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Alzheimer’s disease is a complex, multi-factorial, and multi-parametric

neurodegenerative etiology. Mathematical models can help understand such a

complex problem by providing a way to explore and conceptualize principles,

merging biological knowledge with experimental data into a model amenable

to simulation and external validation, all without the need for extensive clinical

trials. We performed a scoping review of mathematical models describing the

onset and evolution of Alzheimer’s disease as a result of biophysical factors

following the PRISMA standard. Our search strategy applied to the PubMed

database yielded 846 entries. After using our exclusion criteria, only 17 studies

remained from which we extracted data, which focused on three aspects

of mathematical modeling: how authors addressed continuous time (since

even when the measurements are punctual, the biological processes underlying

Alzheimer’s disease evolve continuously), howmodels were solved, and how the

high dimensionality and non-linearity of models were managed. Most articles

modeled Alzheimer’s disease at the cellular level, operating on a short time

scale (e.g., minutes or hours), i.e., the micro view (12/17); the rest considered

regional or brain-level processes with longer timescales (e.g., years or decades)

(the macro view). Most papers were concerned primarily with amyloid beta

(n = 8), few described both amyloid beta and tau proteins (n = 3), while

some considered more than these two factors (n = 6). Models used partial

di�erential equations (n = 3), ordinary di�erential equations (n = 7), and both

partial di�erential equations and ordinary di�erential equations (n = 3). Some

did not specify their mathematical formalism (n = 4). Sensitivity analyses were

performed in only a small number of papers (4/17). Overall, we found that only

two studies could be considered valid in terms of parameters and conclusions,

and two more were partially valid. This puts the majority (n = 13) as being either

invalid or with insu�cient information to ascertain their status. This was the main

finding of our paper, in that serious shortcomings make their results invalid or

non-reproducible. These shortcomings come from insu�cient methodological

description, poor calibration, or the impossibility of experimentally validating

or calibrating the model. Those shortcomings should be addressed by future

authors to unlock the usefulness of mathematical models in Alzheimer’s disease.
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1 Introduction

1.1 Rationale

Alzheimer’s disease (AD) is a neurodegenerative disorder

that results in severely reduced cognition, loss of autonomy,

eventual physical weakness, and death (McKhann et al., 2011).

The occurrence of AD is strongly related to aging and the whole

disease process covers a period estimated to last a minimum

of 10–20 years before diagnosis (Kremer et al., 2011). This

prodromal phase is thought to depend on physical, genetic, and

epigenetic factors, all to be conclusively determined (Kremer et al.,

2011).

Indeed, AD is difficult to diagnose in its earlier phases, since its

etiology remains unclear. Multiple hypotheses have been proposed

such as the beta-amyloid (Aβ) cascade hypothesis (Liu et al., 2015;

Han and Shi, 2016; Kuznetsov and Kuznetsov, 2018a; Lindstrom

et al., 2021); the tau protein hypothesis (Kuznetsov and Kuznetsov,

2018b); and the oligomer cascade hypothesis (Lindstrom et al.,

2021). However, none has been proven beyond doubt nor has

it led to a positive clinical outcome after interventions. Rather,

it is becoming clear in the community that AD is a multi-

factorial disease, influenced by several risk factors, and hence

also multi-parametric. Therefore, early detection of AD and

identification of a cure continue to be major challenges for the

scientific community given both this lack of etiological clarity and

apparent complexity.

A fundamental obstacle to AD research becomes the

sheer number of biological, environmental, and psychosocial

variables that must be considered, and by extension the

geometrically increasing number of interactions between

variables. These variables and interactions become difficult, if

not impossible, to assess thoroughly via clinical trials, as the

logistics of recruiting a sufficiently large number of individuals

to achieve reasonable statistical power become daunting,

without mentioning the decades-long timeframe required to

follow these individuals along this neurodegenerative process.

Conversely, while preclinical models can often provide clarity

concerning specific variables and their interactions, they suffer

from problems of generalizability to pseudo-sporadic AD in

human populations.

Mathematical modeling on the other hand is a great tool

to understand complex mechanisms such as AD. Mathematical

models provide a way to explore and conceptualize principles

by merging biological knowledge with experimental data into

model simulations (Arkin and Schaffer, 2011). In mathematical

models, physical reality is abstracted into entities and parameters

that can help us more easily understand relationships. In the

case of AD, mathematical models could help us figure out

causal mechanisms and therefore propose targets for disease

prevention. Accurate models should help with intervention

planning and trial, by testing in sillico the potential effect

of different drugs. Models however are only as good as the

assumptions on which they are based. Indeed, if a model makes

predictions that are out of line with observed results, or that

cannot be verified experimentally altogether, either the entity

relationships must be modified, or initial assumptions must be

changed.

The development of personalized medicine is critical for any

hope of clinical progress. This is exemplified in work such as that by

Hao et al. (2022), in which the authors use mathematical modeling

to determine the best intervention for any individual. From a

mathematical point of view, this leads to interesting optimization

problems.

