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We present a novel neural network-based method for analyzing intra-voxel

structures, addressing critical challenges in di�usion-weighted MRI analysis

for brain connectivity and development studies. The network architecture,

called the Local Neighborhood Neural Network, is designed to use the spatial

correlations of neighboring voxels for an enhanced inference while reducing

parameter overhead. Our model exploits these relationships to improve the

analysis of complex structures and noisy data environments. We adopt a self-

supervised approach to address the lack of ground truth data, generating

signals of voxel neighborhoods to integrate the training set. This eliminates the

need for manual annotations and facilitates training under realistic conditions.

Comparative analyses show that our method outperforms the constrained

spherical deconvolution (CSD) method in quantitative and qualitative validations.

Using phantom images that mimic in vivo data, our approach improves angular

error, volume fraction estimation accuracy, and success rate. Furthermore,

a qualitative comparison of the results in actual data shows a better spatial

consistency of the proposedmethod in areas of real brain images. This approach

demonstrates enhanced intra-voxel structure analysis capabilities and holds

promise for broader application in various imaging scenarios.

KEYWORDS

intra-voxel structure, DW-MRI, neural network, deep learning, self-supervised learning,
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1 Introduction

The study of neural structure using diffusion-weighted (DW) magnetic resonance

imaging (MRI) is relevant for connectivity research and clinical applications. One can

infer the local white matter structure by measuring the DW signals along multiple

directions. These measurements contribute to the study of brain connectivity patterns

and the detection of some brain diseases. For example, the information on the local

diffusion directions describing the tissue structure is essential for constructing a diffusion

tractography brain model (Nucifora et al., 2007). In diffusion tractography, the method

used to infer the intra-voxel structure plays an important role in the quality of the

estimation of the anatomy of the human brain (Schilling et al., 2021). In addition,

DW imaging is useful for the detection of ischemic stroke, trauma, and brain tumors

(Gaddamanugu et al., 2022).

Many models with different characteristics have been developed to recover orientation

information from the microstructure of brain tissue. Among them, diffusion tensor

imaging (DTI) is one of the most straightforward approaches, based on the Gaussian

diffusion model for water movement in biological tissues (Basser, 1995; Soares et al., 2013).

DTI approximates the diffusion propagator by a 3–variate normal distribution with a

mean of zero, modeled by the diffusion tensor (DT) (Basser, 1995). This model is sound
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for signals acquired from a single coherently oriented fiber;

however, the model is too simplistic for modeling more complex

fiber configurations. This is important as ∼60 to 90% of diffusion

data voxels have fibers that cross, kiss, fan, or bend (Jeurissen et al.,

2013), limiting the capabilities of DTI in accurately estimating the

microstructure in realistic scenarios. Because of this limitation,

several methods have been developed to model the complex fiber

configurations of more than one axonal bundle.

Some notable examples of multi-tensor (MT) modeling include

diffusion multi-tensor (DMT) modeling for a finite number of

orientations (Tuch et al., 2002), Q-ball modeling to reconstruct

the diffusion orientation distribution function (Tuch, 2004),

constrained spherical deconvolution (CSD) to reconstruct the fiber

orientation distribution function (fODF) (Tournier et al., 2007),

and non-negative least squares (Ramirez-Manzanares et al., 2007).

While DMT generalizes DTI for more than one fiber, the estimation

of the fODF via CSD adheres to a non-parametric method.

These methods rely on an optimization problem to determine the

combination of signals from a dictionary that better reconstructs

themeasured signal (Tournier et al., 2007). Non-parametric models

exhibit more reliability in voxels with crossing fibers (Jeurissen

et al., 2011) and depend on fewer parameters than DMT. For these

reasons, CSD has been established as one of the most used methods

for intra-voxel structure analysis.

However, there are some disadvantages in using traditional

methods for intra-voxel structure analysis. For example, CSD is

known to provide an overestimation of the number of fibers and

it tends to be inaccurate in data with high levels of noise (Jeurissen

et al., 2014). To overcome some issues, some improvements to CSD

have been proposed. Deep neural networks (DNNs) have recently

become a rapidly growing subset of machine learning algorithms

that automatically learn the results of interest from data rather

than hand-crafted features (Latha et al., 2021). These methods

are used to learn models that map the diffusion signal to specific

diffusion parameters. Recent studies have shown that DNNs can

be competitive with state-of-the-art techniques, improving in areas

such as the number of signal acquisitions required for a good

estimation, computational complexity, and precision of estimates.

Some examples of these methods are LSTM units to extract features

as the volume fractions of different compartments (Ye et al.,

2019), a U-Net to generate the fractional anisotropy, the mean

diffusivity and the fiber tractography (Li et al., 2021), and a multi-

layer perceptron (MLP) to address the intricated task of mapping

diffusion-weighted signals onto the target fODF (Karimi et al.,

2021). In addition, a previous study (Ehrlich and Rivera, 2021)

explores the multi-layer perceptron, AxonNet, to estimate the brain

nerve bundle orientations and volume fractions for a voxel using

data from a small neighborhood around that voxel.

Motivated by the success of DNNs in DW analysis, we

propose a novel deep neural network architecture for estimating

the orientations and volume fractions of axonal bundles. Our

model is based on a self-supervised learning approach: our non-

parametric method is implemented by a deep neural network

trained with noisy synthetic data. A key feature of our model is the

exploitation of spatial correlation between neighboring voxels to

improve inference and reduce the number of parameters required.

Our model’s estimation of orientations and volume fractions

achieves competitive results compared to CSDs. It improves the

TABLE 1 Acronyms used in this article.

CSD Constrained spherical deconvolution

DW Diffusion-weighted

MRI Magnetic resonance imaging

DTI Diffusion tensor imaging

DT Diffusion tensor

DMT Diffusion multi-tensor

MT Mutli-tensor

DNN Deep neural network

MLP Multi-layer perceptron

EMD Earth mover’s distance

NNLS Non-negative least squares

CNN Convolutional neural network

fODF Fibers orientation distribution Function

SNR Signal-to-noise ratio

MSE Mean squared error

HARDI High angular resolution diffusion imaging

SR Success rate

GRP Global relative performance

LNNN Local neighborhood neural network

estimation accuracy of images with a high noise level and the

angle resolution of the estimated orientations in images with few

signals. In addition, for evaluation purposes, we propose using

a distance initially introduced in the context of Computational

Optimal Transport: the Earth Mover’s Distance (EMD) (Monge,

1781). We also discuss the convenience of using EMD over other

metrics proposed in the literature. Through some experiments, we

show the performance of our model and compare it to CSD using

these metrics.

Table 1 lists the acronyms used in this study.

2 Notation and problem definition

A DW image is a three-dimensional (3D) array of spatially

related signals that we denote by S. Each signal, S ∈ S, is a vector

of size n, which is assumed to be a sample of a diffusion model.

