approach to demix the
underlying sources of these spatiotemporal EAP waveforms.
Our demixing approach relies on a multiresolution wavelet
representation of the waveforms followed by tensor decomposition.
Here we describe these steps in more detail.

2.5.1 Organization of the data
Simulated EAPs were organized into a single tensor with three

axes (Figure 1B). The first axis corresponds to the relative spatial
locations and has dimension S = 31 for the number of channels
associated with the simulated probe. The second axis corresponds
to the times associated with each EAP and has dimension T = 128
for the number of time points for each recorded waveform. As
described above, we generate data of dimension S × T for each
probe location for each model, which we now refer to as a single-
unit or simply unit. The third axis corresponds to the final set of
units across the multiple neuron-type models and has dimensions
N for the total number of units (N = 400×21). We useX to denote
the data tensor with dimensions S× T × N.

2.5.2 Wavelet representation
Most feature analyses of single-channel EAP waveforms rely

on readily apparent waveform features, such as trough-to-peak
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duration or slope during an interval of interest, but this approach
limits the analysis to the coarsest of timescales. In order to
discover patterns that are observable across multiple spatial
locations but possibly hidden within different timescales, we
use a multiresolution wavelet representation for each waveform.
Such representations have been shown to result in optimal spike
sorting when used as features for clustering (Quiroga et al., 2004).
Automated feature extraction is applied to each of the S rows of
X producing a wavelet-based feature representation of dimension
W for each single-channel waveform. This feature representation is
denoted by the tensor F with dimensions S×W × N.

Our multiresolution wavelet analysis is implemented using
the PyWavelets Python package (Mallat, 1989; Lee et al., 2019)
and requires a choice of mother wavelet and number of levels.
We use the Haar wavelet because it is real-valued with both
orthogonal and symmetric properties. This symmetry enables
similar representation of EAPs generated by current source dipoles
(e.g., axon-soma dipoles, Teleńczuk et al., 2018) that contribute
to waveform inversion (Figure 3A, left). Further, this symmetry
is conserved by taking the absolute value of all multiresolution
coefficients (Figure 3A, right). At each level, the multiresolution
wavelet analysis reduces the length of a waveform by half in
an iterative process. The total number of levels was determined
based on physiological intervals of interest relative to the spike
time, including the prespike, depolarization, repolarization, and
recovery associated phases of interest. In our final analysis, we
include additional levels to capture less apparent, faster timescale
subdivisions. F is the input for the tensor decomposition at the next
stage of analysis.

2.5.3 Tensor decomposition
Next we applied tensor components analysis (TCA) to the

multiresolution wavelet representation, F. TCA is a higher-
dimensional generalization of principal components analysis with
special properties to optimally handle tensor data and demix data
generated from mixed contributions originating from multiple,
non-disjoint sources (Harshman, 1970; Williams et al., 2018). TCA
has the additional benefit of not requiring orthogonality, and it
allows for interpretations of results in terms of the original axes of
the feature representation.

Our goal is to use TCA to demix EAP sources across the
population of units. We implemented TCA as a non-negative,
canonical polyadic (CP) tensor decomposition with the block
coordinate descent (BCD) method using the Python package
TensorTools (tensortools.ncp_bcd, Williams et al., 2018). This
decomposition results in R non-orthogonal components (sr ,
n
r , and w

r for r ∈ 1, . . . ,R) that approximate the feature
representation as

fi,nk,j ≈

R∑

r=1

srin
r
nkw

r
j ,

where i ∈ {1, 2, ..., S}, nk ∈ {1, 2, ...,N}, and j ∈ {1, 2, ...,W}

(see Figure 1B). Here, the column vectors s
r and w

r for a given
r represent the population-level spatial distribution of an EAP
source across single-units and the relative contribution of the EAP
source across multiple timescales, respectively (Figure 1B). The

column vector n
r represents how prevalent a given EAP source

is for each of the N single-units. Finding the neuron-type source
average using the nr

nk
values for all single-units belonging to the

same neuron-type family yields a neuron-type representation in
terms of the EAP sources and thus represents the probability that
the EAP sources would be observed for that neuron-type. The
reconstruction error and decomposition similarity scores were also
computed using TensorTools and tested for multiple values of R
(Supplementary Figure 1).

In what follows, the column vectors s
r and w

r are termed
spatial sources and multiresolution temporal sources, respectively.
When referring to the spatial and multiresolution temporal sources
corresponding to the same r, we use the term EAP source. The
numerical values of these two components are referred to as their
contributions, e.g., the spatial source s1 has a contribution of s1i at
the ith channel. Thus, in our results, we show contributions for
both spatial courses (Figure 4, left) and multiresolution temporal
sources (Figure 5B). In contrast, the column vectors nr are termed
the single-unit source prevalences and their numerical values are
referred to as the prevalence for the corresponding unit.

2.6 Morphometric analysis

All morphometrics were computed from the NeuroML format
description for each model (Gleeson et al., 2010), where each
reproduces the morphological description from the original Blue
Brain Project model (Markram et al., 2015). This XML-based
language enables flexible, automated extraction of compartment
details using the ElementTree XML API in Python, as well as
computation of model morphological features. NeuroML specifies
the structure of morphologies within a nested hierarchy of parent-
child relationships between compartments (Crook et al., 2007).
Each compartment (segment element) is specified by the xyz-
coordinates and radius for the proximal and distal ends of the
compartment. All neuron-type model segments were specified as
belong to somatic, axonal, basal dendrites, or apical dendrites
segment groups, using the segment labels provided in the original
Blue Brain Project models.

We computed morphological features of the most proximal
compartments of the neuron model for use in further analysis.
This approach is based on modeling results demonstrating that
overall differences in the cross-sectional area and distance from the
soma of local neurites are reflected by the amplitude variability of
EAPs (Pettersen and Einevoll, 2008; Teleńczuk et al., 2018). For
the somatic group, we computed the overall soma height in the
Y-dimension (i.e., depth axis of cortex), the number of segments
with the soma as a parent (known as stems), and the total cross-
sectional area (CSA) of all stems. The CSA was computed as
π(d/2)2 where d was the diameter of the proximal end of the
stem (Figure 6A). Many neuron-types have multiple basal dendritic
stems that project in several directions. We divided the basal stems
into upper and lower divisions by bisecting the somatic segments
into upper and lower groups based on the somamid-point in the Y-
dimension (Figure 6A, soma Y-mid). For the basal dendrite group,
we computed the total number of basal stems, the total CSA of
all stem segments as well as the CSA for the upper and lower
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FIGURE 3

Feature representation and selection of number of EAP sources. (A) (left) Normalized EAP waveforms at two example channel locations from the

same simulated unit illustrate a canonical waveform (top) and an associated inverted waveform (bottom). Such waveforms indicate a common

source, e.g., a soma-axon current dipole. As indicated in the text, each temporal waveform represents 5.6 ms. (right) Multiresolution analysis using

