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Introduction: Previous studies suggest that co-fluctuations in neural activity 
within V1 (measured with fMRI) carry information about observed stimuli, 
potentially reflecting various cognitive mechanisms. This study explores the 
neural sources shaping this information by using different fMRI preprocessing 
methods. The common response to stimuli shared by all individuals can 
be  emphasized by using inter-subject correlations or de-emphasized by 
deconvolving the fMRI with hemodynamic response functions (HRFs) before 
calculating the correlations. The latter approach shifts the balance towards 
participant-idiosyncratic activity.

Methods: Here, we  used multivariate pattern analysis of intra-V1 correlation 
matrices to predict the Level or Shape of observed Navon letters employing the 
types of correlations described above. We assessed accuracy in inter-subject 
prediction of specific conjunctions of properties, and attempted intra-subject 
cross-classification of stimulus properties (i.e., prediction of one feature despite 
changes in the other). Weight maps from successful classifiers were projected 
onto the visual field. A control experiment investigated eye-movement patterns 
during stimuli presentation.

Results: All inter-subject classifiers accurately predicted the Level and 
Shape of specific observed stimuli. However, successful intra-subject cross-
classification was achieved only for stimulus Level, but not Shape, regardless of 
preprocessing scheme. Weight maps for successful Level classification differed 
between inter-subject correlations and deconvolved correlations. The latter 
revealed asymmetries in visual field link strength that corresponded to known 
perceptual asymmetries. Post-hoc measurement of eyeball fMRI signals did not 
find differences in gaze between stimulus conditions, and a control experiment 
(with derived simulations) also suggested that eye movements do not explain 
the stimulus-related changes in V1 topology.

Discussion: Our findings indicate that both inter-subject common responses 
and participant-specific activity contribute to the information in intra-V1 co-
fluctuations, albeit through distinct sub-networks. Deconvolution, that enhances 
subject-specific activity, highlighted interhemispheric links for Global stimuli. 
Further exploration of intra-V1 networks promises insights into the neural basis 
of attention and perceptual organization.
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Introduction

Two prior studies using functional magnetic resonance imaging 
(fMRI) have demonstrated that BOLD activity from different sites in 
visual striate cortex (V1) exhibits stronger correlations when mapping 
parts of a unique visual object, as opposed to pieces of distinct objects 
(Nasr et al., 2021; Valdes-Sosa et al., 2022). These network effects may 
reflect various cognitive mechanisms, such as perceptual organization 
and object-based attention at very early stages of visual processing and 
deserve further study. Here, we address four issues: (1) Do intra-V1 
correlations carry multivariate information about observed stimuli, 
and is this information stable across individuals? (2) Is information 
about more abstract properties of a visual property (tolerant to 
changes in another property) present in the intra-V1 correlations? (3) 
Is it possible to narrow down the physiological sources shaping the 
information present in intra-V1 correlations? 4) Are the intra-V1 
patterns of synchrony driven by eye movements? To answer these 
questions, we reanalyzed fMRI data from our previous article (Valdes-
Sosa et al., 2022) obtained while observers monitored modified Navon 
figures (Iglesias-Fuster et al., 2014) consisting of the two letters E and 
U, each presented at a Global or Local level (Figure 1).

In these new analyses we  used multivariate pattern analysis 
(MVPA) of the intra-V1 correlation matrices. This departs from the 
prior studies of intra-V1 synchrony which used univariate statistical 
tests. Univariate tests may overlook systematic associations between 
features, potentially missing more complex patterns (Haynes and 
Rees, 2006; Davis and Poldrack, 2013). The univariate approach is also 
uninformative about the stability of network topologies across 
individuals, which is crucial when studying a small number of 
participants (Adali and Calhoun, 2022). These limitations can 
be circumvented with MVPA.