Each entry, Si, is associated with a gradient direction vector gi and

a scalar b-value bi. The gradient direction vectors are unitary; that

is, |gi| = 1, i = 1, . . . , n, and the b-values are scalars that depend

on the strength, duration, and spacing of the pulsed gradients in

the DW acquisitions. The choice of the number of acquisitions, n,

the gradient directions and their associated b-value, {gi, bi}ni=1, is

known as the acquisition protocol of the image. We will use the set

notation G = {(gi, bi)}ni=1 for its representation.

For a given measure, S ∈ R
n in S, our interest is to provide

information about the tissue’s microstructure corresponding to this

signal. In particular, we characterize the structure by determining

the number of axonal bundles, their orientations, and their

contribution to generating the signal S. We denote these values as
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k, {di}ki=1, and {αi}ki=1, respectively. We usually use the term fibers

to refer to the axon bundles and their contributions to the signal as

volume fractions. For the estimation of these data, we assume that

there exists a function, F, so that

S = F({αi}, {di};G, ǫ),

for some random noise, ǫ, usually modeled through a Rician

distribution (Gudbjartsson and Patz, 1995). Unfortunately, the

transition from S to {αi}, {di} is an ill-posed problem.

2.1 Brief review of theoretical models

For a voxel with a single fiber, the preeminent approach used to

delineate F is the widely embraced diffusion tensor (DT) model, as

documented in the study of Basser (1995). The DT is defined as

S(gi, bi) = S0e(−big
⊤
i Dgi);

in which the unknown variableD ∈ R
3×3 represents the covariance

matrix of diffusivity. At the same time, S0 denotes the measured

signal obtained without diffusion weighting (i.e., when the b-value

is zero). The fiber orientation is recovered from this model by

computing the larger eigenvector of D; that is, the eigenvector

associated with the larger eigenvalue. This vector signifies the

orientation of higher diffusivity and is expected to be aligned with

the fiber orientation.

As mentioned in the introduction, according to some authors

(Ferizi, 2014), most of the diffusion data correspond to signals of

more than one fiber crossing. To model these complex signals,

numerous methods have been introduced; for example, DMT

(Tuch et al., 2002), CSD (Tournier et al., 2007), and NNLS

(Ramirez-Manzanares et al., 2007). They can be broadly categorized

into two main types: parametric and non-parametric approaches.

A popular example of a parametric model is the diffusion

multi-tensor (DMT) model (Tuch et al., 2002). DMT is a linear

combination of t simple diffusion tensors in the same model, each

with its corresponding parameters, that model a signal of crossing

fibers. The DMT model is expressed as follows:

S(gi, bi) = S0

t
∑

j=0

(−big
⊤
i Djgi).

In the case of non-parametric approaches, two of the most

popular methods are non-negative least square (NNLS) (Ramirez-

Manzanares et al., 2007) and constrained spherical deconvolution

(CSD) (Tournier et al., 2007). Both are based on an optimization

problem to determine the combination of signals from a dictionary

that better reconstructs the original signal. This dictionary

can approximate the orientation and volume fraction of the

underlying fibers.

Formally, the NNLS problem can be defined as follows:

x∗ = argmin
x

‖ Ax− y ‖2 subject to x ≥ 0

where A ∈ R
m×n is the fixed dictionary of diffusion signals, y is the

data vector, and x∗ ∈ R
m is our vector solution.

The original CSD method (Tournier et al., 2007) assumes that

the diffusion signal within a voxel can be modeled as a sum

of spherical functions, each representing the contribution of a

different fiber orientation. These spherical functions are convolved

with a response function characterizing the point spread function

of the image acquisition. The estimation process involves solving a

sequential quadratic objective minimization problem:

xt+1 = argmin
x

‖ Ax− y ‖2 +λ||L⊤x||2.

In this formulation, x represents the fODF coefficients, y is

the observed diffusion signal, A represents a linear combination

of spherical basis functions (often using spherical harmonics of

order zero), and L is a penalization matrix that penalizes negative

contributions of the estimated signal at each direction of the basis

functions. The objective function minimizes the difference between

the estimated signal (Ax) and the observed signal (y) while applying

a regularization term to enforce constraints on the estimated

fODF. The regularization parameter λ controls the strength of

the regularization.

3 Materials and methods

In this study, we propose a non-parametric method for intra-

voxel structure analysis. It consists of a model that infers the

number of fibers, their orientations, and their volume fractions.

For this purpose, we propose to employ a neural network whose

expected output is interpreted as a discretized fODF over a

dictionary D of d orientations. The network is trained using

synthetic data generated by the DTM model, and the training is

self-supervised. This section describes the model’s architecture, the

synthetic data generation, and the training procedure.

3.1 Model overview

Our model builds upon four fundamental principles, each

contributing to its effectiveness. First, it exploits the additional

information derived from neighboring signals to enhance

the prediction accuracy of a voxel’s microstructure. Second,

it incorporates a specialized architecture designed to process

neighboring signals while maintaining reasonable trainable

parameters. Third, we introduce a procedure for generating a

synthetic dataset that is simple but realistic enough to ensure the

neural network’s correct training. Finally, encoding the orientations

and volume fractions to create the ground truth targets facilitates

our network’s seamless training.

As previously mentioned, our model exploits the spatial

correlation of neighboring voxels. Two observations support

the idea of using this additional information. First, the fiber

orientations are expected to change moderately in neighboring

voxels, as suggested in various tractography studies (Nucifora

et al., 2007). Second, if the noise in each voxel is assumed to

be uncorrelated (Salvador et al., 2005), different noise levels are

present in each voxel, altering the inference. Therefore, a group

of neighboring signals around a central voxel could provide more
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information about the orientation of the fibers and effectively

average out the noise, improving the structure’s inference.

It is important to note that ours is not the first method to

consider using information from adjacent voxels for this task. For

instance, Lin et al. (2019) proposed a model incorporating first-

order neighboring voxels for inference. Furthermore, a previous

study (Ehrlich and Rivera, 2021) showed that incorporating

neighborhood information as input for multi-layer perceptrons

improves prediction quality. In light of these findings, we have

designed our neural network to accept a 3 × 3 × 3 voxel patch as

input, enabling the inference of the structure of the central voxel

within the patch. Concerning the neighborhood size, one could

be tempted to define a larger neighborhood as this incorporates

more information into the model; however, increasing the size

compromises the network’s efficiency, and this new information

might not improve the result. Thus, we decided to use the smallest

neighborhood that could contain all the possible orientations the

fibers in the central voxel can take, covering a volume of 0.216 cm3.