Haar wavelets results in multiresolution wavelet representations (black curves) shown grouped by resolution levels (vertical gray bars). Resolution at

each level between gray bars is given by dw where the exponent k is indicated by the dot color legend. Each level consists of multiple coe�cients

ordered in time and corresponding to the convolution of the Haar wavelet associated with that level. The absolute values of the multiresolution

wavelet representations are used as the input to TCA (red curves). (B) When performing TCA, we must select the parameter value for the number of

sources, R, based on similarity and performance. The result of TCA is a set of matrices with dimensions S× R, W × R, and N× R. For each source

count parameter value from 1 to 19, four independent demixings are trained to the data. The model with the lowest reconstruction error is taken as

the target model for computing similarity scores among the remaining three models (similarity scores gray circles). Source counts are selected for

further testing if the average source similarity (red curve) is >99%. (C) Each source count with su�cient similarity is used to classify morphological

classes using a random forest classifier, and the performance accuracy for each is plotted with 95% bootstrapped confidence intervals.

stem divisions. We also computed the average Y-locations of the
basal terminal ends (Figure 6A, yterm) for the upper vs. lower stem
groups. Those neuron-type models that have apical domains have
at most two, projecting upward, downward or in both directions.
We also computed the CSA of the upper and/or lower apical stems.
For the axonal group, we computed the stem CSA of the most
proximal segment in addition to noting whether it belong to the
upper or lower division of soma. Finally, we determine the proximal
and distal Y-locations of each neurite stem (Figure 6A, defined as
compartments starting at the soma and extending up to the first
branch, yprox and ydist) as well as the distal Y-locations of neurite
terminals (Figure 6A, yterm).

2.7 Bootstrapped canonical-correlation
analysis

Canonical correlation analysis (CCA) is a cross decomposition
method for finding the linear combination of two random

variables that maximizes correlations between the variables. We
applied CCA to determine how predictive the single-unit source
prevalences were of local morphometrics. To implement CCA, we
use the SciKit-Learn cross_decomposition library in Python. We fit
R independent CCA models to the matrix of morphometrics for
each neuron-type model, M, and the matrix of randomly selected
single-unit source prevalences for each neuron-type model and
corresponding to source r, Pr for r ∈ 1, . . . ,R. For all CCA
models, we took n_components to be 1. We adopted a bootstrapped
approach to CCA where the matrices M and P

r were independent
constructed on each bootstrap iteration. We describe the matrices,
their construction and bootstrap algorithm below.

LetM be the X×M matrix of morphometrics for each neuron-
type model where the total number of neuron-type families is given
by X and the total number of morphometrics to be predicted is
given byM. In other words,m

j
i of matrixM is the jth morphometric

of the ith neuron-type model. Let P
r be the X × P matrix of

single-unit source prevalences where P is a fixed number of source
prevalences that are randomly selected from the total number of
source prevalences corresponding to the same neuron-type model
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and r corresponds to the rth source, as above. In this case, pki of
P
r corresponds to the kth source prevalence of source r and the ith

neuron-type model.
At every bootstrap iteration, one neuron-type model is

randomly selected from each of the X neuron-type families.
The matrix of morphometrics M is then populated by the M

morphometrics of the X selected neuron-type models. For the
source prevalence matrix, we populated the matrix P

r with 50
randomly sampled (with replacement) source prevalences for each
of the 21 selected neuron-type models and demixed source r.
Matrices M and P

r were then standardized using the Python
StandardScaler before fitting the CCAmodels.We computed a total
of 1,000 canonical-correlations using the above sampling approach
and repeated the bootstrapped CCA for each demixed source.

2.8 Random forest classification

We estimate the limits of using single-unit source prevalences
for each unit by training random forest classifiers. Random forest
classification uses several decision trees as estimators and averages
the classification accuracy by averaging over the estimators.
We implemented the random forest classifier from the SciKit-
Learn ensemble library. Random forest classifiers were trained
using the single-unit source prevalences as features. The training
labels were one of three groupings: (1) neuron-type family, (2)
discovered morpho-electrophysiological groups, or (3) excitatory-
inhibitory types. For all random forest classifiers, we use five-
fold cross-validation. We used the built-in grid search method
hyperparameters max_depth and n_estimators which control the
depth of the decision tree and the number of decision tress to
average over, respectively (Supplementary Figure 2). From the grid
search, we selected the parameter combination resulting in the
greatest classifier performance (using the out-of-bag score). The
final classification accuracy for any given label grouping was scored
based on withholding 20% of the units for the test set prior to
performing the grid search. All confusion matrices were based on
the test set of the final classifiers. The importance of each feature
was obtained from the final random forest classifier models using
built-in methods. We computed the impurity-based importance
(Gini importance) using the default feature_importances_ method
for RandomForestClassifier in Scikit-learn.

In order to assess the relative performance of our demixed
source prevalences in classification tasks, we compare to a
more traditional approach using multiple, single-channel features
extracted from the center waveform and twomultichannel features.
The single-channel features include peak-to-trough duration,
depolarization half-width, peak-to-trough ratio, repolarization
slope, and recovery slope. The trough is defined as the minimum
value of the waveform, and the waveform peak is the maximum
value following the trough. Depolarization half-width is defined as
the time difference between the waveform values corresponding
to 50% of the waveform trough voltage. The repolarization and
recovery slopes (µV/ms) were calculated using the value of
the waveform at the trough and peak, respectively, along with
the values 30 µs after. We included two multichannel features:
multichannel spread and total propagation velocity. The spread
is defined as the range in distance in microns across all channels

with amplitudes >12% of the maximum amplitude. For the total
propagation velocity, first we extract the time of the trough for
all channels. We then compute the absolute value of the median
slope (µm/ms) between the center channel and all channels above
(propagation velocity above) and also below the center channel
(propagation velocity below). Slope is defined as the distance
between channels divided by the time difference of the troughs. The
total propagation velocity is then taken to be the sum of the two
slopes from above and below. We applied a random forest classifier
as defined previously with the added constraint that max_features

is taken to be four, the number of sources we are comparing
against. This has the effect that only four randomly chosen (without
replacement) features are used to construct a given random tree
within the ensemble.

2.9 Clustering methods

To benchmark the performance of our methods, we performed
standard unsupervised learning to group single-unit source
prevalences into putative excitatory and inhibitory types to
compare to their true class labels. We applied k-means and
agglomerative clustering from the SciKit-Learn cluster library and
Gaussian mixture models from the mixture library. In the case of
agglomerative clustering, we applied both Ward’s method and the
average linkage method for merging the hierarchical clusters. In
all cases, Euclidean distance was used as the distance metric. We
also took the number of groups (either n_clusters or n_components)
to be two. To assess how well each method performed on this
benchmark, we computed the percent correct clustered using the
the true labels.

3 Results

3.1 Unsupervised discovery of EAP spatial
and multi-timescale dynamic patterns of
EAP sources

Here we describe the overall demixing strategy for discovering
reliable morpho-electrophysiological (ME) types across
multichannel recordings of EAPs. The approach is validated
using biophysical simulations from morphologically-realistic
cortical neuron models. Overall, the strategy finds a reduced
set of population-level spatial patterns (spatial sources) and
multiresolution dynamics (temporal sources) that describe
variability across simulated or recorded EAP waveforms. These
EAP sources expose the contribution of specific morphological
domains and electrophysiological phases to EAPs. Each unit can
be represented by different relative contributions (prevalences)
of these spatial and temporal sources. A major strength of this
approach is its ability to uniquely represent each unit within a
given dataset as a combination of EAP sources which are predictive
of ground-truth morphological properties. We can also find the
prevalence of these sources at different spatial locations, times, and
timescales across neuron-types.