We first employed inter-subject MVPA (Kaplan and Meyer, 2012; 
Rice et al., 2014; Ramírez et al., 2020; Wang et al., 2020) to see if it was 
possible to predict the properties of stimuli (defined by the 
conjunction of level and shape) presented in the experiment from the 
intra-V1 correlation matrices and to assess the stability across 
individuals of the overall network topologies associated with these 
stimuli. We dub these classifications here as ‘specific’. Note that inter-
subject MVPA critically depends on the ability of anatomical 
normalization to align spatially structured neural patterns across 
individual brain, and on the granularity of the spatial units comprising 
the fMRI signals (Ramírez et al., 2020). This alignment may fail even 
when using normalization based on cortical surface features 
(Robinson et al., 2014), although, it is still superior to volume based 

alignment (Hagler et al., 2006). However, the correspondence of V1 
retinotopic mapping with surface landmarks is very tight across 
individuals (Benson et al., 2012; Benson and Winawer, 2018), which 
makes this area an excellent focus for inter-subject MVPA.

Related to the second question, it is crucial to recognize that 
intra-V1 correlations may carry two types of stimulus-related 
information: one tied to the specific retinotopic pattern of individual 
stimuli (the conjunctions mentioned above) and the other linked to 
more abstract properties. Therefore, we also trained intra-subject (and 
inter-subject) cross-classifiers (Kaplan et al., 2015; Hebart and Baker, 
2018) to predict one property (level or letter shape) in the presence of 
a shift in the other property. Successful cross-classifiers in this case 
could suggest that neural representations related to one attribute are 
tolerant to changes in the other attribute, and are more ‘abstract’ than 
those coding specific conjunctions of features.

The third question arises because several neural sources, including 
stimulus-evoked responses and background activity, may shape the 
information carried by intra-V1 correlations. Stimulus evoked activity 
may be shared across, or be  idiosyncratic to, individuals, whereas 
background activity is always idiosyncratic (discussed in Nastase et al., 
2019). Although these contributions are mixed in the fMRI signal, it 
is possible to emphasize or suppress some components through 
appropriate preprocessing (Figure  2). Stimulus-evoked responses 
shared by all individuals, which we dub as the common response 
(CR), can be  emphasized by averaging across participants which 
enables studying inter-subject correlations. They can also 
be  de-emphasized by deconvolving the fMRI data in specific 
individuals with hemodynamic response functions (HRFc) or finite 
impulse responses (FIR) using general linear models (GLM). 
Deconvolution shifts the balance towards participant-idiosyncratic 
activity (see Figure 2). Consequently, we examined the performance 
of the classifiers -based on intra-V1 synchrony- when stimulus-
evoked common responses were favored or suppressed by the 
preprocessing schemes explained above.

Expanding on the previous ideas, distinct neural sources 
contributing to intra-V1 synchrony can influence the accurate 
prediction of stimulus properties, in our design, based on different 
features. Remember, that the features here are intra-V1 network edges, 
in other words the strength of functional connections between two 
points on V1. Since each V1 site has a direct mapping to the visual 
field measured in angles from fixation, each edge can be described also 
as the connection between two sites in the stimulus plane. Thus, each 
link’s weight (strength) can be  plotted in the visual field as the 
thickness of the line connecting two cortical sites or measured in 

FIGURE 1

Navon figures. (A) Two letters (E and U), and two levels (Global and Local) of modified Navon figures used in the experiment. (B) An example of 
traditional Navon figure.

https://doi.org/10.3389/fninf.2024.1080173
https://www.frontiersin.org/journals/neuroinformatics


Ontivero-Ortega et al. 10.3389/fninf.2024.1080173

Frontiers in Neuroinformatics 03 frontiersin.org

subsets of VF networks. Here, V1 sub-networks were defined as the 
connections between the V1 regions that mapped different visual field 
quadrants. Thus, each sub-network consisted of all the links between 
V1 nodes mapping one quadrant of the visual field on the one hand 
and nodes mapping another quadrant on the other.

The contribution of V1 sub-networks to each of the classification 
tests can be gauged by the feature weight maps underlying successful 
stimulus predictions. These maps are simply the values of the 
estimated coefficients in the discrimination equation (here one for 
each intra-V1 connection). After training, the classifier equation 
assigns distinct coefficients to network links (the features). This 
equation yields a linear combination of features from new data to 
predict the associated stimulus class. These coefficients, called 
classifier weights, are commonly used to gauge feature importance in 
classification. Since successful classification indicates the presence of 
information in a cortical region, features with the absolute largest 
weights are sometimes interpreted as carrying most of the information 
that the researcher (but not necessarily the brain) is decoding. 
However, interpreting large weights as indicative of information 
strength for a cortical feature can be misleading. While significant 
weights suggest signal presence, their magnitude may also denote 
their role in mitigating irrelevant noise. Classifiers function as 
backward extraction filters, detecting the signals guiding classification 
and filtering out noise.