Despite the benefits of considering more voxels to improve the

inference, this decision comes with the trade-off of processing a

larger volume of signals. In our case, the input data expand from

a single voxel to 27 voxels. This expansion also impacts the design

of the neural network as a change in the input data size typically

necessitates an increment in the number of neurons in subsequent

layers (Xu and Chen, 2008). For example, Ehrlich’s neighborhood

configuration of the AxonNet (Ehrlich and Rivera, 2021) employs

a multi-layer perceptron (MLP) with seven layers and nearly 20

million parameters to handle the increased input size. To tackle this

challenge, we can use other types of architecture more appropriate

for spatially correlated data.

One approach that tackles this drawback is to use a

convolutional neural network (CNN). Some studies show

experiments using this type of network (Lin et al., 2019; Aliotta

et al., 2021). However, the convolutional layers impose a strong

assumption about the relationship between neighboring signals

and the structure we want to uncover. The convolutions are linear

operators on the underlying data, designed to learn low levels of

abstraction. As we know nothing about how the relationship of

the signals can be uncovered, we believe that replacing the simple

convolutions with a more expressive non-linear function can

improve the local model’s abstraction capability.

3.2 Neural network architecture

In this study, we introduce a novel architecture to solve the

problem. Our proposal uses the same parameter-sharing scheme

of CNNs but follows the idea proposed by Lin et al. (2013). This

relies on the same assumption as CNNs: If one feature is useful

for inferring the structure at some spatial position, it should also

be useful at a different position. However, instead of convolutional

layers, we use perceptrons: a well-studied function approximator

(Mcculloch and Pitts, 1943). With this change, we assume nothing

about the type of relationship between neighboring voxels that is

relevant to infer the intra-voxel structure. Nevertheless, as with

CNNs, the same dense network is shared between regions of voxels

by dragging it over the input data.

The network consists of three layers as illustrated in Figure 1.

We adopt the idea of Lin et al. (2013) in the first two layers of the

network. The first layer is dense with ReLU activation functions, fed

by a chunk of 2 × 2 × 2 voxels. The output of this layer is a vector

of size n1 that we interpret as a feature vector, or descriptor, of the

input neighborhood. As the full patch taken by the model is a cube

of 3 × 3 × 3 voxels, each with m signals, it is possible to take eight

blocks of size 2, each one taking a different corner, to be processed

by the first layer, as it is portrayed in the first part of Figure 1.

Following this procedure, after the first layer, we get eight vectors

that we arrange graphically as a cube of size 2 × 2 × 2, with each

voxel of size n1. Note that the eight descriptors obtained from the

first layer were built by considering 2-voxel-sized neighborhoods

containing the central voxel. Therefore, we expect the descriptors

to include structural information of the central voxel based on the

direction toward which the neighboring voxels are biased.We think

this information should help the model to infer the struture of the

central voxel.

For those familiar with convolutional neural networks, the

evaluation mechanism of the first layer can be expressed in

convolutional terms. This first part of the network can be seen as a

3D-convolutional layer that uses n1 filters of size (2, 2, 2) to process

data of size (3, 3, 3), with m channels (the number of signals), at

a stride of 1. The output is then evaluated in a ReLU activation

function. The second layer of the architecture works as the first one

with a few changes. This layer takes the descriptors generated in the

first layer. Still, as there is only one chunk of size 2 × 2 × 2, the

output is a vector of length n2 that encompasses the information

needed for the inference (see the middle part of Figure 1). As in

the previous layer, ReLU is used as an activation function. The

resulting vector is then passed to a linear layer and evaluated in a

Softmax activation function. The inference consists of a vector of

size |D|. This output can be interpreted as a probability vector over

the dictionary of orientations,D. Ideally, the desired output should

be Dirac deltas over the orientations, with intensities representing

the volume fractions.

Observe in Figure 1 how, even though we consider a

neighborhood as input for the model, the number of layers is

manageable: there are only three layers! This is because the first

two layers, albeit dense, are shared by the small neighborhoods of

the 3D image, reducing the complexity of the model. Moreover,

we can extend the same architecture to larger neighborhoods for

images with smaller voxels by adjusting the stride and the number

of layers. Table 2 exemplifies the various configurations that can

be arranged. For instance, if we consider a neighborhood of size

5 × 5 × 5, we can use a first layer with a stride of 1, a second

layer with a stride of 2, and a third layer with a stride of 1

outputting 4 × 4 × 4, 2 × 2 × 2, and 1 × 1 × 1 neighborhood

representations, respectively.

Note that the first two options in Table 2 correspond to known

models; the first is anMLP architecture with two hidden layers, and

the second configuration is the proposed architecture. By recycling

the same perceptron to process all the small neighborhoods, we

could reduce the network’s complexity compared to AxonNet

(Ehrlich and Rivera, 2021). In addition, when processing a

complete DW image, the first layer can independently process the

small neighborhoods of size two, allowing each to be processed

in parallel.
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FIGURE 1

Diagram showing our NN’s architecture proposal and how it evaluates a datum, represented as a cube of voxels.

TABLE 2 Possible configurations of our architecture.

Neighborhood 1st layer 2nd layer 3rd layer

Size Width Stride Width Stride Width Stride

3× 3× 3 3 1 1 1 1 1

3× 3× 3 2 1 2 1 1 1

5× 5× 5 4 1 2 1 1 1

5× 5× 5 3 2 2 1 1 1

5× 5× 5 3 1 2 1 2 1

5× 5× 5 2 1 2 2 2 1

The configuration we chose for our experiments is emphasized in gray.

3.3 Synthetic data generation

An important part of our model is generating the training data.

Given that medical images lack ground truths, our neural network

is trained using only synthetic data, conforming ourmodel to a self-

supervised method. According to our results, auto-generated data

are sufficient for the correct model generalization. Although there

are many complex modes for representing a DW signal, for the

synthetic data generation, we used a Gaussian diffusion model for

being simple and computationally efficient. Therefore, the synthetic

data generation consists of defining the variables for the diffusion

multi-tensor model, simulating the signals using the DMT model,

and generating the representation of the variables to predict. We

generate realistic training and validation datasets according to the

acquisition protocol of the real DW–signals to be analyzed. Our

procedure is described in the following steps.

3.3.1 Fiber representation
We randomly set the orientations of three synthetic fibers for

the central voxel; this is done by taking three points uniformly

over the unit sphere. Then, vectors whose angular distance is less

than min_deg are considered a single fiber. Thus, the number of

fibers can be less than three. For all datasets, we set min_deg to

20 degrees.

To set the volume fractions of the previously generated fiber

orientations, we follow these steps:

1. We draw two numbers from a uniform distribution u1, u2 ∼
U[0.1, 0.9].

2. We denote the volume fractions corresponding to each of the

three fibers, f1, f2, f3, and they are defined as follows:

f1 = min(u1, u2)

f2 = |u1 − u2|
f3 = 1− f1 − f2

3. We set to 0 the volume fractions corresponding to non-existing

fibers, due to the min_deg constrain, and renormalize the

values so that f1 + f2 + f3 = 1.

This way, we can generate voxels containing up to three fibers.