Our strategy consists of four stages. First, automated
feature extraction is used to represent multiresolution dynamics
of EAPs recorded on individual channels. Second, a tensor
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decomposition is obtained that represents each of the isolated
units in terms of shared multiresolution dynamic patterns across
channel locations (i.e., demixing of EAP spatial and temporal
sources). Third, a supervised method demonstrates the limits
of this approach for multiple parameterizations of the tensor
decomposition. Finally, a latent morpho-electrophysiological space
is constructed to represent neuron-types using single-unit (SU)
source prevalences. We show that neuron-type representations
in the morpho-electrophysiological space are correlated to local
model morphometrics. We also use these representations for
unsupervised clustering of neuron-types.

Our strategy emphasizes the analysis of demixed EAP sources
that summarize the trial-by-trial variability across the single-unit
EAP spatiotemporal waveforms (Figure 1B) without trial averaging.
These demixed EAP sources describe how each single-unit differs
based on shared temporal dynamics across multiple timescales
and where those patterns are more localized relative to the soma.
These EAP sources can be examined to generate hypotheses
about how populations of latent neuron-types can be discovered
from multichannel recordings. Interpretations of EAP sources
are supported by correlating the single-unit source prevalences
with local morphometrics to predict the morphological properties
discovered through demixing EAP sources.

3.2 Four source model approximates
multichannel EAP waveforms and predicts
neuron-type families

When applying tensor components analysis (TCA), we must
choose an appropriate number of components to describe the data
(see Section 2.5.3). This approach discovers a low-dimensional
representation of the dataset. Additionally, random initiations can
lead to quantitatively different solutions. We found that there
were qualitatively similar patterns across random initiations despite
differences in the exact solutions. In order to constrain the demixed
source model, we studied the applicability of TCA by comparing
independent trainings of the model, determining a similarity score
for each number of sources (or components).

We first varied the number of sources and tested four
independent trainings. We found that the average similarity
scores were larger than 99% for up to four EAP sources before
rapidly decaying (Figure 3B). While the standard experimental
setting would not have access to ground-truth information on
morphological types, the use of computational models from defined
neuron-type families facilitated further constraining the number of
desirable EAP sources. To that end, we determined the predictive
power of the demixed source models for up to four sources using
a random forest classifier. Each classifier was trained to predict
the neuron-type family of a simulated unit based on the single-
unit source prevalences. We found that the classification accuracy
steadily increased with the addition of each new source (Figure 3C).

These results identify four unique sources that most contribute
to spatiotemporal patterns shared across multiple neuron-types
recorded on linear probes (Figure 4). Note that we ordered the EAP
sources by decreasing importance of each source to classifying the
neuron-type families using the random forest classifier (Figure 7D,

top). By visualizing the spatial and multiresolution patterns
associated with each source, we found that patterns discovered
using fewer sources were qualitatively reproduced in the final four
source model. This suggests that the discovered EAP sources may
reflect fundamental differences across neuron-types that could be
reproduced across many conditions.

3.3 Multiresolution temporal sources
reflect di�erent action potential phases

We proposed that the discovered four source model reflects
fundamental differences across neuron-types. In order to evaluate
that proposition, we investigated how the multiresolution temporal
and spatial patterns of the EAP sources could be interpreted in
terms of the electrophysiology and morphology of the neuron-type
models, respectively. We first reconstructed the four EAP sources
in terms of the multiresolution temporal patterns and interpreted
the approximated dynamics of each source.

We divided the dynamics of the canonical waveform of
the somatic action potential into electrophysiological phases
(Figure 5A, top). We took the canonical waveform to be the average
of all somatic IAPs (normalized and aligned by their peaks).
The elecrophysiological phases were defined as: capacitive (I),
depolarization (II), repolarization (III), and recovery (IV) phases.
We then mapped these phases onto the canonical waveform of
the EAPs closest to the perisomatic region (Figure 5D, bottom).
We next reconstructed the dynamics by taking the product of
the contributions of the discovered multiresolution patterns and
Haar wavelets at the corresponding times and timescales. Since the
EAP sources are all expressed as non-negative contributions, the
resulting source reconstructions primarily reflect the magnitude
of the contribution in time for a reconstructed temporal source.
We found that the reconstructed source dynamics exposed
electrophysiological phases with themost variability across neuron-
type models, and that the dynamics predominately differed in the
repolarization and recovery phases across all models (Figure 5B,
gray regions).

More specifically, Source #1 is associated with changes in the
recovery phase (centered at 2.1 ms), as well as fast changes during
the capacitive phase (Figure 5B). Recall that this source was the
most important source for classifying neuron-type families. The
variability for all IAPs peaked during the initial part of the recovery
phase at ∼1.75 ms. Due to the delay between the time of peak
variability of IAPs and the time of peak contribution after the spike
time of Source #1, we conclude that this source is likely associated
with propagation into dendrites. Further, the high contribution
during the capacitive phase also points to plausible propagation of
strong axial currents into large dendritic compartments (Gold et al.,
2007). Together these results suggest that Source #1 may reflect
active dendritic processes activated by backpropagation, similar to
results found by Jia et al. (2019). This is the subject of ongoing
further research.

The next most important sources were Sources #2 and #3
in that order. Source #2 is associated with increasingly rapid
fluctuations starting at the beginning of the recovery phase. This
sourcemonotonically increases in themagnitude of its contribution
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FIGURE 4

Summary of final demixed EAP sources. (A–D) The normalized contribution of each EAP source at the 64 channels along the probe. The center

channel is taken to be closest to the putative perisomatic region of all neuron models. The multiresolution temporal sources (middle) describe the

contribution of each EAP source across multiple timescales (black curves, gray lines show grouped timescales), as in Figure 3A. In other words, the

values of each spatial and multiresolution temporal source reflect the contribution of that EAP source in space and time to the EAP waveforms.

Source prevalences (right) were averaged within neuron-type families. Error bar depicts 1 standard deviation. Shown prevalences were normalized by

their maximum values.

with time. As it is least present during the active phases of the
action potential and it contributes at channel locations most distal
from the soma, we concluded that Source #2 reflects the constant

background noise level present in all extracellular recordings. In
contrast to Source #1, Source #3 is associated with the middle of the
recovery phase (centered at 2.8 ms) and its contribution is observed
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FIGURE 5

Multiresolution patterns reveal underlying electrophysiological phases. (A) Normalized canonical IAP (top) and EAP (bottom) waveforms show

variability within electrophysiological phases of interest (I–IV). The average (black) of the action potentials represent the canonical IAP shape. The

corresponding EAPs (gray) and canonical EAP (white) at the center channel across the probes (bottom) are labeled based on the phases of the

canonical IAP. (B) The contributions of the multiresolution temporal sources (right) were reconstructed, yielding their temporal dynamics, to illustrate

the contribution relative to the spike time (gray dashed line). Intervals with larger contributions of multiresolution temporal sources are depicted in

gray. Insets show the corresponding spatial sources.

on a slower timescale. Additionally, Source #3 peaks at greater
distances (± 60 µm) from the soma while also contributing the
least nearby the soma. This, together with the smaller contribution
from the capacitive phase, points to propagation of the action
potential into more distal regions of dendrites. As these distal
dendrites have weaker axial currents due to their smaller diameters,
their contribution can likely only be observed when the more
dominant contributions of larger dendritic compartments and the
soma have dissipated.