Haufe et  al. (2014) proposed a transformation that converts 
backward filters into approximations of activation patterns in a 
corresponding forward model. The activation (or, in our case, 
connection) patterns are latent (hidden) factors that can be inferred 
from the observed weights by the transformation (see Haufe et al., 
2014, for details of this operation) and are better suited for functional 

interpretation since they reflect less the operation of filtering noise and 
more the presence of signals. Therefore, instead of the raw feature 
weight maps, we used the framework of ‘forward models’ described 
above to transform weight maps into activation maps. Despite its 
limitations (Douglas and Anderson, 2017), this transformation 
enhances the interpretability of brain predictive patterns. The sign of 
a feature weight indicates which of the classes it supports in a binary 
classification. Therefore sub-networks can be  further segregated 
according to the class they support in addition to the quadrants that 
they connect. The consistent mapping of the visual field (VF) onto V1 
simplifies understanding of these weight maps (Benson et al., 2012; 
Benson and Winawer, 2018).

The final question is related to another potential source of 
intra-V1 fMRI synchrony: eye movements. Gaze displacements 
over the stimuli could change the parts of stimuli activating each 
V1 site thus affecting the fMRI signal. If these displacements 
change across stimuli, they will generate different patterns of 
intra-V1 synchronization. Previous studies have found highly 
divergent gaze patterns when attending to the Global and Local 
levels of Navon stimuli (Sasaki et al., 2001). Thus, bursts of fMRI 
activity triggered by fixations on different stimulus parts could 
generate intra-V1 correlations that differ markedly between the 
Global and Local conditions, for example. To control for this 
possibility, we  performed a post-hoc analyses of gaze patterns 
using the fMRI signal of the eyeballs (Frey et al., 2021) from the 
original experiment. We also measured the eye movement patterns 
for each of our four stimuli in an offline control experiment and 
simulated the potential effects of the measured eye movements on 
the fMRI activity and intra-V1 correlations to see if this could 
explain classifier success.

FIGURE 2

Schematic representation of the fMRI source models used here. We considered observed signals  =  individual stimulus-evoked responses 
(ERs)  +  background activity (first three columns). The common (or shared) response is the average of the individual ERs and suppresses background 
and idiosyncratic ERs (column 4). The residual activity after deconvolving with a GLM retains the background and idiosyncratic ERs due to 
mismodelling of the individual ERs.
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Materials and methods

The fMRI data used here is described in other publications (see 
Valdés-Sosa et  al., 2020, 2022, for more details), and a summary 
description is provided below.

Participants

Twenty-six human volunteers (ages 23 to 28 years; 9 females) 
participated in the study. All had normal, or corrected-to-normal, 
vision, did not present any medical condition, and were right-handed 
except for two cases. The procedures were approved by the ethics 
committees of the University for Electronic Science and Technology 
of China (UESTC) and the Cuban Center for Neuroscience. 
Participants gave written informed consent in compliance with the 
Helsinki Declaration.

Stimuli and tasks

Modified Navon figures (Figure  1) were presented in the 
experiment. Two letters, E and U, each at the Global and Local levels, 
were used in a blocked stimulus design. A background matrix was 
made from white lines on a black background and was about 2.0 
degrees of visual angle (DVA) wide and 5.3 DVA high. The overall 
matrix was built out of smaller placeholder elements shaped like ‘8’s 
(each with about 40 min of DVA wide and 1 DVA and 3 min high). 
Only one letter type (unveiled by erasing some lines in the matrix) was 
shown in each block and was repeatedly presented for 1 s (alternating 
with the background also flashed for 1 s). The participants were 
required to report the number of minor deviations in letter shape in 
each block. The stimuli were projected on a screen at the subject’s feet, 
viewed through an angled mirror fixed to the MRI head coil, and were 
generated using the Cogent Matlab toolbox.1

Blocks had 44 s of duration and consisted of an initial cue (‘Global’ 
or ‘Local’) presented for 1 s, followed by a 19 s baseline, followed by 
20 s letter repetitions, and ended with a 4 s wait period where the 
number of shape deviations was reported. Five runs were presented in 
24 participants and four runs in two, each consisting of 12 blocks (3 
blocks for each letter: EG, EL, UG, and UL).