Because of step three, ∼68% of our dataset contained three fibers,

30% contained two fibers, and a few contained only one fiber.

We tried other configurations of these proportions and found no

evidence of improvement in the results. We just observed that to

predict the three-fiber scenario correctly, the network needed more

than half of the data corresponding to that case, given that this

scenario seems more challenging. Therefore, we decided to keep

these percentages.

3.3.2 Neighborhood generation
We build neighborhoods that diverge slightly from the

previously generated central voxels to complete the training and

validation datasets. For such a purpose, we do the following:

• We add random perturbations to the vectors generated for

the central voxel to form eight different perturbated copies,

one for each corner of the 3 × 3 × 3 neighborhood. The

perturbations are made by adding small values to the Euler

angles defining the tensors, sampled fromN (0, 0.25)

• We set the fibers of the rest of the neighboring voxels using

trilinear interpolation.

• The volume fractions are not modified for any of the

neighboring voxels.
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FIGURE 2

fODF depiction of a datum in the training data, corresponding to a

neighborhood of voxels spatially correlated.

Under this procedure, a neighborhood of 3 × 3 × 3 voxels.

The corresponding ODF of one datum is shown in Figure 2, where

we observe the directions of the three fibers in the 27 voxels of

the neighborhood.

3.3.3 Signal simulation
The signals are generated using a DMT model with a tensor

eigenvalue calibrated from the corpus callosum of an actual DW

image (the one used in the qualitative analysis), using the same

acquisition protocol G as the real DW signals to be analyzed. This

is the bottleneck of the proposed self-supervised approach because

of the time it consumes. Fortunately, this generation only needs to

be done once for each protocol.

As the image intensity in magnetic resonance images in the

presence of noise is shown to be governed by a Rician distribution

(Papoulis, 1984; Gudbjartsson and Patz, 1995), we add random

Rician noise to the signals of our training and evaluation sets.

The noise added is controlled by the signal-to-noise ratio (SNR).

First, we randomly choose an SNR into the interval [15, 35] for

every datum. With this variation in the noise, we expect the model

to generalize well for different DW images. We admit that the

choice of this model biases the signals generated using the DMT

model. Although these effects are especially noted in the case of

neural networks (NN), they are not particular to them. We can

say that they are general: Models such as CSD or NNLS generally

use the response of the prototype voxel in the corpus callosum

(adjusting a mono-tensor) as an element to build the (discrete)

signal dictionary. We have tried to ensure this training database is

large enough to mitigate this bias. Still, we accept this limitation

because the model is designed to be trained with synthetic data due

to the scarcity of ground truths in medical images. Nevertheless,

as demonstrated in previous studies, we believe the approach can

generalize well to actual data (Ehrlich and Rivera, 2021; Karimi

et al., 2021).

3.4 Ground truth labels

We already mentioned that the desired output is a vector of

responses to a dictionary of orientations D of size d. To define the

ground truth labels, we must define D. The dictionary contains

vectors indicating orientations. We set all vectors in the upper

hemisphere (positive third dimension) for convenience. To cover

most orientations, the vectors are as equally distributed as possible

(Jones et al., 1999). An ideal dictionary should have as many

orientations as possible to minimize errors, but with 362, we get

an excellent level of precision. Now, we define the representation

we will use for the output data. The output representation must

encode the multiple fibers of the central voxel and their volume

fractions. We interpret the output of the model as the volume

fractions distributed in the d orientations given in the dictionary

D. Therefore, as in many deep learning applications, the ground

truths, called here labels, should reflect that. To that aim, the labels

of the central voxel are crafted using a two-step procedure.

In the first step, we compute the Nearest Element (NE) of the

dictionary for every fiber orientation in the central voxel; that is, we

compute the element in D that has the smallest angle to the vector

representing the fiber orientation. After computing these labels, we

scale them by their volume fractions. Formally, for an orientation

v, the Nearest Element label of v is defined as

LNE(v) = fv argmin
d∈D

arccos(|v⊤d|),

where fv is its corresponding volume fraction.

The nearest element labels are our desired output, but choosing

this representation introduces a 0–1 loss in training a neural

network: Either the model’s predicted orientations are right or

wrong. However, not all orientations are necessarily wrong since

good approximations of the orientations are more desirable than

others with a larger angular distance. Therefore, we introduce a

more sophisticated representation that encodes a confusion matrix

on the orientations. This representation reduces the penalty for

small orientation errors.We refer to these labels asWatson Labels as

they are constructed by adjusting a Watson distribution discretized

by the orientations in the dictionary with center on the Nearest

Element labels. More formally, we build these labels under the

following formula:

LWσ = WσLNE;

whereWσ ∈ R
m×m is the confusion matrix containing the weights

of Gaussian blurring on the sphere with variance σ . Given two

directions in the dictionary, d̃i, d̃j, such weights are defined as

Wσ
i,j = w(dθ (d̃i ,d̃j))

w(0)
for w(a) = 1

σ
√
2π

e
−

(

a
σ
√
2

)2

, the evaluation

of the angles between dictionary directions on a Watson density

distribution. LWσ are shown graphically in Figure 3. Note that if a

voxel contains just one tensor with direction d, this construction

will do the labels equal to their evaluation on aWatson distribution

with mean d and variance σ . For more than one fiber, the sphere

displays a mixture of Watson distributions with the center in the

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2024.1277050
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Aguayo-González et al. 10.3389/fninf.2024.1277050

FIGURE 3

Watson label representation over the dictionary. We display the true

orientations in red, while the Watson labels are shown as green

intensities over the dictionary of orientations in the hemisphere.

NE labels, pondered by the volume fractions. Formally, given the

Watson blurring of three orientations, L1Wσ , L
2
Wσ , L

3
Wσ , the final

labels are defined by the following mixture ofWatson distributions:

LWσ =
3

∑

i=1

LiWσ for i = 1, 2, 3.

For convenience, σ is expressed in degrees but converted to

radians for the computations. In our experiments, we noticed that

small values are difficult to train and generate a greater angular

error, while a large σ produces less quality in the volume fractions

estimations. In this study, values of 8◦ and 10◦ are used to construct

the Watson labels, LW8 and LW10, respectively.

In case of analysis of ultra-high field data, our method accepts

that training data and diffusion labels can be generated with non-

Gaussian diffusion models, as the revised by Gallichan (2018), with

a slightly additional computational cost.

3.5 Training

We train the network with the mean squared error (MSE) loss

function between the output tensor and the ground truth labels.

This error for two vectors x, y ∈ R
m is defined as

MSE(x, y) =
1

m
‖ x− y ‖2,

where x are the normalized signals. MSE is the loss function

used per excellence for regression problems when training neural

networks. This is due to the equivalence of minimizing the

quadratic norm to the maximum likelihood estimator by assuming

a Gaussian distribution for the noise. Although many specific loss

functions exist for different tasks nowadays, MSE typically exhibits

good training accomplishments. This study is not the exception; we

use MSE as a loss function to train our models.