Finally, Source #4 is associated with fast timescale differences
during the repolarization phase that partially carry over into
the recovery phase. This source mostly contributes at channels
nearest to the soma. Unlike other EAP sources, this source
retains nearly 50% of the peak spatial contribution across all
channels (Figure 5B inset, Figure 4D). Because of this wide
reaching contribution, the peak at the center channel, and
its association with the repolarization phase, it’s likely that
Source #4 is largely due to differences in the somatic and AIS
currents which dominate EAPs (Bakkum et al., 2019). The two
additional peaks aren’t interpretable at this stage of analysis.
Interestingly, the variability in this phase has historically been
exploited for classifying units from single-channel recordings as
putative excitatory and inhibitory types by computing spike half-
widths or spike durations. This variability is apparent by visual
examination of the EAP waveforms at the center channel during
the repolarization phase (Figure 5A, bottom). However, this was
the least important source for classifying neuron-type families as
previously indicated.

3.4 Spatial sources reflect the population
density of di�erent morphological domains

We now visit the problem of interpreting the spatial sources in
terms of the morphological properties of the neuron-type models.
Cortical neurons can exhibit both symmetry in morphological
domains and certain deep-superficial layer biases. For example,
deep layer cortical pyramidal cells often have large apical dendrites
that project superficially. However, some cortical pyramidal cells
exhibit apical dendrites that project toward deeper layers or
even bidirectionally. Differences between EAP sources were most
apparent in the patterns of the spatial sources (Figure 4, left
column). Each spatial source exhibited symmetry about the center
channel (soma region) in the approximate locations of their peak
contributions with slight deep or superficial layer biases in the
exact contribution. As evidenced by the analysis of multiresolution
temporal sources, the patterns associated with each of the spatial
sources may reflect differences in propagation of the AP into
proximal or more distal dendrites. Excluding Source #2 associated
with background noise, we asked whether the spatial sources
were related to the spatial distributions of different morphological
domains along the axis of the simulated probes.

We divided the neurites of the neuron-type models into
three domains: AIS, basal, and non-basal/apical (Figure 6A). We
computed multiple features for each these morphological domains
along the axis of the simulated probes and relative to the soma
center for the respective neuron-type models (Figure 6A). We first
found the proximal locations of each stem (yprox), the locations of
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the first branch of each stem (ydist), and the locations of all terminal
ends of a stem (yterm). From these, we then computed for the
morphological domains of each neuron-type model: the maximal
extent of each domain for upper and lower divisions of the soma,
the average locations of the initial branch of each stem for upper
and lower divisions, and the average locations of terminal ends for
upper and lower divisions. By comparing the population densities
of these features for the different domains to the spatial sources, we
found that the contribution of the spatial sources along the probe
axis reflected different morphological domains.

As mentioned above, we hypothesized that Source #1 has a
delayed contribution to EAPs that peaks during the initial part
of the recovery phase. We found that the spatial contributions
peaked ∼40 µm above and below the center channel. Source #1
is largely associated with both the average location of the first
branch of apical dendrites and the average locations of apical
terminals (Figure 6B). While these were plotted together to show
this relationship, the upper peak (40 µm) is mostly associated with
the first branch location of apical trunks while the lower peak (−40
µm) is mostly associated with the apical terminals. Additionally,
the rising contribution near 150 µm also reflected apical terminals.
Alternatively, we hypothesized that Source #3 is associated with
smaller compartments in the distal regions of dendrites due to its
delayed contribution and relatively small contribution during the
capacitive phase. Here we found that Source #3 followed a pattern
similar to the spatial distribution of basal terminal ends across
neuron-type models.

In the previous section, we were not able to interpret
the upper and lower peaks of Source #4 based solely on the
reconstructed temporal source dynamics. We found that any
one single morphological domain was not able to reproduce the
locations of the peaks in the spatial source. Instead, the central peak
was associated with the combined distribution of average initial
branch locations for all stem domains. Alternatively, the upper and
lower peaks located at 120 and −100 µm, respectively, followed
the upper and lower maximum extent of basal dendrites. Note that
the basal dendrites were often present at farther distances from
the soma than the spatial source would suggest. It’s likely that the
background noise overcame the contribution of the most distal
basal terminal ends. Further, the average terminal ends of basal
dendrites of Source #3 correspond to the lowest points of the Source
#4, suggesting a different underlying mechanism. Together these
results suggest that the two additional peaks correspond to current
sinks associated with the current source during the repolarization
phase of the somatic action potential as opposed to the contribution
of active dendritic processes to the EAP.

3.5 Single-unit source prevalences predict
local morphological properties

We demonstrated plausible underpinnings of the demixed EAP
sources by examining the relationship between temporal sources
and electrophysiological phases of the action potential, as well as
between spatial sources and spatial distributions of morphological
properties. These EAP sources contain information about the total
population of neuron-type models. What remains to be seen is how
the variability in these population-level patterns at the individual

unit level is reflected in the single-unit source prevalences. Are
the associated single-unit source prevalences predictive of biases in
morphology?

To address the question of whether we can identify key
biases in morphology from source prevalences, we performed a
bootstrapped canonical correlation analysis (CCA). We estimated
the cross-covariance matrix between the local morphometrics
across the neuron-type models and 100 single-unit source
prevalences randomly sampled with replacement from the
corresponding neuron-type models and repeated this process 1,000
times. This enabled discovery of the canonical co-variate that
describe the relationship between these two representations of
the neuron-type models. By computing the correlation coefficient
(Pearson’s R) for the local morphometrics and canonical covariate,
we estimated how well the single-unit source prevalences predict
local morphometrics. We found that overall the single-unit source
prevalences predominately vary with asymmetries in neurite CSAs
(Figure 6C).

Bootstrapped CCA showed that neurons with more apical
terminals had larger contributions from Source #1, congruent with
previous analyses. Additionally, these neuron-types also had axons
with larger CSAs that projected downward. While the total CSA
of apical stems varied with the prevalence of this source, it also
varied more if that stem was superficially oriented. The inverse
relationship between the soma height along the probe axis and the
prevalence of Source #1 seems to suggest that there is a trade off
between the stem geometry above and the size of the soma. Source
#2 appeared to be inversely related to all stem CSAs with some
biases in the upper and lower division. This was expected as the
total stem CSA is proportional to the maximum amplitude of EAPs
(Pettersen and Einevoll, 2008), and we associated Source #2 with
the background noise level. Interestingly, neurons with larger basal
stem CSAs were inversely related to Source #3 while larger stem
CSAs in the upper division varied with the source prevalence. This
upper-lower bias is reflected in the profile of its spatial source. This
may be explained by the fact that neurons with basal dendrites also
tended to have larger non-basal/apical dendrites, resulting in more
contribution from Source #1 than Source #3 as their corresponding
peaks in spatial prevalences occupied similar channel regions.
Finally, Source #4 was largely correlated with increasing soma and
axon sizes, but also positively varied with the total CSA of all other
neurites as well.