1.2 Scope

The mathematical approaches used in models of AD are

diverse, as there are different questions that several modeling

formalisms aim to tackle. We focused our attention on models that

considered AD progression, or a proxy of AD progression such

as brain volume or the density of neural cells, as a state variable.

The objective of such models is to relate causal factors such as the

concentration of tau proteins and Abeta plaques to the death of

neurons. This becomes immediately useful in a clinical context,

as model outcomes can be related to biomarkers available using

standard means (e.g., radiological imaging). Models in this family

are often specified by systems of ODE or PED. Such models include

Anastasio (2011), Anastasio (2011), Bertsch et al. (2017), Hao and

Friedman (2016), Helal et al. (2014), Lindstrom et al. (2021), and

Puri and Li (2010), which will be discussed in more detail in the

rest of this review.

1.3 Objectives

To guide our group in the elaboration of a comprehensive,

multi-factorial mathematical model of AD, we elected to perform

a scoping review of this nascent literature, the results of which are

presented in the following sections. We paid particular attention

to three aspects of mathematical modeling: first, how authors

addressed continuous time, as relevant in describing the evolution

of biological processes involved in AD; secondly, how models were

solved numerically, given these different time scales at which the

interactions between variables operate; and finally, how were high

dimensionality and non-linearity of models managed, up to and

including parameter sensitivity.

2 Methods

2.1 Eligibility criteria and information
sources

We performed a scoping review based on the PRISMA

standards (Page et al., 2021). We searched the PubMed database

for peer-reviewed, original research journal papers in English

published through March 29, 2022. Our search terms were

“Mathematical model,” “Alzheimer’s disease,” and “Not an animal.”

In our search strategy, the use of only “Alzheimer’s disease” but

not terms such as “tauopathy” or protein “misfolding” was guided

by the goal to be not only sensitive to AD but specific. As for

the choice of “Mathematical model,” other search terms such as

“Computational model” would be reasonable but did not yield

significant advantages.
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2.2 Search strategy and selection process

Using the Covidence systematic review system (Melbourne,

Australia), we first removed duplicate entries after the initial search

and then screened articles based on titles and abstracts. We then

completed a full-text evaluation of each article. Our goal was to

identify multi-factorial mathematical models of AD applied to a

human population. Consequently, we disregarded approaches that

were too narrow (e.g., only one protein) or animal-centered.

2.3 Data collection process and data items

We extracted the following characteristics from all included

studies (cf. Table 1): Title, Lead author contact details, Country(ies)

of origin of authors, Aim of study, Temporal scale (micro ormacro)

(see Section 3.2), Multi-structure or not (see Section 3.2), Validated

or not, Interesting summary figure, Study funding sources, Possible

conflicts of interest for study authors. Information regarding

mathematical modeling was also extracted (cf. Table 2), including

which mathematical formalism was used. If the model relied on

ODE, what solver was used? Given the solver, was it adapted to

stiff equations? We also extracted information on the concepts and

entities that were captured by each model.

2.4 Study risk of bias assessment

Two impartial reviewers independently conducted this process

(S.M. and S.D.), and consensus solved conflicts.

2.5 E�ect measures

Providing information on specific outcomes or effect measures

does not apply in the context of this scoping review.

TABLE 1 Main characteristics of the reviewed papers.

References Title Object Time scale

1 Anastasio (2011) Data-driven modeling of Alzheimer’s disease pathogenesis. Aβ Micro

2 Bertsch et al. (2017) Alzheimer’s disease: a mathematical model for onset and

progression.

Aβ Macro

3 Fornari et al. (2019) Prion-like spreading of Alzheimer’s disease within the brain’s

connectome.

Tau protein Micro

4 Han et al. (2020) Computational modeling of the effects of autophagy on

amyloid-β peptide levels.

Aβ Micro

5 Han and Shi (2016) A Theoretical Analysis of the Synergy of Amyloid and Tau in

Alzheimer’s Disease.

Aβ , Tau Micro

6 Hao and Friedman

(2016)

Mathematical model on Alzheimer’s disease. Aβ , Tau, Astrocytes, Microglia, Macrophages,

GSK3, NFT, APP, TNFα , IL-10, TGF, MCP-1,

ROS, HMGB1

Macro

7 Helal et al. (2014) Alzheimer’s disease: analysis of a mathematical model

incorporating the role of prions.

Aβ oligomers, Aβ plaques, and cellular prion

proteins

Micro

8 Helal et al. (2019) Stability analysis of a steady state of a model describing

Alzheimer’s disease and interactions with prion proteins.

Aβ peptides, Aβ oligomer Micro

9 Hoore et al. (2020) Mathematical Model Shows HowSleep May Affect

Amyloid-β Fibrillization.

Aβ , Aβ oligomer, microglia, CSF Macro

10 Kuznetsov and

Kuznetsov (2018a)

How the formation of amyloid plaques and neurofibrillary

tangles may be related: a mathematical modeling study.

Tau„ APP external Aβ plaques, intracellular

tangles

Micro

11 Kuznetsov and

Kuznetsov (2018b)

Simulating the effect of the formation of amyloid plaques on

the aggregation of tau protein.