The optimizer used for training was Adam, with a learning rate

of 0.002. We decreased this learning rate by a factor of 0.2 when

reaching a plateau in the training loss. The training was stopped

when the loss, computed in an independent validation set, did not

decrease for 10 epochs. No regularization was used. The training

set consisted of 20,000 examples, and the validation set consisted

of 5,000 examples of 27 voxels generated with the procedure

introduced in the previous section. The number of signals depends

on the acquisition protocol of the evaluation’s datasets.

3.6 Experimental methodology

The experiments were focused on determining the quality of

the inferences produced by our model. To that end, we tested how

well it can infer three crucial elements of the intra-voxel structure:

the number of fibers, their orientations, and the volume fractions.

For this purpose, we conducted some experiments and used several

metrics. We describe the experimental setup in this section.

Our experiments are divided into two parts according to the

objectives pursued. The first set of experiments tested how the

different hyperparameters affected the model’s prediction. These

values are the number of neurons in each layer, n1 and n2, and the

parameter σ , the variance of the Watson distributions used for the

labels. We also validated the model by comparing its performance

with classical MLPs. When choosing the size of the layers, we

were interested in a model with a low computational complexity

without compromising good performance in the precision of the

inference. For the validation of the model, our reference is the

Multi-Layer Perceptron AxonNet (Ehrlich and Rivera, 2021), as

a previous study suggested a good performance. To that aim, we

consider the predictions of the two MLPs:

• A MLP consisting of seven linear layers with neurons ranging

from 512 to 4,096. This model takes the voxel’s neighborhood

as input, just as our proposed model. For the rest of this study,

we refer to this model as Neighborhood-MLP.

• AMLP that evaluates the signals of the central voxel, ignoring

the neighboring voxels. This slightly smaller model has six

dense layers and a range of neurons between 512 and 2048.

We refer to this model as the Voxel-MLP.

We refer to Ehrlich et al. in 2020 preprint (Ehrlich and Rivera,

2021) for more detailed information about these models.

The second set of experiments was conducted to test the

performance of our model in a well-known phantom image and

compare our estimations with the estimations produced by CSD.

To that end, we evaluated both models using simulated data given

as evaluation on the ISBI 2013 HARDI reconstruction challenge

(ISBI, 2013). The signals of this phantom image were simulated

through a more complex procedure that differs from the one used

for the training data. The data consist of images of size 50×50×50,
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and it is available in two acquisition protocols: a DTI scheme with

32 signals and b-values of 1200 s/mm2, and a HARDI scheme with

64 directions and b-values of 3000 s/mm2. We concatenate both

images for our experiments, producing a multi-shell protocol of

96 signals. As the ground truth fixels are given for each voxel,

we can evaluate the quality of the predictions. The quantitative

evaluation consists of several metrics over the fODFs estimated

by each model and the time each model takes to produce the

estimations. One crucial element for the comparison is the metrics

used to evaluate the models. We dedicate the following section to

introduce those metrics.

Finally, our experiments are completed with a visual inspection

of the estimations on data from a real healthy male subject from

the Stanford HARDI dataset (Rokem et al., 2015). The set consists

of single-shell data with b-values of 0 and 200 s/mm2, with a

protocol of 160 gradient directions. In this inspection, we focused

on evaluating the predictions on areas with multiple crossing

fibers and some common mistakes in the estimations found in

the literature.

3.7 Performance metrics

We can assess several aspects in measuring the quality of the

inferred microstructure. For instance, Canales-Rodríguez et al.

(2019) compiled five types of error that can be taken into

consideration to evaluate the precision of the estimated peaks: the

angular error, the volume fraction error, the number of fibers over-

estimated, the number of fibers under-estimated, and the success

rate. A fiber peak is an estimated fiber orientation chosen from

an orientation distribution function and associated with a volume

fraction. To evaluate the precision in fiber orientations for a datum,

they propose the angular error defined as

θe =
1

Mtrue

Mtrue
∑

k=1

min
m

{

arccos(|e⊤mvk|)
}

,

where Mtrue is the true number of fiber populations; em is the

unitary vector along the m-th detected fiber peak, and vk is the

unitary vector along the k-th true fiber orientation.

In addition, Canales-Rodríguez et al. (2019) proposed using the

mean absolute error as a volume fraction error:

1f =
1

Mtrue

Mtrue
∑

k=1

|fm − fk|.

To evaluate how well a model estimates the number of fibers,

Canales-Rodríguez et al. (2019) propose computing the mean

number of fibers over-estimated per voxel, n+, and the mean

number of fibers under-estimated, denoted by n−. In addition,

the cited study defines the Success Rate, SR, as the proportion of

voxels in which the algorithm estimates the right number of fiber

compartments, calculated with an angular error inferior to a given

value (25◦ in our experiments), and the correct relative order of

volume fraction among the predicted fibers. The Success Rate is

a metric that indicates the accomplishments in the estimation. In

Figure 4, we observe how small variations in the solution produce

unsuccessful estimations.

Canales-Rodríguez et al. (2019) propose a metric that considers

the errors mentioned above to facilitate the comparisons between

different methods. The global relative performance (GRP) of a

method i is defined as

GRP(i) =
θi

〈θ〉
+

1fi

〈1f 〉
+

n+i
〈n+〉

+
n−i
〈n−〉

+
1− SRi

1− 〈SR〉
, (1)

where 〈χ〉 denotes the mean value of metric χ for all methods in

the comparison.

The global relative performance is helpful as it summarizes

the performance in one number, facilitating comparisons between

methods. However, one disadvantage of this formula is that it

equally weights the five types of errors. Moreover, any specific

weighting choice can be controversial because such metrics

cannot be directly compared. Furthermore, each type of error

is normalized by the mean error, so for the two methods, a

mean overestimation between 0.01 and 0.001 costs the same as

the overestimation between 1.0 and 0.1, even though the second

difference is more relevant. Because of this disadvantage, we still

need to compare each metric individually. As an alternative, we

evaluate using the Earth Mover’s Distance to compare methods.

The main EMD advantage over the metric (1) is its interpretability:

EMD is the least amount of energy necessary to transform one

collection of items into another.

The Earth Mover’s Distance (EMD), also known as the 1-

Wasserstein distance, defines a distance between histograms and

probability measures (Peyré et al., 2019). Intuitively, given two

distributions, one can be seen as a mound of earth spread in space,

the other as a collection of holes in the same space. Then, the EMD

measures the least amount of work needed to fill the holes with dirt.