3.6 Single-unit source prevalences
di�erentially scale with recording distance

For the final interpretive analysis, we asked whether neuron-
type specific differences in source prevalences predictably vary with
recording distance and do these variations support our predictions
about the underlying electrophysiology? Our previous analyses
implicated specific source-morphological domain relationships.
Source #1 was associated with the apical domain, Source #2 with
background noise, Source #3 with the basal domain, and Source
#4 with the soma-AIS domains (Figure 6D). Given the predicted
morphological domains contributing to each EAP source, we found
that the single-unit source prevalences scaled with distance mostly
as expected.
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FIGURE 6

Relationships between model morphologies and demixed EAP sources. (A) Schematic of multi-compartment models showing di�erent

morphological domains. (B) Bar plots depict spatial profiles for di�erent stem geometries relative to discovered spatial sources (as depicted in

Figure 4, left column). The spatial sources are scaled to illustrate shared patterns. (C) Bootstrapped canonical correlation analysis shows the

relationship between morphometrics and SU source prevalences. (CSA, cross sectional area; U, upper; L, lower). (D) Scatter plots illustrate the

di�erences in SU source prevalences across recording distances, radial distance r along XZ-plane, for each neuron-type family and relative to the

nearest recording distance (∼10 microns for each). Linear regression (red) and binned averages (black, bin size = 10 microns) indicate whether the

source tended to increase or decrease with distance from the putative perisomatic region.

Recall that each neuron-type family consists of five
morphological variants. Here we grouped all single-unit source
prevalences within their respective families. From there, we took
the source prevalence of the unit nearest to its corresponding
neuron-type model within a family and computed the differences
in source prevalence of all other units relative to the source
prevalence of the nearest unit (Figure 6D). The prevalence
of Sources #1 and #3 associated with dendritic domains both

increased with recording distance. In contrast, the prevalence of
Source #4, associated with the soma-AIS domains, decreased with
distance. It is known that the contribution of somatic currents
to EAPs decays with increasing recording distance while the
contribution from dendritic currents increases with distance
(Buzsáki and Kandel, 1998; Pettersen and Einevoll, 2008). This is
largely due to the low-pass filtering properties of dendrites and
the extracellular space (Bédard et al., 2004; Pettersen and Einevoll,
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2008). Since the contribution of the soma to EAPs decays with
distance, the background noise level should increase with distance,
as well. As expected, Source #2 associated with the background
noise increased with recording distance.

Our analysis also revealed that the prevalence of the
contribution from the apical domain scales more strongly with
distance compared to the basal domain. Additionally, the slope
of the prevalence scaling of the background noise and the basal
domain contributions were comparable. We previously noted that
the spatial distribution in the basal domain peaked at greater
distances than the spatial profile of Source #4 (Figure 6B). The
comparable scaling in prevalence of Sources #2 and #3 supports
that the noise level eventually overcomes any contribution from
the basal domain at more distal recording sites along the probe
axis. This is not immediately observed by examining Source #4
in isolation.

3.7 Neuron-types primarily di�er in the
prevalence of apical and noise sources

We now examine the problem of identifying neuron-type
families using the single-unit source prevalences. We constructed
a latent morpho-electrophysiological space using the source
prevalences. The main goal in constructing this space is to
determine the expected representation of neuron-type families
under the four source model. Additionally, we aim to determine the
robustness and accuracy of these neuron-type representations while
defining a hierarchy of morpho-electrophysiological types based on
their similarity within this space.

Each neuron-type family was represented by the corresponding
centroid of the single-unit source prevalences (Figure 7A).We used
bootstrapping to compute median centroids using 1,000 datasets
where each dataset consisted of 80% of the total dataset obtained
by random sampling with replacement. Three broad classes of
neuron-type families corresponding to thick-tufted pyramidal cells
(red), all other excitatory cells (orange-yellow), and inhibitory
cells (green-blue) can be visually identified within this space using
only Source #1 and #2. This further illustrates a trade-off between
the contributions from the apical domain and background noise.
Thick-tufted pyramidal cells have the largest apical trunks and are
well isolated within this space. While many of the other excitatory
families have apical dendrites (orange-yellow), they have noise
levels that are comparable to the interneuron families (green-blue).

We examined the limits of this approach for identifying the
neuron-type families by training a random forest classifier to
predict the neuron-type family from the single-unit representations
in the morpho-electrophysiological space. We found that the
average classification accuracy across morphological types was
∼60% (Figure 7B). Thick-tufted pyramidal cells (TTPC) and
bipolar interneurons (BP) were the most likely to be correctly
classified while six neuron-type families could not be identified
above 50%. However, the majority of misclassifications occurred
within excitatory and inhibitory groups as evidenced by the
confusion matrix (Figure 7C). The importance of each source for
classifying neuron-type families supported that Sources #1 and
#2 best predict neuron-types from single-unit source prevalences
based on the random forest classifier (Figure 7D, top). Further,

we computed the variability in prevalence for each source
and compared that to the neuron-type specific variability for
each source and found that neuron-type families were well
separated with respect to the morpho-electrophysiological space
(Figure 7D, bottom).

3.8 The four EAP source model defines a
hierarchy of neuron-types robust to
multiple sampling biases

In the previous section, we found that the single-unit
representations within morpho-electrophyiological space were
sufficiently separated to classify individual neuron-type families
60% of the time on average. We took this to be the lower limit of
our neuron-type identification strategy based on EAP waveforms.
We constructed a hierarchy of latent morpho-electrophysiological
(ME) types, where our goal was to establish broad classes of neuron-
type families with similar representations in the constructed space
that could serve as a plausible multi-level classification scheme.

The hierarchy was defined by computing a distance matrix
for all neuron-type representations (Figures 8A, B). We assigned
the neuron-type representations based on the distance matrix
between bootstrapped centroids. We chose a distance threshold for
assigning the families to ME-types that yielded a hierarchy which
contained six broad classes of neuron-type families that were most
similar to each other within morpho-electrophysiological space
(Figure 8C; Supplementary Figure 3A). As expected, excitatory and
inhibitory representations are consistently closer to other members
within their respective EI class (Figures 8B, C). While excitatory
families make up∼57% of the total neuron-type families used here,
the hierarchy illustrates that twice as many excitatory classes can be
determined from EAP waveforms than inhibitory classes.

We performed a “leave-one-out” analysis that excluded a
specific ME-type and performed the demixing analysis on data
from the remaining types. As each ME-type is defined based on
neuron-type families with similar representations, this analysis
accounts for sampling biases that would exclude similar EAPs
and could potentially impact our results as early as the recording
step. Discovered EAP sources exhibited average similarity scores
>92% despite the exclusion of differentME groups (Figure 8D).We
then assessed the ME-type hierarchy as a multi-level classification
scheme using random forest classifiers. We found that all
units could be correctly classified as an ME-type ∼70% of the
time on average (Figure 7E; Supplementary Figures 3B, C). This
was roughly a 10% improvement above classifying neuron-type
families. Additionally, excluding any ME-type from the entire
pipeline resulted in only small changes in classification accuracy
(approximately−4 to 6%, Figures 8E, F). A decline in classification
accuracy was observed only from exclusion of thick-tufted
pyramids (E1), and star pyramids and untufted pyramids (E2). In
the remaining cases, classification accuracy actually improved by as
much as 6% (when excluding I1-type neuron-types, Figures 8E, F).