Aβ , Tau, APP, neurofibrillary tangles Micro

12 Lindstrom et al. (2021) From reaction kinetics to dementia: A simple dimer model

of Alzheimer’s disease etiology.

Aβ Oligomer, Aβ monomers, dimers, trimers Macro

13 Liu et al. (2015) Evaluating Alzheimer’s Disease Progression by Modeling

Crosstalk Network Disruption.

Aβ , Aβ Oligomer, P-Tau, Tau, MCI, GSK3 Micro

14 Pallitto and Murphy

(2001)

A mathematical model of the kinetics of beta-amyloid fibril

growth from the denatured state.

Aβ monomer to oligomer Micro

15 Petrella et al. (2019) Computational Causal Modeling of the Dynamic Biomarker

Cascade in Alzheimer’s Disease.

Aβ , tau, tau pathology (p-tau) Micro

16 Proctor and Gray (2012) A unifying hypothesis for familial and sporadic Alzheimer’s

disease.

Aβ , Tau Macro

17 Puri and Li (2010) Mathematical modeling for the pathogenesis of Alzheimer’s

disease.

Aβ , microglia, astroglia Macro
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TABLE 2 A summary of mathematical approaches, solvers, and sensitivity analysis of reviewed papers.

References Model type If ODE, what solver was used Sensitivity
Analysis

1 Anastasio (2011) Not mentioned Maude No

2 Bertsch et al. (2017) PDE Not mentioned No

3 Fornari et al. (2019) PDE, ODE and Graph Not mentioned No

4 Han et al. (2020) ODE 5th order Runge-Kutta method No

5 Han and Shi (2016) Seven ordinary equations Not mentioned No

6 Hao and Friedman

(2016)

ODE and PDE Not mentioned Yes

7 Helal et al. (2014) ODE Not mentioned No

8 Helal et al. (2019) ODE Not mentioned No

9 Hoore et al. (2020) ODE Not mentioned Yes

10 Kuznetsov and

Kuznetsov (2018a)

PDE MATLAB’s BVP4C solver No

11 Kuznetsov and

Kuznetsov (2018b)

PDE Not mentioned No

12 Lindstrom et al. (2021) ODE and PDE Python Yes

13 Liu et al. (2015) Not mentioned Not mentioned No

14 Pallitto and Murphy

(2001)

ODE Not mentioned No

15 Petrella et al. (2019) ODE MATLAB No

16 Proctor and Gray (2012) Not mentioned Not mentioned No

17 Puri and Li (2010) ODE Not mentioned Yes

2.6 Synthesis methods

The studies were grouped according to the mathematical

formalism used in the model. Concerning heterogeneity and

sensitivity, we paid attention to the validation approaches used in

the investigated papers.

2.7 Reporting bias assessment

As the analysis was done by impartial and independent

reviewers, there was no reporting bias.

2.8 Certainty assessment

We provide a narrative synthesis of the available literature,

highlighting the strengths and weaknesses of the included studies

and identifying areas for future research in Section 3.

3 Results

3.1 Study selection

After our search, 846 studies were uploaded from PubMed

to Covidence on March 29, 2022. Two reviewers independently

screened the titles and abstracts to exclude papers not relevant

FIGURE 1

PRISMA flow chart diagram. This diagram illustrates how the papers

were selected for the scoping review and why some were excluded.

to this review. If they disagreed on a paper, they re-evaluated it

together and reached a consensus. After removing duplicates and

reviewing titles and abstracts, 59 references appeared to meet our
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criteria. After full-text review, 41 were further excluded due to them

not proposing a mechanistic model (n = 19); having a limited

scope (e.g., describing only one protein) (n = 12); not being

related to Alzheimer’s disease (n = 7); or being a review or another

unsuitable article form (n = 4) (see Figure 1), leaving 17 papers to

be studied.

We aimed to select studies that relate the onset and temporal

evolution of AD to neural death and underlying biological

mechanisms and assess validity in the context of clinical (human)

care. Even if they were less represented, we wanted to investigate

papers with multifactorial models as we believe they were more

likely to provide useful insights regarding disease processes. We

wanted to exclude purely statistical studies or studies that did not

propose a cause for AD, hence the reference to mechanistic models.

3.2 Study characteristics

The 17 papers were published between 2001 and 2021. The

primary authors’ countries of origin were the United States (n =

11) and others (Algeria, China, France, Germany, Italy, and the

United Kingdom).

The majority of articles modeled AD at the cellular level,

operating on a short time scale (e.g., minutes or hours), i.e.,

the micro view (12/17), while the rest of the models considered

regional or brain-level processes with longer timescales (e.g., years

or decades) (the macro view). Most of the papers were concerned

primarily withAβ (n = 8); a fewmodeled bothAβ and tau proteins

(n = 3); and some considered more than these two factors (n = 6)

(see Table 1).