A formal definition of the Earth mover’s distance over a general

metric is as follows (Andoni et al., 2008): Consider a metric space

X endowed with distance function dX . For two sets A,B ⊂ X of

size n, its cost matrix C ∈ R
n×n
+ is defined as Ci,j = dX(Ai,Bj)

for elements i and j in A and B, respectively. Given two probability

vectors a, b ∈ R
n that provide weights to the elements of A and B,

respectively, the Earth Mover’s Distance (EMD) between a and b is

defined as

min
P∈Rn×n

+

∑

i,j

Ci,jPi,j subject to PI = a, P⊤I = b. (2)

EMD is proved to be a distance satisfying symmetry and

triangle inequality, and it also naturally extends the notion of a

distance between elements to that of a distance between sets or

distributions of elements. One of the crucial properties of the

EMD is that it is a weak distance; that is, it can be used to

compare singular distributions whose supports do not overlap and

to quantify spatial shifts between the support of two distributions.

This sets EMD apart from other notions of distance. The Kullback-

Leibler Divergence, for instance, requires overlapping distributions

to be useful (absolute continuity is needed) (Peyré et al., 2019).

Moreover, other classical distances are not even defined between

discrete distributions. For example, the L2-norm can only be

applied to continuous measures with a density concerning a base
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FIGURE 4

Example of how small di�erences in estimation can produce an unsuccessful estimation. In the left image (A), three vectors of volume fractions of

0.5 (blue), 0.35 (green), and 0.15 (red). In the center (B), the same vectors but with volume fractions of 0.4, 0.41, and 0.19, a di�erent relative order of

predominance. In the right-hand image (C), the same volume fractions but a vector with a distance of 20.1◦ w.r.t. the first image.

measure, and the discrete L2-norm requires that positions (xi, yj)

take values in a predetermined discrete set to work correctly.

The properties of EMD make it suitable for our needs. We can

compare two distributions over the sphere as two fODFs. In other

cases, we can compute the EMD between smooth distributions and

isolated peaks; for example, we can compare Dirac deltas, which

indicate the actual fiber orientations, and a fODF estimated by a

method. The EMD also differs when representing distributions with

different modes, which is useful when multiple fibers exist. For

example, when comparing two results with a different number of

detected fibers, EMD auto-assigns the orientation predictions to

the closer one by minimizing the work needed to move one into

the other, thus eliminating the need for manual pairing. Moreover,

EMD considers the variance between distributions, which is useful

when comparing certainty among the estimated orientations. To

get intuition on how the EMD works, see the two special cases

provided in the Supplementary material.

4 Experiments and results

In the first experiment, we evaluated the performance of our

neural network with a different number of neurons in each layer,

denoted by n1 and n2 for layers 1 and 2, respectively. In general,

all models accomplished good results, from the smallest model

with 128 neurons in the first layer and 256 in the second to the

largest model consisting of 1,024 and 1,536 on each layer. Generally,

performance improves proportionally to the model’s size, so the

largest models produce better results (Supplementary Table 1).

However, the performances were barely different compared to

the drawbacks of increasing the size (Supplementary Table 2). For

example, the model with 256 neurons in the first layer and 512 in

the second layer has anMSE over an evaluation set of 7.01e−06, and

the model with 768 neurons in the first layer and 1024 in the second

layer has an MSE of 6.98e− 06. Although there is a slight difference

in the results, the number of parameters is five times larger in the

second model. After this first evaluation, even though the larger

models seemed better, we chose a manageable model that could be

executed on a CPU in a reasonable time. Thus, from now on, the

results presented here correspond to the model with 2.54 million

parameters and a size of 512 in the first layer and 512 in the second.

Henceforth, we refer to this specific neural network, trained over

labels of σ = 10 as the Local Neighborhood Neural Network W10

TABLE 3 Comparative between the AxonNet (Ehrlich and Rivera, 2021)

and the proposed models.

Model Parameters
(1e6)

Training
time

Eval.
MSE

Eval.
MAE

Voxel MLP 4.25 465 s 1.44e-5 2.06e-3

Neighborhood MLP 19.59 1,733 s 1.15e-5 1.89e-3

LNNN-W10 2.54 531.7 s 6.96e-06 1.76e-3

We highlight the smallest values in bold.

TABLE 4 Comparative of CSD and LNNN.

Method SNR 30 SNR 20 SNR 10

CSD 0.4109 0.4227 0.4371

LNNN-W10 0.4045 0.4251 0.4444

LNNN-W8 0.4169 0.4135 0.4536

Mean EMD using phantom images with different noise levels. We highlight the lowest value

per noise level in italics.

(LNNN-W10) and the one trained with a variance of 8 as the Local

Neighborhood Neural Network W8 (LNNN-W8). When omitted

the last part, as in LNNN, we refer to theW10 model.

We validate the Local Neighborhood Neural Network by

comparing its performance with the multi-layer perceptrons

mentioned in Section 1. Table 3 shows the results obtained by

those models, all trained with the same training data previously

described. From this table, we can make two observations. The

first one is that considering a neighborhood instead of one voxel

definitively improves the results as the Neighborhood-MLP and the

LNNN obtained better results than the Voxel-MLP. The second

is that a multi-layer perceptron capable of achieving the level of

performance of the LNNN needs 19 million parameters. Thus,

LNNN has less than 15% of parameters. In addition, our proposal

can lower memory complexity, reduce the number of parameters,

reduce computational cost, and lower the training computational

time. The training of our model was performed in 531 s on an 8-

core AMD CPU processor @ 4.5 GHz. This time is relatively small

for using only CPUs. That time is well under a typical adquisition

duration once the protocol is fixed, which facilitates the use of our

model in situ. For example, once the protocol is fixed, this protocol

information can be sent to a server, and the acquisitions can be sent
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FIGURE 5

Metrics on ISBI 2013 dataset with an SNR of 30 (A), 20 (B), and 10 (C). Note that underestimation is scaled, GRP is divided by the number of metrics,

and the failure rate (1− SR) is given as a ratio between 0 and 1.

TABLE 5 Angular error, volume fraction error, overestimation, underestimation, and failure rate of CSD and LNNN for voxels with the presence of three

fibers; lower is better.

SNR Method θ̄e 1̄f n̄− n̄+ 100− SR (%) GRP

CSD 16.9 0.304 1.081 0 82.3% 4.11
30

LNNN 15.6 0.2695 0.9952 0 80.86% 3.83

CSD 16.8 0.2866 1.048 0 85.17% 4.09
20

LNNN 15.6 0.2695 0.9952 0 82.30% 3.78

CSD 19.9 0.2824 0.9522 0 86.12% 4.12
10

LNNN 16.6 0.2671 0.9474 0 79.90% 3.88

FIGURE 6

Results on ISBI 2013 2-shell Phantom image. Axial view of the fixels in a crossing region. (A) GT fixels. (B) CSD fixels. (C) LNNN-W10 fixels.

to the server for processing after the acquisition is finished, getting

the results in no time.