Since the contributions from the four spatial sources were
the easiest to qualitatively compare, we examined the qualitative
correspondence of the spatial sources discovered from the
exclusion datasets. We found that the peak location of each of
the sources was the same across all exclusion conditions and the
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FIGURE 7

Source prevalences for units predict neuron-type model families. (A) Each point in the scatter plot corresponds to a unit (a model and probe

location), where the color indicates the neuron-type family (color legend on the right). The location of the point corresponds to the source

prevalence for the sources shown on the axes. This 4-dimensional space illustrates the latent morpho-electrophysiological (ME) space and shows

the contribution of each source to recorded multichannel EAPs. The expected demixed representation of each neuron-type family (neuron-type

representation, colored squares) are depicted by the bootstrapped centroids using 1,000 random subsamples. (B) Average prediction accuracy for

random forest classifier (out-of-bag score) is shown for each neuron-type family. Dashed line depicts 50% threshold. (C) Confusion matrix from

random forest classifier across all neuron-types. Neuron-type labels show excitatory (red) and inhibitory (blue) families. Ground truth is comprised of

model neuron-types, and predictions are predicted model neuron-types. Color indicates probability of predicted neuron-type family normalized by

row. (D) Feature importances estimated by random forest classifier using 100 random subsamples of simulated units (top). Dashed line depicts the

threshold for equally weighted importances. 95% confidence intervals are too small to show. Coe�cient of variation for change in prevalence with

distance (bottom) across all units (gray bars) and average values for each neuron-type family (black lines, error bars are one standard deviation).

overall shape was nearly identical. The greatest difference across
all exclusion conditions was seen in Source #3 when the E3 group
was removed. Despite this ME group not having the largest source
prevalences for Source #3, the exclusion of the E3 group resulted
in a decrease in the upper peak of Source #3 indicating that E3
was the largest source of variability within that region. Overall,
the consistent qualitative correspondence of EAP sources across all
conditions point to our demixing strategy being robust under many
different conditions.

3.9 Demixed representations enhance
model selection and accuracy for
neuron-type identification

As a benchmark for the performance of our strategy,
we assessed the accuracy of our approach in identifying
putative excitatory and inhibitory units in both supervised
and unsupervised contexts. A random forest classifier trained
to classify excitatory and inhibitory classes demonstrated high
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FIGURE 8

Demixing sensitivity to exclusion of neuron-type families. (A) Example neuron-type source prevalence representations for thick-tufted pyramidal cell

(TTPC), pyramidal cell (PC), and bitufted cell (BTC) families with example morphologies. Error bars depict one standard deviation. (B) Distance matrix

for neuron-type representations based on source prevalence centroids for each neuron-type family shown in Figure 7A. Excitatory and inhibitory

populations are labeled in red and blue, respectively. Matrix color values range from 0 to 1, representing the normalized Euclidean distance between

these centroids in feature space. (C) Reduced dendrogram based on neuron-type representations illustrates morpho-electrophysiological (ME)

hierarchy. (D) Multiple demixed characterizations are learned for di�erent combinations of excluded neuron-type families based on ME hierarchy and

their similarity scores (black circles). The average similarity (red line) depicts how excluding di�erent ME-types impacts the overall quality of the

demixing. (E) The performance of random forest classifiers are compared for each exclusion condition relative to the original demixing. (F) Resulting

spatial source contributions for all exclusion conditions (colored lines) and the original demixing (black line) demonstrating robust qualitative

correspondences in EAP sources.

accuracy (∼96%) using predominately the prevalence of Source #1
(Figures 9A, B). Recall that Source #1 reflects the contribution of
apical dendrites to the initial recovery phase of EAP waveforms
surrounding the soma region (−40 to 40 µm). The prevalence
of this source was largely absent from units of inhibitory families

(Figure 9C). The non-zero source prevalence may reflect inhibitory
types with basal dendrites that have larger CSAs which could
be termed apical-like, i.e., elongated basal dendrites with delayed
branching that were more aligned with the probe axis. We also
compared how well different clustering methods could separate
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FIGURE 9

Performance of EI classification based on source prevalences. (A) Classification accuracy of random forest classifier for excitatory (E) and inhibitory (I)

populations. Dashed line shows 50% accuracy. (B) Feature importance for random forest classifier. (C) Histogram of most important feature (Source

#1) for distinguishing E vs. I simulated units. (D) The location of each point in the scatter plot represents the source prevalences for the first two EAP

sources. The color of the point depicts the actual EI class for the corresponding unit. (E) Results from implementation of multiple unsupervised

methods used to discover two groups corresponding to E- and I-types. Percentages are the average true positive rates.

excitatory and inhibitory neurons using the source prevalences
(Figure 9D). All methods could correctly identify more than 90%
true EI classes for the units (Figure 9E).

Finally, we assessed the performance of the four source model
compared to a more traditional approach using engineered features
(see Section 2). We trained random forest classifiers for each of the
classifications (EI-types,ME-types, and neuron-types) and consider
this as a baseline for classification performance. Comparisons
between four source and baseline classifications were based on
model accuracy and the number of relatively important features.
We found that the performance of the four source model exhibited
comparable performance to the baseline classifiers for both EI types
(97 and 98%, respectively) andME types (83 and 81%, respectively).
However, baseline classifiers required a larger number of features

to attain comparable performance (indicated by relative feature
importances as shown in Supplementary Figures 4A–C, left).

For EI classification, the ratio of important features of the
four source classifier to baseline classifier was 1:2 (Figure 9B;
Supplementary Figure 4A). Here the repolarization and recovery
slopes contributed the most to classifier performance as
opposed to more traditional features used such as waveform
duration or half-width. For ME-type classification, the ratio
of important features was 1:4 (Supplementary Figures 3C,
4B). While the ME classes were defined within the latent
ME space of the four source model, potentially exaggerating
this difference, this result suggests that the prevalence of the
discovered apical source may also contribute to variability in
waveform duration.
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The most significant difference in performance for the baseline
features vs. the four source features was for classifying neuron-
type families. The ratio of important features was 2:3 (Figure 7D;
Supplementary Figure 4C). While not a dramatic difference in the
number of important features, the baseline performance was 58%
for classifying neuron-type families compared to 63% for the
four sourcemodel (Supplementary Figure 4C; Figure 6B). Together
these results suggest the most significant benefit of our approach
is the unsupervised discovery of novel features for enhanced
identification of neuron-types.

4 Discussion

We demonstrate a machine learning approach for the
unsupervised discovery of features for neuron-type identification.
Our goal was to find differentiating patterns in EAP waveforms
across space that span multiple timescales. To that end, our
approach adopted a demixing strategy consisting of two stages:
(1) multiresolution waveform representation and (2) tensor
decomposition. We included models from a diverse set of
cortical neuron-type families and performed forward modeling
of EAPs for more than 100 morphological variants. One
advantage of our study was the incorporation of empirically-
based conditions for background noise. Another feature was the
implementation of detectability ranges caused by the attenuation of
extracellular potentials with distance, consistent with experimental
observations. Combining these two aspects enhanced the
heterogeneity of our training dataset and generalized our results
beyond previous modeling studies.