Data acquisition and image preprocessing 
for the main experiment

Recordings were carried out with a GE Discovery MR750 3 T 
scanner (General Electric Medical Systems, Milwaukee, WI, 
United States) using an eight-channel receiver head coil. Functional 
images were obtained with a T2*- weighted echo planar imaging 
sequence (TR = 2.5 s; TE = 40 ms; flip angle = 90○) with a spatial 
resolution of 1.875 × 1.875 × 2.9 and 135 images per run. A 
T1-weighted image was also obtained with 1 × 1 × 0.5 mm resolution.

1 http://www.vislab.ucl.ac.uk/cogent.php

Initial pre-preprocessing of functional data included discarding 
the first five volumes of fMRI in all runs, artifact correction using 
ArtRepair toolbox2, followed by slice-timing, head motion correction 
(with the extraction of motion parameters) and unwarping with 
SPM8.3 The T1 Image was segmented and normalized to MNI space 
using SPM12 to extract nuisance parameters from fMRI activity in 
white matter (WM) and cerebrospinal fluid (CSF) that were included 
in the general linear model (GLM) described below. For each subject, 
these masks were created using a threshold of tissue probability 
greater than 0.9. The CSF mask was also restricted to the ventricles 
using a template in MNI space.4

Cortical surfaces (white and pial) were reconstructed from the 
T1 Image for each subject using Freesurfer,5 were registered to the 
FsAverage template, and subsampled to 81,924 vertices. The mid-gray 
cortical surface was co-registered with the functional data, and then 
the fMRI time series were interpolated to each mid-gray cortical 
surface. Here, only time series for V1 were studied. In a few cases, 
data was missing from some V1 vertices due to noise or BOLD signal 
dropout at specific cortical vertices, which were concentrated in small 
areas of the V1 visual field (see Valdes-Sosa et  al., 2022). The 
functional data were converted to Cifti files, and the -cifti-dilate 
command from HCP workbench software6 was applied to impute the 
missing data. Missing vertex values were replaced by a distance-
weighted average of nearby good values, but only if the missing value 
neighbored or was within 7 mm of the geodesic distance of a valid 
value. Then the -cifti-smoothing workbench command was applied 
(using a Gaussian kernel of 2 mm) to smooth the functional data over 
the surface to reduce random noise in the signal.

Finally, to additionally suppress the effects of noise, artifacts, and 
physiological contaminants, the data was high pass filtered with a time 
constant of 128 s, and the effect of 64 nuisance parameters was 
regressed out by applying a general linear model (GLM). The nuisance 
regressors included the primary motion parameters, their derivatives, 
and the quadratics of both these sets (24 motion regressors in total). 
Also, physiologic noise was modeled using the aCompCor method 
(Behzadi et al., 2007) on the time series extracted separately from the 
masks of WM and CSF in ventricles in volume space. The first five 
principal components from each set of time series, the derivatives of 
these components, and the quadratics of all these parameters were 
obtained (40 regressors in total). After noise regressing, each surface 
vertex’s residual time series was submitted to different preprocessing 
schemes to generate three types of intra-V1 connectivity matrices 
(described below).

Estimation of fMRI connectivity matrices 
based on different neural sources

Only data from the V1 region representing the central 4 DVA of 
eccentricity defined with probabilistic eccentricity and visual region 

2 http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.htm

3 http://www.fil.ion.ucl.ac.uk/spm/

4 https://sites.google.com/site/mrilateralventricle/template

5 http://surfer.nmr.mgh.harvard.edu

6 www.humanconnectome.org/software/workbench-command/
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maps7 were analyzed. For all preprocessing schemes, the time series 
were segmented into blocks corresponding to stimulus presentations 
(adjusting for the time shift introduced by the hemodynamic lag). 
These segments were linearly detrended, and segments corresponding 
to the same stimulus were concatenated, which yielded 120 points 
(equal to 300 s) for each stimulus type in 22 participants and about 96 
points (equal to 237.5 s) in another four subjects. Prior studies find 
that resting state fMRI analyses with concatenated data are not 
significantly different from those with continuous data in multiple 
aspects (Zhu et  al., 2017; Cho et  al., 2021). Intra-V1 connectivity 
matrices were estimated in all participants by calculating the Pearson 
correlation coefficient between all V1 vertices segregated by stimulus 
condition (EG, EL, UG, and UL).