3.3 Mathematical approaches

Mathematical approaches are summarized in Table 2. Various

approaches were used, such as partial differential equations (PDE;

n = 3), ordinary differential equations (ODE; n = 7), and both

PDE and ODE (n = 3), while for the remainder (n = 4), the type of

model was not presented and only results were discussed. Of these

last articles, one study used Maude, a language able to represent

and evaluate models created using equations and rules (Anastasio,

2011). The choice of using either ODEs or PDEs depended on

how the spatial propagation of AD in the brain was considered.

Models relying on PDEs treat the brain as a continuous medium

with realistic geometry, while models using ODEs either neglect the

spatial component altogether or consider only a few homogenized

regions. We give more details in Section 4.4.

3.4 Risk of bias in studies

The risks of bias are summarized in Table 3.

3.5 Results of individual studies

The results of individual studies are summarized in Table 1.

3.6 Results of syntheses

Of the ODEmodels, four had components evolving over several

time scales, from cellular reactions lasting minutes to disease

development over the years; the other six had a single time scale.

The description of phenomena with characteristic time constants

over several orders of magnitudes leads to so-called stiff systems

of ODEs. The resolution of stiff differential equations poses several

numerical difficulties, and the choice of an inappropriate resolution

method can lead to false conclusions. In general, we found that

there was not enough support or information given in the articles

about which solvers and numerical tools were used. Only four

papers (Puri and Li, 2010; Hao and Friedman, 2016; Fornari

et al., 2019; Lindstrom et al., 2021) out of 10 mentioned which

environment they used to solve their ODE system (three used

MATLAB and one used Python Lindstrom et al., 2021). Among

these four papers, only two mentioned which numerical solvers

were used. This limits our appreciation of their work.

Performing sensitivity analysis (SA) in mathematical models is

critical to identify which parameters have an important impact on

the solutions and to quantify uncertainty. SA can identify crucial

model inputs (parameters and initial conditions) and quantify the

impact of input uncertainty on the model’s output(s) (Marino

et al., 2008). We thus investigated whether the reviewed papers

performed SA and, if so, which approach was used. We found

that little attention has been given to this crucial topic since SA is

covered, but only for a small number of papers (4/17).

3.7 Reporting biases and certainty of
evidence

As we relied only on the PubMed database and limited

ourselves to a specific set of keywords for our search, we may have

missed relevant studies.

4 Discussion

4.1 Summary of findings

The negative impact of AD on patients, caregivers, and society

is well established. Given that there is no known cure for this

disease, identifying relationships between biological factors leading

to its causality is paramount, as any insight can inspire therapeutic

approaches to delay or stop its progression, reducing suffering and

costs (Alzheimer Society of Canada, 2022). Mathematical models

can be extremely useful in the quest to decipher the interactions

between different parts of a complex system and to understand how

acting on one element of the system will impact global outcomes.

In this scoping review, we identified and presented findings from

17 papers with mathematical models of AD.

4.2 Proposed mechanisms

Most of the investigated papers considered either the amyloid

beta or the tau proteins (or a combination of both) as the
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TABLE 3 Evaluation of the internal and external validity of the reviewed papers.

References Given
equations
and initial
conditions

Given
parameters
and their
units

Sensitivity
Analysis

Given code Information
on model
solver

Internal
validity
degree

external
validity

1 Anastasio (2011) No No No No Maude 1/5 No

2 Bertsch et al.

(2017)

Yes No No No No 1/5 No

3 Fornari et al.

(2019)

Yes No No No No 1/5 No

4 Han et al. (2020) Yes Yes No No 5th order

Runge-Kutta

method

3/5 No

5 Han and Shi

(2016)

Yes No No No No 1/5 No

6 Hao and

Friedman (2016)

Yes Yes Yes No No 3/5 No

7 Helal et al. (2014) Yes No No No No 1/5 No

8 Helal et al. (2019) Yes Yes Yes No No 3/5 No

9 Hoore et al.

(2020)

Yes Yes No No No 2/5 Yes

10 Kuznetsov and

Kuznetsov

(2018a)

Yes No No No MATLAB’s

BVP4C solver

2/5 No

11 Kuznetsov and

Kuznetsov

(2018b)

Yes No No No No 1/5 No

12 Lindstrom et al.

(2021)

Yes Yes Yes Yes Python 5/5 Yes

13 Liu et al. (2015) No No No No No 0/5 Yes

14 Pallitto and

Murphy (2001)

Yes Yes No No No 2/5 Yes

15 Petrella et al.

(2019)

Yes Yes No No MATLAB 3/5 No

16 Proctor and Gray

(2012)

available

online

available

online

No No No 2/5 No

17 Puri and Li (2010) Yes Yes Yes No No 3/5 No

underlying mechanism causing the onset of AD. It is proposed that

these pathways will cause neural death. It would be interesting to

investigate other mechanistic hypotheses.

4.3 Mathematical model families

Time-continuous longitudinal models of AD onset and

progression. As mentioned previously, we focused our scoping

review on models that considered AD progression, or a proxy of

AD progression, as a state variable. Other reviews have discussed

the mathematical modeling of different elements involved in AD

progression, such as amyloid beta aggregation and tau proteins

(Vosoughi et al., 2020), the impact of interregional connectivity

(Torok et al., 2023), and protein misfolding (Carbonell et al., 2018).