Our approach discovered features that reflect the population-
level prevalence of EAP sources that relate to morphological
domains across neuron-types. We identified four unique EAP
sources present across spatiotemporal EAP waveforms that could
be robustly discovered across multiple conditions. These EAP
sources had differentiating contributions to the EAP waveform
during specific phases of the action potential, and changes in
their contribution with distance yielded results in agreement
with previous experimental and modeling studies. These results
further characterized the complex relationship between EAP
sources, neuron-types, and recording distance for each individual
multichannel waveforms, allowing for enhanced classification of
recordings. Thus, our modeling study illustrates the applicability
of this demixing strategy for neuron-type identification, as well
as the plausibility of neuron-type identification from high-density
extracellular recordings.

4.1 Validation of machine learning
methods with computational modeling

Previous studies have used computational models of cortical
networks and microcircuits to validate conventional data analytic
techniques such as independent components analysis (Głbska
et al., 2014), spike sorting (Hagen et al., 2015), current source
density analysis (Łeski et al., 2007, 2011; Ness et al., 2015),
and multi-linear population analysis (Geddes et al., 2020). These
model-based studies of data analysis techniques are not limited

to conventional data analysis techniques, but can be applied
to modern techniques for parameter estimation for the further
development of both simulation-based inference and development
of mechanistic models (Einevoll et al., 2007; Gold et al., 2007;
Głbska et al., 2016; Buccino et al., 2018; Goncalves and Lueckmann,
2020; Haynes, 2020; Skaar et al., 2020; Tejero-Cantero et al.,
2020; Birgiolas et al., 2023). In the present study, we focus on
validating a machine learning strategy using tensor components
analysis within a new empirical context - the identification
of the underlying sources that contribute to patterns within
spatiotemporal EAP waveforms and the subsequent identification
of neuron-types. Additionally, previous model-based studies that
focus on classifying neuron-types based on EAPs neglect the
influence of background noise and detectability (Somogyvári et al.,
2005, 2012; Delgado Ruz and Schultz, 2014; Buccino et al.,
2018). Empirical decay constants of EAP amplitude have been
estimated to be ∼28 µm (Gray et al., 1995; Segev et al., 2004).
As this signal attenuation results in more contamination by noise
sources, an advantage of our study is the incorporation of these
biophysical constraints thus including boundary conditions for the
extracellular space of our simulated datasets.

4.2 Correspondence of EAP source
prevalences to waveform features

The four demixed EAP sources were comprised of: an apical
source (Source #1), a noise source (Source #2), a basal source
(Source #3), and a soma-AIS source (Source #4). Each source
was characterized by the spatial distribution of the compartments
associated with the respective morphological domains, dynamic
signatures during different electrophysiological phases, their
prevalence across the population of neuron-type families, and
the tendency to either increase or decrease in prevalence with
recording distance. These four EAP sources are summarized in
Supplementary Table 2.

As demonstrated above, the tensor of spatiotemporal EAP
waveforms, X, is generated by several morphological sources and
also contaminated by an additive noise source. By systematically
varying R and visualizing the R EAP sources, we find that the
noise source is present across all values of R. Interestingly, this
background noise source was more important in differentiating
neuron-types at the level of neuron-type families than both
the basal and soma/AIS sources. These results suggest that
characterizing the change in noise-related features across the
channels and during the the last phase of the EAPwaveforms would
be an effective feature for neuron-type classification. One example
of this approach uses waveform amplitude spread for classifying
units according to visual cortical area based on Neuropixel probe
recordings (Jia et al., 2019). Of the features considered in the
study, the amplitude spread was the least important for classifying
brain areas. However, by clustering units into fast spiking (FS)
cells and two types of regular spiking cells (RS1 and RS2), they
found that FS cells had significantly broader amplitude spread
than RS2 cells and comparable spread to RS1 cells. Further, RS1
cells had significantly broader spread than RS2. The prevalence
of the noise source as discovered by our study yielded similar
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results, with the inhibitory families having larger noise source
prevalence than E1-types (TTPC1, TTPC2) but comparable noise
source prevalence with regard to the remaining excitatory families
(Figure 7A; Supplemental Figure 5).

We find that the most important feature for neuron-type
identification is the prevalence of the apical source, which has
the strongest contribution during the early recovery phase and
the capacitive phase (see Source #1 in Figure 5B). Using paired
juxtacellular and high-density extracellular recordings, Marques-
Smith et al. (2018) showed that triphasic waveforms with a positive-
negative-positive peak progression are consistently located above
the channels closest to the soma for some neurons and are
absent for others. This initial positive peak is associated with the
contribution of capacitive currents to the EAP (Gold et al., 2007).
This initial peak can be observed for both propagation of axial
currents into the soma from the AIS (Teleńczuk et al., 2018;
Bakkum et al., 2019) as well as propagation into an apical dendrite
from the soma (Gold et al., 2007; Haynes, 2020) during the action
potential. An important caveat is that shifting the waveforms by
their median values may amplify positive biases within the pre-
spike phase; however, changes in this median value across channels
could be used as a feature to describe the contribution of the
apical source.

Further, we find that the spatial contributions of the apical
source reflect the locations of the stems of the apical dendrites
and any nearby apical terminals. The prominent bias toward the
channels above the center channel and the delayed contribution to
the EAP waveform during the recovery phase suggest an overall
bias in upward propagation after AP initiation (see Figure 6). It
has been shown that the time between the positive peak after the
EAP waveform trough and the next inflection point during the
recovery phase aids in differentiating multiple functional classes of
units from single channel recordings (Trainito et al., 2019). These
units tended to have center channel EAPs of longer duration, which
is typically associated with pyramidal cells, in agreement with the
more prominent contribution of the apical source to the pyramidal
neuron-type families.

By computing the propagation velocity above and below the
center channel using EAP waveform troughs for RS cells, Jia
et al. (2019) found a similar slow upward propagation of EAPs
relative to FS cells. This propagation extended farther for RS1 cells
than RS2 cells. Moreover, RS2 and FS cells exhibited slow and
fast symmetric propagation, respectively. Given the contributions
of the basal source (see Source #3 in Figures 5B, 6B), which
peaks during the middle of the recovery phase, this source may
correspond to symmetric propagation away from the soma. In Jia
et al. (2019), FS cells had fast, symmetric propagation, while RS2
cells had slow, symmetric propagation. It’s plausible that the RS1
cells correspond to the E1-types in our study with the RS1 and
FS cells corresponding to the remaining excitatory and inhibitory
families, respectively.

Finally, the soma/AIS source contributed most at the center
channel and was associated with the late repolarization phase
(see Source #4 in Figures 5B, 6B). This likely corresponds to the
standard approaches for differentiating excitatory and inhibitory
cells by using the spike half-width or spike duration. However, there
was no consistent split between excitatory and inhibitory neuron
models using the prevalence of this source. It was also the least

important source for classifying inhibitory and excitatory types as
determined by the random forest classifier. This was likely due to
the mixed contributions from other neurites for this source.