The Common Response matrices (dubbed CR) were estimated by 
the correlation between one individual V1 time series and the grand 
average time series for the other individuals (see Nastase et al., 2019). 
This correlation was calculated in both directions (corr S Si n, -( )1  
and corr S Sn i-( )1, ) and averaged to obtain a symmetric correlation 
matrix. This procedure suppressed participant idiosyncratic activity 
and residual noise (Figure 2). Additionally, two different GLMs were 
employed (before detrending the time segments) to suppress common 
activity and relatively enhance participant-idiosyncratic activity. In 
one case, the stimulus responses for each block were modeled as a 
square wave convolved with the canonical hemodynamic (HRFc). In 
the other case, finite impulse response (FIR) functions were modeled 
with nineteen Dirac deltas with unit amplitude. These two HRF 
models were adopted from SPM 12. After deconvolving the response 
to the stimulus in these GLMs, the residual time series were used to 
estimate the connectivity matrices.

Comparing classification accuracy after different fMRI 
preprocessing schemes allows assessment the relative contribution of 
stimulus-evoked activity and background activity to intra-V1 
correlations. One cannot assume that deconvolving eliminates the 
stimulus-all evoked activation since HRF modeling is likely imperfect. 
However, if classification is not affected or improves after the reduction 
of the evoked response via GLM, background activity could play a more 
significant role in shaping the classifications. Note that mis-modeling of 
the HRF should be smaller (although not disappear) with the flexible 
FIR model which fits a different HRF for each stimulus type (Lindquist 
et al., 2009). Finally, for the classification analysis, all matrices were 
vectorized. The correlation values were converted to z-values using the 
Fisher r to z transformation. Negative values in the matrices were set to 
zero, since positive and negative correlations (the latter anti-correlations) 
define different brain networks (e.g., Uddin et al., 2009). However, the 
use of negative correlations has been questioned (Buckner et al., 2013). 
We preferred to avoid the debate, although negative correlations should 
be explored in future related work.

Two types of MVPA

Inter-subject specific classification (to assess stability across 
participants) and within-subject abstract cross-classification (to assess 
discrimination invariance) were performed, in which the accuracy in 

7 https://github.com/noahbenson/neuropythy/

predicting observed stimuli from the intra-V1 connectivity matrices 
was measured. The connection strengths between all node pairs were 
used as features in all tests, and a support vector machine (SVM) was 
employed as the classifier (using a lineal kernel (G x x x xi j i j,( ) = ¢ ) and 
the default parameter C = 1). Feature selection was performed to 
eliminate less relevant connections by applying a two-tailed t-test for 
each feature between conditions across the participants in the training 
data. Only links with significant t-values (p < 0.01) were retained. 
Prediction accuracy was used to assess the performance of each 
classifier, and the statistical significance of deviation from a random 
classification (0.5 correct) was estimated by permutation testing (1,000 
times), in which stimulus labels were randomly changed (Valente 
et al., 2021). The accuracy of the two instances of each type of classifier 
was averaged, and the probabilities of the associated permutation tests 
were combined with the Fisher formula (Fisher, 1925).

Inter-subject classification tests

Inter-subject classification tests were performed to evaluate if the 
pattern of association between specific stimulus conditions and V1 
network topology was stable across participants. These tests were 
carried out with cross-validation in a leave-one-subject-out (LOSO). 
Thus, training was based on the data of n-1 participants and testing on 
the data of the left-out participant. The four discriminations tested were 
level (Global vs. Local), separately for the E and the U stimuli, and letter 
shape (E vs. U), separately for the Global and the Local stimuli. Every 
iteration of the LOSO consisted of 50 training and two testing samples.