Our approach was different, as we aimed to focus on assessing the

validity of mathematical models of AD, including their adequacy

with clinical results. This validity is usually taken for granted and

we think it is worthwhile to question it.

Models of spatial propagation and fractional derivative

models. Some models focus on the description of the spatial

propagation of AD or its underlying factors, such as Aβ plaques

or tau proteins. These models can rely on partial differential

equations (PDEs) or network theory (Bertsch et al., 2017; Fornari

et al., 2019). From a mathematical point of view, diffusion in

general and diffusion in the brain in particular can be described

by fractional derivatives. The mathematical tool of fractional

derivatives is well suited, for instance, to describe Brownian

motion. In Alkahtani and Alzaid (2021), the authors claim that

as the spatial propagation of the disease is not well understood, it

is worth using a model that accounts for non-localities. To achieve

this, they use the mathematical formalism of a Caputo derivative.

In Angstmann et al. (2016), the authors use Riemann-Liouville
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fractional derivatives to describe the spread of pathogenic proteins.

In Mohammad and Trounev (2021), the authors develop a

fractional order PDE model to describe the evolution of AD. Their

paper emphasizes the development of the model. In Pawar and

Pardasani (2023), the authors use fractional calculus to describe

calcium dynamics in cells and its impact on amyloid beta. Finally,

in Karaoulanis et al. (2023), the authors use fractional derivatives to

describe anomalous diffusion in brain tissue.

Models of Amyloid beta aggregation From a mathematical

perspective, describing the aggregation of amyloid beta from

monomers to plaques poses many difficulties. A challenge comes

from the fact that chains of arbitrary length canmerge or dissociate,

leading to a high-dimensional problem. A common approach is

to group the chains according to their length, considering, for

instance, monomers, oligomers, and plaques (Hao and Friedman,

2016). Another mathematical approach is to use the Smoluchowski

equations (Bertsch et al., 2017).

Models describing the impact of AD on neural network

performance Some mathematical models focus not on the

continuous temporal evolution of AD (or of a proxy of AD)

but rather on the effect of AD on brain behavior. There is a

very rich literature on mathematical models of biological neural

networks, which are often represented as dynamical systems of

high dimensions. AD or other neurodegenerative diseases can be

represented in these models by a loss of neurons or a loss of

connectivity between neurons. It is interesting to see how such

a loss can lead to a loss of performance for the system. Such

investigations can shed light on the precise relationship between

loss of neurons, loss of synapses, impaired synaptic activity, and

impaired neural activity on cognitive functions. Interestingly, some

topological properties of neural networks, such as the existence

and nature of dynamical attractors, can be altered by proxies in

AD. In Karageorgiou and Vossel (2017), the authors investigate

the dynamical attractor of brain rhythm and show that it can be

disrupted by AD. In Alderson et al. (2018), the authors consider

the brain connectome. They consider lesions in the connectome as

a result of AD which leads to a loss of neurons and connections.

They investigate how such lesions affect the dynamic behavior of

the system. The hippocampus plays a paramount role in memory,

and how its behavior is affected by AD is of critical interest. In

Kanagamani et al. (2023), the authors build a network model of

hippocampal memory and investigate how it is affected by AD-like

conditions, while Jiang et al. (2020), emphasize the investigation of

cholinergic action. Recurrent networks are an important family of

artificial neural networks with feedback and may more accurately

mimic biological networks. In Bachmann et al. (2013), the authors

investigate how AD might affect the computations made by such

networks.

4.4 Mathematical considerations

Mathematical models using continuous time, as is relevant in

the case of AD, can rely either on systems of ODEs when the

description of brain geometry is omitted or greatly simplified or on

systems of PDEs when a continuous spatial description of the brain

is used. Either approach is a priori possible, depending on whether

one wants to emphasize or not the spatial nature of the propagation

of the disease.

Models described by a system of ODEs can be written as

dEy

dt
= Ef (Ey, Eθ , t)

where arrows denote vector quantities, Ey describes the state of the

system, and Eθ are the parameters that are usually either found in

the literature or determined by fitting the simulation results to

experimental data.

In models described by PDEs, the left-hand side becomes
∂y
∂t ,

and the right-hand side now depends on the spatial derivatives of y

and usually involves diffusion or transport terms.

In either case, systems of equations describing the evolution of

AD involve a large number of parameters describing biophysical

quantities such as the rate of neural death or the rate of

Aβ aggregation. Determining the value of these parameters is

challenging. Given the various components involved in AD

onset and progression, mathematical models will contain several

variables. Also, as is often the case with biological systems, models

describing the progression of AD tend to be non-linear. The

interaction between each pair of variables will need to be quantified

by a distinct parameter capturing its relative importance. Since

many or most of these parameters cannot be directly measured,

the objective determination of their values (or model calibration)

is challenging. The process of calibrating a mathematical model

should ideally be done by comparing the model’s outputs to actual

clinical, epidemiological, or experimental data (Alarid-Escudero

et al., 2018). Then, parameters should be chosen to minimize the

difference between the model predictions and the observed data.