4.3 Neuron-type identification: Outlook
and limitations

In this study, we framed the problem of discovering features
for neuron-type classification and identification as EAP source
demixing. Historically, the problem of spike sorting is framed
as source separation (Oweiss and Aghagolzadeh, 2010) and the
standard approach to this uses principal components analysis
(PCA) to represent units by a reduced set of latent features. In
demixing EAP sources, we identify the presence of underlying
morphological sources that describe the model neuron-types
using a generalization of PCA, tensor components analysis (TCA,
Williams et al., 2018). We showed that a four source model best
described patterns in spatiotemporal EAP waveforms discovered
by TCA. Within our framework, the extracellularly recorded
spatiotemporal EAP is considered to consist of multiple signal
sources (morphological compartments) that are detected by a set of
sensors (channels) and observed as a superimposed, mixed signal
(EAP waveforms). Within an experimental setting, the exact noisy
mixing process is unknown since the specific morphology of a
detected neuron, as well as, the spatial relationship between the
channels and the neuron are typically unknown. The present study
addresses this problem by simulating the mixing process using
forward modeling of EAPs for diverse neuron-type models and
including spatially distributed linear probes for each model.

Extracellular potentials have been approximated using models
of different gross current and potential source geometries
including: monopolar/point sources, line sources, dipolar sources,
quadrupolar and higher order source geometries (Somogyvári et al.,
2005; Pettersen and Einevoll, 2008; Lindén et al., 2011; Mechler
and Victor, 2012; Hagen et al., 2018; Næss et al., 2021). Due to
the low-pass filtering of the extracellular space, how appropriate
these source-based models are to modeling extracellular potentials
depends on the relative distance to the recording site to the
underlying sources (Pettersen and Einevoll, 2008). Here, we
used morphologically-detailed models with current sources being
approximated by line sources (Lindén et al., 2014). Since the
mixing process is morphology-specific and varies with recording
location, we exploited this to infer differences in morphology
discoverable across many units from diverse model neuron-types
with multiple morphological variants. These differences were
described by features corresponding to the prevalence of four
different EAP sources within individual mixed EAP waveforms.

The discovered features, or source prevalences, reflect
the population-level prevalence of EAP sources that relate to
differences in morphological domains across neuron-types
(Figure 6C). By visually comparing the source-based models
found in Somogyvári et al. (2005) to our demixed four source
model, the four discovered sources closely correspond to the
absolute value of monopolar (Source #2), dipolar (Source #1 and
#3), and quadrupolar (Source #4) source models (Figure 4, left
column). The conclusions of our analysis of the four source model
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presented here is further supported by the correspondence between
morphological domains, their stem arrangement relative to the
soma, and these different source-based models (Pettersen and
Einevoll, 2008). Moreover, Pettersen and Einevoll (2008) found
that dipolar and quadrupolar contributions dominate at different
distances from the soma. There, quadrupolar contributions peaked
between 60 and 100 µm and dipolar contributions dominating at
farther distances as these sources decay more slowly compared to
quadrupolar sources. They also predicted that EAPs have mixed
contributions from both dipolar and quadrupolar sources nearer
to the soma. Our results were in rough agreement with these for
the shorter range of distances shown here (Figure 6D). Our study
provides the first account of how putative quadrupolar and dipolar
sources in close proximity of neuron models depend on neuron-
type Thus we propose that our strategy exposes the population
patterns in monopolar, dipolar, and quadrupolar EAP sources.

Cortical pyramidal cells primarily differ in their dendritic
properties (Spruston, 2008; Kanari et al., 2019) as opposed to
cortical interneurons which differ based on axonal properties
(Markram et al., 2004; Jiang et al., 2015). Layer 5 thick-tufted
pyramidal cells having particularly polarized dendrites and the
largest apical dendrites (Ramaswamy et al., 2015). Across all
levels of our analysis (neuron-types, ME-types, and EI-types),
we found that the apical source prevalence was most important
for identifying neuron-types. Additionally, its importance scaled
inversely with the number of groups we assigned the population
of units to: >80% for EI-types (Figure 9B), >50% for ME-types
(Supplementary Figure 5C), and >30% for neuron-type families
(Figure 7D). Despite interneurons not having apical dendrites,
the two inhibitory ME-types were still most differentiated by the
prevalence of this source (Supplementary Figures 5A, 6) possibly
due to the putative dipolar nature of the source. Further, inhibitory
ME-types were identified with higher accuracy than two of
the excitatory ME-types (E2 and E4, Supplementary Figure 5B)
supporting this putative dipolar source having a different origin
than the apical dendrite and this difference is discovered by the
demixing strategy. It’s plausible that if we extended the multi-level
classification scheme to include multiple demixing stages in an
iterative approach, the differences between apical sources of the two
excitatory ME-types would also be discovered.

The inclusion of only four sources enabled visual comparison
of the spatial and multiresolution temporal sources across
several conditions which supported interpretations. Moreover, the
similarity scores for the four source model were still above 98%
(Figure 3B). Even though the present study focused on analysis
of the four source model, we found that patterns were similar
enough to allow for qualitative correspondences when we included
even more sources. However, by including more sources, we lost
previous sources as more asymmetric sources emerged—excluding
the noise source (results not shown). These sources would be useful
for neuron-type identification as asymmetries in spatiotemporal
waveform features such as the difference in propagation velocity
above and below the soma was able to differentiate the two types of
RS-types found by Jia et al. (2019). Further, these asymmetric EAP
sources had peak spatial contributions that closely corresponded to
the peaks of the more symmetric sources of the four source model
that were lost. This indicates that asymmetries in morphological
domains across neuron-types are also discoverable by our strategy
while maintaining agreement with the results of this study. A more

systematic analysis of a greater number of EAP sources could
yield even better classification results. For example, choosing R to
be greater than the number of channels S used could yield finer
approximations of the underlying neuron morphologies in terms
of their source-based contributions while still separating distinct
morphological domains. Additionally, a quantitative comparison
of simulated EAPs from morphologically-detailed neuron models
to simulated EAPs using a multipolar source model formalism
(Somogyvári et al., 2005; Pettersen and Einevoll, 2008) informed
by the relative source contributions predicted from the four source
model would further improve the results presented in this study.

While our approach can discover multichannel waveform
features from experimental datasets in an unsupervised
manner, our study also provides a beneficial simulation-
based framework for engineering novel features for analyzing
multichannel recordings and identifying their morphological
and electrophysiological correlates. For example, with only
four sources we see that basal and apical domains exhibit
separable contributions across channels and timescales. One could
differentiate proximal vs distal propagation velocity and investigate
their correlations to the basal and apical source prevalence in
models (similar to the analysis of morphometrics above). In our
study, we used the total propagation velocity so as not to bias
the baseline classifier to extra information about the asymmetries
in the multichannel waveforms. While such asymmetries are
warranted, the sources reported here are symmetric. However,
we observed that the apical source would differentiate into upper
and lower apical sources that reflect such asymmetries when using
more than four sources (not shown).

Overall this modeling study illustrates the applicability of
a demixing strategy for neuron-type identification, as well
as the plausibility of neuron-type identification from high-
density extracellular recordings. Here, we demonstrate an analysis
pipeline and its interpretation that relies on having both diverse
computational models and experimental recordings from the same
system. Further investigation is needed to determine how the
sources discovered with this approach would differ across species
and brain region. Additionally, the focus of this work is on single
neurons; future work will focus on complex patterns of synaptic
input and the impact of nearby cells.

4.4 Resource Identification Initiative

We acknowledge the use of resources that are part of
the Resource Identification Initiative. These include Neocortical
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(RRID:SCR_005393), Scikit-Learn (RRID:SCR_002577), NumPy
(RRID:SCR_008633), SciPy (RRID:SCR_008058), and Pandas
(RRID:SCR_018214).
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