In the second set of experiments, we observed that our

models’ performance is competitive with CSDs. We used the

ISBI 2013 reconstruction challenge dataset to compare our

models’ performance with CSDs. The first thing to note is the

computational times. The CSD method took 3.5 min to process

the image, while our models took 9 min, still a manageable time.

In Table 4, we report the mean EMD obtained by computing the

distance between the estimated fODFs and the true fixels. At least

one of the networks obtained a lowermean EMDover the ISBI 2013

test dataset for data with SNR of 30 and 20. We highlight the results

obtained by the LNNN in the image with a low signal-to-noise ratio.

The training dataset contained only voxels with an SNR as low as

15, and the model seems to perform well on the image with an

SNR of 10. We also computed the errors per type. Figure 5 depicts a
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FIGURE 7

Results on ISBI 2013 2-shell Phantom image. Axial overview of the fixels. (A) GT fixels. (B) CSD fixels. (C) L3N-W10 fixels.

FIGURE 8

Results on ISBI 2013 2-shell Phantom image. Axial overview of the fixels. (A) GT fixels. (B) CSD fixels. (C) L3N-W10 fixels.

graphical summary of the proposed LNNN variants (W8 andW10).

The GRP for the image with a SNR of 30 was 4.24 for LNNN-W10,

4.69 for LNNN-W8, and 6.07 for CSD. Similar magnitudes were

obtained for noisier images.

Table 5 presents a performance comparison using the metrics

compiled by Canales-Rodríguez et al. (2019). We found it relevant

to characterize the apparent advantage of CSD over LNNN in

underestimation by observing what happens to the SR on voxels

with the presence of multiple fibers. When multiple fibers cross, it

is important to recognize the correct number of fibers and not miss

an axonal bundle. Table 5 summarizes how the five metrics behave

in voxels with three fibers. In this particular case, our model has a

clear advantage over CSD in all image metrics, especially in the SR.

The advantage of LNNN over CSD can be visualized on

the fixels. In Figure 6, we plot the fixels of both methods for

a fiber crossing. Observe how noisy the CSD solution is. This

problem is consistent for several slides. For example, in Figure 7,

we have a circular area where the fibers cross a volume with free

diffusion. The CSD’s estimated fixels in this area miss the blue

bundle in various voxels. At the same time, even though it also

introduces spurious orientations, our model manages to estimate

the blue bundle in most of the voxels correctly. Finally, observe in

Figure 8 how our model correctly estimates the number of fixels

while CSD introduces several more. This represents a problem

for the tractography as the tracking algorithm may follow non-

existing fixels.

We also illustrate various estimations in Figures 6, 9 that can

produce the difference in their success rate. We note how, in some

voxels, CSD tends to add spurious fixels or estimates with the wrong

orientations. Compare the central fixels of Figures 9A–C with the

explanation of the SR in Figure 4.

We also evaluated the quality of our method in authentic DW

images. For such a purpose, we use the Stanford HARDI image

(Rokem et al., 2015), consisting of a single-shell protocol of 160

signals. We compared the quality of the micro-structure recovered

using LNNN and CSD. The procedure to extract the fixels consisted

Frontiers inNeuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2024.1277050
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Aguayo-González et al. 10.3389/fninf.2024.1277050

FIGURE 9

Results on ISBI 2013 2-shell Phantom image. Sagittal zoom-in of the fixels in a crossing region. (A) GT fixels. (B) CSD fixels. (C) LNNN-W10 fixels.

of two steps. First, we recovered the fODF using eachmethod; in the

case of LNNN, we treated the network’s output as the fODF. Then,

we recovered the fixels via a peaks estimator with each function,

limiting to a maximum of three fibers and a peak threshold of

0.2. Finally, we inspect the visualizations of the fixels (scaled by

the volume fractions) using MRView from MRTrix. We present

the visualization of the more representative differences between

the methods.

In Figure 10, we plot the fixels recovered by each method,

respectively. This overview of the whole slide shows that both

methods behave similarly, especially in regions where only one

fiber is detected; for instance, one can observe in Figures 10A,

C that both methods agree in the estimations of the corpus

callosum (mainly in red) and the fibers mainly colored in green.

However, there are certain differences that we want to point out.

First, where the fixels in blue cross the purple/pink fiber, CSD

estimations miss some purple/pink estimations, while LNNN does

not. Judging by the orientation of the purple/pink fixels and the

voxels where both methods agree, LNNN is more likely to be

correct in the estimations. This type of ’interruptions’ is common

in the estimations obtained using CSD; for example, in Figure 10B,

we observe the same behavior with the green and blue fixels.

The robustness of our model in this type of situation is probably

attributed to the information about the neighborhood it processes.

We note that both methods differ the most in the folds near the

border. Analyzing the predominant orientation, we note that CSD

estimates the fanning better than LNNN in the gyral blades, while

LNNN suffers from the effect known as gyral bias (Wu et al.,

2020). In Figure 11, we plot the fixel with the greatest volume

fraction. In this figure, it can be observed that the fanning is

recovered in the estimations of CSD but not in the estimated fixels

of LNNN. LNNN recognizes the fixels going in the orientation

orthogonal to the frontier, but in the fixels with the second

larger volume fraction (see Supplementary Figure 3). In this case,

judging by the existing literature (Wu et al., 2020), the estimations

of CSD are preferred. That is proposed to be addressed in

further study.

5 Discussion

As was noted in the experiment summarized in Table 3, the

number of neurons per layer in the proposed model has a very

small effect on the results. What seemed to have a greater effect

on the performance is σ , the variance of the Watson distributions

used as targets in the training. We thought that the smaller this

value was, the sharper the estimated peaks would be. However, the

synthetic data evaluation results show that the estimation quality

worsens. For example, Figure 12 presents a comparison of themean

squared errors obtained by the same model configuration trained

with different variances in the Watson labels. The same gap can

be observed for all the configurations we tested. We observed that

the variance of the Watson distributions should be large enough to

train the model properly.

Analyzing the metrics compiled by Canales-Rodríguez et al.

(2019), we observe that both variants of the LNNN get results of

good quality. Figure 5 resumes the evaluation of CSD and LNNN

using these metrics and the GRP (divided by the number of

metrics). If we look at this last indicator, our models are better

ranked than CSD with a lower GRP. Note that the goal is to recover

the intra-voxel structure, so here, we evaluate the accuracy of the

fixels rather than the fODF, which was implicitly evaluated by

the EMD. As our goal is to describe the fixels, and the Watson

distributions were designed for having q stable the training (to have

a smooth convergence), it makes more sense to evaluate the metrics

in Figure 5. Moreover, computing the EMD is computationally

expensive because it involves solving a linear program for each

voxel. Consequently, we recommend using the metrics compiled by

Canales-Rodríguez et al. (2019) for a quick evaluation and use EMD

for comparing estimates between the same model, as in this case,

the fODF follows the same distribution. Thus, in this case, EMD

can be a good metric for comparing the overall score.