The possibility of fully characterizing a model is dependent on the

quantity and quality of available data (Thacker et al., 2004). In

the case of AD, recent initiatives aimed at the acquisition of large

publicly accessible datasets promise to increase the relevance and

importance of mathematical models.

We noticed that in papers analyzed for this review, there was

a wide discrepancy between the approaches taken to determine

and report model parameters. Some authors used parameter values

found in other modeling or experimental studies or derived them

from theoretical calculations (e.g., Hao and Friedman, 2016; Hoore

et al., 2020; Lindstrom et al., 2021). However, some papers did

not explain either the provenance of their parameters or their

calibration process (e.g., Anastasio, 2011; Han and Shi, 2016;

Bertsch et al., 2017; Kuznetsov and Kuznetsov, 2018a,b; Fornari

et al., 2019). Others listed parameter values without providing

references or calculations to justify them (e.g., Helal et al., 2014;

Petrella et al., 2019). Only a few papers provided experimental

results to support their choice of parameter values (e.g., Pallitto

and Murphy, 2001; Puri and Li, 2010; Liu et al., 2015). Studies

should specify their methodology for parameter calibration and

model validation to increase our ability to judge whether the

model reached accurate predictions (Qiu et al., 2018). When it is

impossible to assess model parameters directly, their values should

be determined by comparing the model’s output with experimental

or clinical observations. In this case, optimization techniques are

needed to minimize the difference between model predictions and

observations (Qiu et al., 2018). Details of these techniques (and
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ideally the code to perform them) should also be provided, as

optimization in highly dimensional non-linear systems is far from

a trivial task (Qiu et al., 2018). Depending on data type and data

quality, there might be a great deal of uncertainty concerning

parameter values inferred in this way, hence the importance of

specifying methodological details to increase reproducibility (Qiu

et al., 2018).

A second mathematical challenge comes from the fact that

time scales ranging over several orders of magnitudes are typically

involved in biomathematical models describing the onset and

progression of AD. For instance, such models could describe rapid

protein transformation as well as the progression of the disease

over several years. Lindstrom et al. (2021) wrote: “There are fast

time scales for dimer dissociation (ms); intermediate time scales for

monomer decay (h); and longtime scales for changes in kinetic rate

constants and loss of neuronal health (decades).” The work by Puri

and Li (2010) is also a good example of this, with parameters scaling

from 10−5 to 1 (1/year). From a mathematical standpoint, systems

with components behaving over several time scales are described

by stiff differential equations (Nasarudin et al., 2020) for which

numerical resolution is challenging and necessitates well-adapted

specific approaches.

When modeling phenomena occurring on different time scales

(say, we both consider a fast and a slow process), one must use

computational time steps small enough to capture the fast process

but run the model long enough to describe the slow process. This

leads to a high computational cost and raises numerical challenges

(Kreiss, 1979; Burden and Faires, 1993). Other approaches, such as

fast-slow analysis, can be used to resolve systems with different time

scales, though they come with their challenges (Bertram and Rubin,

2017).

We found in our review that many authors did not detail

which solver they used and/or did not give sufficient information

on the numerical methods they used to solve their system of

equations. To wit, there are multiple stiff ODE solvers in MATLAB

(e.g., ode15s, ode23s, ode23t, and ode23tb) or Python (BDF and

Radau in the SciPy library). This makes it unclear whether the

numerical difficulties associated with the stiffness of themodel were

appropriately handled. Unfortunately, authors missed including

this vital aspect of their research in the description of their work,

as it is necessary for reproducibility.

Finally, a third challenge in the development and analysis

of high-dimension mathematical models with a large number

of parameters is related to sensitivity analysis and uncertainty

quantification. Performing sensitivity analysis is essential to assess

the relative contribution of each parameter (Helal et al., 2019).

Parameters having little impact on the model outcome cannot

be determined only by comparing model predictions to actual

data (Qiu et al., 2018). Several mathematical approaches can be

used to perform sensitivity analysis, each providing complementary

information (Marino et al., 2008; Lindstrom et al., 2021). In Hao

and Friedman (2016), the authors performed a sensitivity analysis

using Latin hypercube sampling to generate 2, 000 samples. In

each sample, the parameter values were chosen randomly between

one-half and twice their normal values. The authors calculated

partial rank correlation coefficients and p−values for the density

of neurons and the concentration of astrocytes at time t = 10 years.

Another approach used by Lindstrom et al. (2021) was to evaluate

how tiny perturbations (1% change in a parameter value) affected

the model outcome and then evaluate the probability that the AD

development rate differed significantly from their initial estimate.

Puri and Li (2010) took into consideration the sensitivity of the

outcome after 20 years to changes in parameter values. They used a

62.5% perturbation range for each parameter value. They reported

strong, moderate, or weak effects for each parameter, along with

a short explanation of their sensitivity analysis process (Puri and

Li, 2010). Unfortunately, not all authors were equally forthcoming.