Intra-subject cross-classification tests

Cross-classification tests were employed to see if models built 
for a relevant feature (e.g., level) were invariant to changes in 
another irrelevant feature (e.g., letter identity). The data from all 
subjects were divided into two sets of pairs (each with 52 
observations) to test the invariance of level discrimination with 
respect to changes in letter identity and the invariance of letter 
discrimination with respect to changes in level. The classifier was 
based on the EG vs. EL, and UG vs. UL pairs for abstract Level. 
The classifier was based on the EG-UG and EL-UL pairs for 
abstract Letter. The classifier was trained twice, alternating which 
pair was used for training and which for testing, and the two 
accuracies were averaged. Note that in these tests cross-validation 
is not needed since the classifier was trained with data from one 
pair of conditions and tested with independent data related to the 
other. In this case, permutation tests were based on randomizing 
the labels only of the training data in both directions of the test. 
However, to see the reliability of the abstract cross-classification 
we also performed the inter-subject approach described above.

Analysis of weight maps in the 
cross-classification tests

The weight maps of the SVM in the abstract Level cross-classifier 
were examined to determine which connections within V1 contributed 
most to classification performance for the different preprocessing 
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schemes (CR, HRFc, and FIR). This analysis was not carried out for the 
abstract Letter cross-classification for reasons explained below. This 
analysis was also not performed for the specific inter-subject tests since 
their weight maps necessarily diverge because they reflect the 
retinotopic stimulation pattern. In contrast, the invariance of weight 
maps for one attribute despite changes in another implies a 
generalization beyond the precise layout of retinotopic stimulation.

To obtain more robust summaries of the weight maps and assess 
their stability a bootstrap (1,000 times) procedure was performed. In 
each bootstrap iteration, resampling with replacement across 
participants was carried out. The SVM was then re-trained in each 
replication to obtain multiple models for classifying level for both E 
and U letters. The estimated model coefficients were transformed into 
forward models (Haufe et al., 2014), producing transformed weight 
maps to enhance interpretability.

The concordance of transformed weight maps rankings between 
the two instances of the invariant cross-classifications was measured. 
If cross-classifiers trained separately for two directions yield similar 
weight maps, then the features guiding the generalization of learning 
across the two situations are equivalent. This is a sign of an abstract 
representation. Concordance was measured between the two 
instances for each bootstrap replicate using Kendall’s W index 
(which ranges from 0 for no concordance to 1 for perfect 
concordance). If the two classifiers contained invariant information 
(i.e., tolerance to irrelevant feature change), the ranking of 
activations in the two transformed weight maps should be highly 
concordant. The 95% bias-corrected and accelerated percentile 
confidence intervals were calculated for different measures.

The edges contributing most to classifier accuracy were then 
examined. Positive and negative weights in the transformed weight 
map reflects discrimination supporting the Local and Global level, 
respectively (due to the coding used in the SVM). The bootstrapped 
transformed weight maps from the two cross-classification directions 
were averaged to enhance features relevant to both, and the median of 
these averages were selected as the most robust weight map summary. 
The upper and lower 2.5% of the median weights were identified as 
significant features, and plotted within the original correlation matrix 
space and projected as graph plots onto the visual field. The space of 
intra-V1 edges was divided into ten sub-networks as described in 
Valdes-Sosa et al. (2022). The number of positive and negative edges in 
each sub-network for the median transformed weight map was counted 
in all conditions. We then tested if the distribution across sub-networks 
changed as a function of preprocessing scheme or Level. This produced 
a three-way contingency table (3 preprocessing schemes x 2 levels x 10 
sub-networks) that was analyzed for pattern heterogeneity (that is 
differences in underlying distributions across multiple contingency 
tables) using the R package DiffXtables.8

Estimation of eye movements in the fMRI 
experiment

To estimate potential effects of eye movements on our fMRI data, 
we employed a post-hoc control utilizing DeepMReye, a convolutional 

8 https://cran.r-project.org/web/packages/DiffXTables/index.html

neural network designed for decoding gaze positions from the 
magnetic resonance signal of the eyeballs (Frey et  al., 2021). 
Specifically, we utilized the variant providing 10 inferred eye positions 
per scan volume. Since our experiment predated the public release of 
DeepMReye, no calibration of the network during recording sessions 
was carried out. Consequently, our analysis was centered on within-
subject comparisons across various stimulus conditions. The gaze time 
series were z-scored within each participant for meaningful 
comparisons. We assumed that the mean gaze position across all runs 
closely approximated the central fixation marker. A linear mixed 
effects model using the following formula was used:

 X or Y Level Letter Level Letter participant( ) * + *~ )( |

Letter and level were fixed effects and subject a random effect.