In Figure 5, we note that LNNN-W10 has the lower GRP,

improving especially in the angular precision and improving

evaluations in 4 out of 5 metrics. One important feature to note

is that LNNN avoids overestimation when compared with CSD,
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FIGURE 10

Results on Stanford HARDI image. Upper images illustrate the location analyzed. Note the discontinuity estimated by CSD in the blue fixels in (A) and

the discontinuity estimated by CSD in the fixels colored in green in (B). In general, we appreciate a slightly better spatial coherence in the estimations

of LNNN. (A) Coronal view of crossing fibers at the level of the corona radiata. (B) Saggital view showing crossings with the corona radiata. (C)

Coronal view: axons of the CC intersect cortical/thalamic projections.

with a slight increase in the underestimation of fibers. Conversely,

CSD has a slightly better underestimation but a much worse

overestimation. Thus, we can conclude that LNNN is better at

estimating the number of fibers in the voxels. GRP not only

measures the estimation of the correct number of fibers but also

weights how accurate they were regarding the angular precision,

volume fraction accuracy, and the number of rightness defined

by the success rate. Let us extend the observations about how to

interpret this last metric. As explained before, SR can distinguish

between spurious and correct fixels. In this case, we observe

that LNNN maintains SR over 60% in data with SNRs of 30

and 20 and over 50% for data with SNRs of 10. Our results

indicate the robustness and reliability of our method, even in

the presence of significant image degradation. We also performed

qualitative validation on real data, showcasing the applicability

of our model in real-world scenarios. The estimates obtained

from our model showed greater spatial consistency compared to

CSD (see Figure 10). However, it is important to note that CSD

estimations are preferred at voxels where our method is susceptible

to gyral bias (see Figure 11), ensuring the most accurate results
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FIGURE 11

Comparative of estimated prominent fixels on Stanford HARDI image at gyral blades. (A) CSD. (B) LNNN.

FIGURE 12

Comparative of the same model configuration trained with Watson

labels with a di�erent σ parameter. We note that σ = 10 produces

the smallest error.

found in the literature in such scenarios. In future study, we

plan to explore more complex scenarios within the training data,

including neighborhoods with partial volume or fanning gyral

blades. By incorporating such complexities, we aim to enhance

the versatility and adaptability of our method across a wider

range of imaging scenarios. In addition, we will investigate more

sophisticated architectures that can operate independently of the

specific acquisition protocol, further expanding the versatility and

practicality of our approach.

We also explored using the Earth Mover’s Distance (EMD)

as a metric to compare the precision of estimations between

different methods. The EMD has been widely used to measure the

dissimilarity between probability distributions. We hypothesized

that it could provide a meaningful measure for evaluating the

accuracy of our model’s estimations. Through experimentation,

we found that the EMD provided valuable insight into the

precision of the estimates. It captured the differences in spatial

distributions between our model and other methods, providing

a more nuanced understanding of their performance. However,

during our investigation, we encountered a significant limitation

that made the EMD less reliable for comparing our model

with CSD.

The EMD has a clear advantage over GRP: It does not depend

on the results obtained by other methods to be computed and used

for comparisons. As the formula states, to calculate the GRP, it is

necessary to calculate the required metrics of all the methods in

the comparison as the mean errors normalize the values. On the

other hand, EMD can be computed for a method without the need

for the results of the different methods’ results, and the best-ranked

method is the one with the lowest EMD value over the same data.

Even though EMD seems to have some advantages over GRP,

this metric has two clear disadvantages. The first drawback is

the increased computational complexity as evaluating the mean

EMD over a dataset with V voxels requires solving V optimization

problems. This significantly prolongs the evaluation time. Another

drawback relates to the treatment of variance. When using EMD

on distributions, it places importance on variance. However, if

our main interest lies in comparing fixels rather than fODFs, the

penalizing variance may not be desirable since we are primarily

concerned with peak orientations rather than the dispersion of

the fODF.

Our proposed model incorporates the variance of fODFs

as a crucial parameter. We discovered that by adjusting this

parameter, we could manipulate the EMD scores, thus potentially

misleading the comparison between our model and CSD.

Because of this inherent vulnerability and the computational

cost associated with calculating the EMD, we noted that the

EMD may not be a trustworthy metric for evaluating the

precision of estimates when comparing our model to CSD.

Relying solely on the EMD could lead to misinterpretation

and misrepresentation of the comparative performance of the

two methods.
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A design criterion for our model was to develop an efficient and

effective method for inferring structural features rather than tissue

types, as neurite orientation dispersion and density imaging (Zhang

et al., 2012) and other similar models. This imposes a limitation

to our model. However, once the structure is determined with

our method, the results can be post-processed to estimate tissue

compartments. This is left for future study.

6 Conclusion

We have introduced a novel method for intra-voxel structure

analysis using a neural network. Our method leverages the

spatial correlation of voxels within the architecture, enabling

efficient inference while minimizing the number of parameters

required. This approach exploits the inherent relationships between

neighboring voxels, resulting in improved performance when

analyzing complex intra-voxel structures or voxels with a high level

of noise.

We have developed a method for simulating voxel

neighborhoods to address the challenge of acquiring ground

truth data. This allows for a self-supervised approach, eliminating

the need for ground truth annotations. The training data generated

closely mimic real-world scenarios, enabling the training of a

model that can be successfully applied to real data. This innovation

opens up new possibilities for analyzing intra-voxel structures with

deep learning approaches without relying on manual annotations.

We conducted comprehensive quantitative validation to evaluate

our proposal performance using phantom images that closely

resemble real in vivo data. Our model exhibited competitive

performance against one of the most widely used state-of-the-art

methods, demonstrating its effectiveness in accurately analyzing

intra-voxel structures. Compared with CSD, our model performed

better in 5 out of 6 metrics, particularly in images with high noise

levels. These metrics are angular error, accuracy in volume fraction

estimation, success rate, overestimation, and general relative

performance. Qualitatively, LNNN shows better spatial consistency

in analyzing certain areas of real brain images than CSD.

Our method offers some advantages in terms of computational

efficiency compared to other deep learning approaches. It

has a low computational cost and can be easily parallelized,

facilitating fast and scalable implementation. Because of its

small size, the network’s training can be done even on a CPU

in a relatively short time. However, we acknowledge that the

simulation of signals for training data poses a computational

bottleneck. This can be challenging, especially when the imaging

protocol is frequently changed. Further optimization strategies

are needed to overcome this limitation and streamline the

training process.

In addition to the aforementioned contributions, we

investigated the Earth Mover’s Distance (EMD) as a comparison

metric between analysis methods for estimating intra-voxel

structure. However, we concluded that EMD may not be a

trustworthy metric for evaluating the precision of estimates when

comparing our model to CSD because of the EMD sensibility

to the smoothing effect produced by the Watson Labels and its

computational cost.
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