Some (e.g., Helal et al., 2019) claim to have performed a sensitivity

analysis but did not report their method. Most others simply did

not perform such an analysis. We propose as a good practice that

papers describing a mathematical model of AD should include a

sensitivity analysis, complete with a description of the approach,

code or pseudo-code, and numerical estimates.

Anastasio (2011) used the MAUDE software to check the

impact of various components, such as genes, on AD pathogenesis.

A few mathematical details were provided in the paper. Bertsch

et al. (2017) solved the Smoluchowski coagulation equation to

describe the aggregation and diffusion of amyloid beta. This led

to a PDE system that was discretized on a uniform grid. Fornari

et al. (2019) was quite rich from a mathematical perspective.

The authors solved a system of PDEs and also used network

theory. A statistical analysis was performed on the results of

their models. In Han et al. (2020), the author solved a system

of ODES. Their model assumed a four-compartment description

of the autophagy process. The authors obtained a rather simple

system of eight equations. Han and Shi (2016) did not rely on

a dynamical model per se. The authors used different simple

equations to test whether there is a synergy between tau proteins

and amyloid beta in AD. In Hao and Friedman (2016), the

authors used an ODE system to predict the loss of neural density

during aging, which is used as a proxy for AD progression. The

model contained 16 state variables and several tens of parameters.

The authors performed sensitivity analysis to identify the relative

importance of several parameters. They investigated the synergy

between different in silico treatment approaches. Helal et al. (2014)

solved an equation system combining partial differential equations

and integro differential equations. In their model, the temporal

evolution of the concentration of soluble amyloid beta depended

on the spatial average of plaque concentration.

In Helal et al. (2019), the authors used a high-dimensional

system of ODEs to describe amyloid beta aggregation. They treated

the quantity of oligomers of each possible size as a state variable.

It is noteworthy that the authors provided rigorous proof of

the existence of solutions. In Hoore et al. (2020), the authors

used a simple 2-dimensional ODE model, which requires 11

scalar parameters to be fully specified. The authors performed

an extensive numerical analysis of the model. In Kuznetsov and

Kuznetsov (2018a) and Kuznetsov and Kuznetsov (2018b), the

authors described the transport of APP and tau proteins along

axons. Their model is a rather complex system of partial differential

equations. In contrast to other models discussed in this review,

the authors considered a one-dimensional geometry corresponding

to a wire-like axon. Lindstrom et al. (2021) considered both

a system of ODEs and a system of PDEs. They described the
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concentration of amyloid beta monomers and dimers as well as

cell viability. Their model has three state variables and 20 scalar

parameters. Parameter estimation was described in detail. Liu

et al. (2015) performed Monte Carlo simulations on a network

describing the progression of AD. They performed several random

perturbations on the network and evaluated the probability that

these perturbations disrupted the model outcome. Pallitto and

Murphy (2001) used a high-dimensional system of ODEs to

describe the growth of amyloid fibrils. Their model was based on

biophysical principles. Petrella et al. (2019) used a simple model

of five ordinary differential equations and about 30 parameters

relating cognitive decline to the concentration of amyloid beta

and tau proteins. This model was closely related to that of

Hao and Friedman (2016). In Proctor and Gray (2012), the

authors implemented a dynamic stochastic model in the Systems

Biology Markup Language. A few details were provided concerning

the mathematical implementation. They used their model to

compare different hypotheses related to the interactions between

tau proteins and amyloid beta. Finally, in Puri and Li (2010), the

authors investigated an ODE system with seven state variables and

17 scalar parameters. Their relatively simple model described the

impact of amyloid beta on neural death.

It is to be noted that given the complexity of the resulting

systems of equations, analytic approaches aiming to provide close

solutions were not used in the reviewed papers except (Lindstrom

et al., 2021). While it could be interesting to perform asymptotic

or approximation analysis in the models that were used in the

reviewed papers, we found that numerical treatment and numerical

resolution were by far the most prominent approaches.

As a matter of course, AD models eventually need to be set

within the spatial topography of the brain, with considerations of

inter-structure connectivity and local/regional influence on initial

conditions and parameters. PDEs can be used for this purpose,

taking the geometry of the brain into account, and therefore play

a prominent role in the mathematical description of the disease’s

onset and progression. However, it seems that there is some debate

in the literature about whether amyloid and tau pathology in

Alzheimer’s disease is mainly driven by emergence or spread.

Emergence refers to the idea that pathological entities form in

different brain regions due to local factors, such as age, genetics,

inflammation, or synaptic activity. Spread refers to the idea that

pathological entities propagate from one region to another through

direct or indirect mechanisms, such as transneuronal transmission,

extracellular diffusion, or vascular transport. One way to model

the emergence of amyloid and tau pathology is to assume that

the aggregation and removal rates of these proteins depend on

local variables. For example, Fornari et al. (2019), considered the

effect of synaptic activity and neuronal damage on the model

parameters, and Hao and Friedman (2016), considered the effect

of cytokines produced by dead neurons. They obtained a system

of PDEs that was discretized on a realistic geometry of the human

brain, obtained from magnetic resonance imaging (MRI) data.

They also used network theory to analyze the connectivity and

vulnerability of different brain regions to the disease. They found

that their model can reproduce the observed patterns of Aβ and

tau accumulation and spreading in AD, as well as the regional

differences in disease susceptibility and progression. Another way

to model the spread of amyloid and tau pathology is to assume

that these proteins diffuse through the brain tissue or along

neural fibers. For example, Lindstrom et al. (2021) proposed a

simple dimer model of Alzheimer’s disease etiology that links Aβ

assembly to oligomer-induced neuronal degeneration. They used

a combination of ODEs and PDEs to describe the production,

aggregation, diffusion, and elimination of amyloid dimers. They

used their model to explain various aspects of AD, such as the rapid

growth of disease incidence with age, the clinical progression in

genetic forms of AD, the changes in hippocampal volume, the AD

risk after traumatic brain injury, and the spatial spreading of the

disease. Bertsch et al. (2017) used a reaction-diffusion equation of

the form

∂u

∂t
= D∇2u+ f (u)

where u is the concentration, D is the diffusion coefficient, and

∇2 is the Laplacian operator. The function f (u) can, for example,

represent the aggregation and removal of amyloid beta. In Bertsch

et al. (2017), the function f corresponds to the precise but

complicated Smoluchowski coagulation equation, which describes

every possible size of the amyloid beta chain by a different state

variable. In Alkahtani and Alzaid (2021), the authors replace

conventional PDEs with a version involving fractional derivatives

which they claim leads to a more realistic model. These papers did

not explicitly model the emergence of amyloid and tau pathology,

but they did account for the age-dependent changes in the model

parameters. Therefore, different papers had different ideas in mind

when using PDEs to model Alzheimer’s disease. Some focused on

the emergence of pathology, while others focused on the spread

of pathology. However, there may be a bit of both in reality, and

the relative contribution of each factor may vary depending on the

stage and subtype of the disease.

4.5 Internal and external validity

Determining internal and external validity is a critical but

sometimes overlooked aspect of mathematical modeling. Table 3

summarizes the extent to which papers satisfied the criteria of

internal and external validity.

Internal validity is related to model verification and takes

into account the mathematical underpinning of the model. An

important aspect of internal validity is the verification of the

accuracy of numerical solutions. For a mathematical model

to be considered internally valid, the software and numerical

methods utilized in solving the model should be specified. The

code or pseudocode used should be accessible and subject to

verification. Techniques like static and dynamic testing should also

be used to confirm the reliability, efficiency, and robustness of the

code (Thacker et al., 2004). To determine the extent of the internal

validity of the papers, we checked whether the authors provided

explicit equations, initial conditions, and parameter values, and if

so, whether this was sufficiently justified. We also verified if codes

or pseudo-codes were provided and if sensitivity analyses were

performed.

External validity, also known as model validation, compares

simulation results and model predictions to experimental data,

which is used to confirm that the predictions are accurate (Thacker
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et al., 2004). As can be appraised from Table 3, few articles were

considered both internally and externally valid. Future reports are

encouraged to provide information regarding validity as a general

condition for model acceptability.

4.6 Limitations

As a scoping review, we used a limited set of search terms

(without synonyms) and only one database (PubMed). This means

that many studies will have beenmissed. Notable among the studies

that were not detected by our initial search are Weickenmeier

et al. (2019), Thompson et al. (2020) both providing interesting

mechanistic models of neurodegeneration.

However, commonalities emerged from the representative

sample of studies that were reviewed. A second limitation comes

from the wide scope of modeling that was proposed by the authors.

While many looked at individual steps in a pathological cascade

(especially that related to amyloid accumulation) few modeled the

entire disease course from onset to neuronal death.

5 Conclusion

Since there is no effective treatment for AD, efforts to

understand its etiology are essential as a first step to devising

any intervention aimed at delaying its onset. More research is

therefore needed in this direction. Computational models can

help to disentangle the roles of the various elements involved

in the onset and development of AD. That said, close attention

must be paid to various aspects of these models for them to

be valid and useful. For instance, the choice of an appropriate

numerical solver is essential to avoid irrelevant results, while a

detailed description of the numerical approaches used to solve the

problem is necessary to make the results reproducible. Providing

code and equations is also a good practice. Using biologically

realistic parameters in mathematical models of AD is essential, as

badly calibrated models can yield irrelevant predictions, and details

of how these parameters are chosen should be given. As models

describing AD tend to be higher-dimensional, to be described by

a large number of parameters, and to be non-linear, sensitivity

analysis is required to identify which parameters play a critical

role and which ones are less important. Systematically fulfilling

these requirements would improve our confidence in the models

being proposed. Hopefully, this will help research reach a stage

where mathematical models of AD can make significant, testable

predictions and play a significant role in the development of new

therapeutic approaches.
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