Control eye movement experiment

A control experiment was conducted with 18 additional participants 
(twelve female and six male, age range 21–61, median = 42) who were Cuban 
university students or graduates. All had normal (or corrected to normal 
vision), no history of neuropsychiatric diseases, and 16 were right-handed. 
Eye movements were measured while the subjects observed the same stimuli 
-and performed the same task- from the fMRI experiment but with slightly 
larger stimuli. A 34 × 27 cm monitor screen (1,280 × 1,024 pixels resolution) 
was used. A chin and forehead rest fixed the participant’s head position at 
69 cm from the screen; therefore, the stimuli were about 7.16° wide and 2.9° 
high. These stimuli were larger in degrees of visual angle than the ones used 
in the fMRI experiment, thus optimizing the possibility of detecting a 
stimulus effect on the gaze patterns.

An EyeLink® 1,000 Plus Version 1.0.6 Desktop Mount system (SR 
Research Ltd., Ontario, Canada) was used to measure eye position by 
recording corneal reflection and dark pupil with a video-based 
infrared camera and reflective mirror. These measurements had a 
spatial resolution of 0.01° of visual angle and a temporal resolution 
of 1,000 Hz. The viewing was binocular, but the recording was 
monocular. Calibration and validation of the measurements were 
performed before each experimental session. The fixations during the 
20 s stimulation blocks were separated into sets corresponding to the 
four stimulus types.

To drive the prediction of stimuli from intra-V1 matrices, eye 
movement patterns need to be different for each stimulus type and this 
difference consistent across participants. We tested this possibility by 
using the iMap4 toolbox (Lao et al., 2017). Fixations for each trial were 
projected back into their x and y pixel coordinates in the visual field 
as Dirac deltas with amplitude proportional to their durations. This 
fixation duration map was convolved with a two-dimensional 
Gaussian function, producing gaze heatmaps that were downsized in 
pixels with a scale of 0.25. This procedure was repeated with Gaussian 
kernels with 5-, 10-, 20-, and 40-pixel standard deviations. The 
resulting 3D matrices (Fix , ntrials × 320 × 256) were used as the 
dependent variable and modeled in a mass univariate linear mixed 
model (LMM) according to the following equation:

 

Fix x y Level Letter TrialOrder Level
Letter partici

,

( |

( ) + + + +
+
~ :1

1 ppant)
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Level was Global or Local, letter was E or U, and TrialOrder is the 
order of presentation for each type of stimulus in each participant.

The LMMs at each pixel were fit by maximal likelihood (ML) using the 
fitlme function from the Statistics Toolbox™, Matlab 2022b (MathWorks 
Inc., MA, USA). Subsequent analysis was in two steps. First, the original 
parametric statistical values from the LMMs were thresholded at a given 
p-value, which in different iterations was 0.05, 0.1 and 0.2 divided by the 
number of pixels with non-zero signals (7165) to form clusters. This step 
was repeated after resampling with replacement across participants (1,000 
times). For the original data and the bootstrapped data, the cluster mass was 
obtained by summing the contrast coefficient values of the LMM within 
each cluster. An empirical distribution was obtained of these cluster mass 
measures. The cluster mass of the original clusters was then compared with 
a bootstrap distribution under the null hypothesis values, accepting as 
significant clusters in the p < 0.05 rightmost tail. This non-parametric 
procedure allowing to correct for the multiple comparisons inherent to the 
mass univariate nature of the heatmaps statistical tests.

Simulation of effect of eye movement in 
fMRI correlation matrices

Simulated time series, based on the data from the control 
experiment, were generated to gauge the possible effects of gaze 
patterns on V1 fMRI activity and thus the classifiers used here (see 
flowchart in Supplementary material). As in previous work (Kay 
et al., 2008), V1 was modeled as a pyramid of Gabor filters. The bank 
of filters consisted of five resolution levels (1, 2, 4, 8, and 16 cycles/
FOV), eight orientations (0, 22.5, 45, 67.5, 90,112.5, 135, and 157.5°), 

and two phases that tiled the screen at evenly spaced positions 
according to the resolution (2, 8, 16, 64, and 256 respectively). All the 
spatial resolution levels were included in the subsequent simulation, 
which probably overestimates the information available in the fMRI.

The stimulus patterns on the screen were convolved with the gaze 
trajectories for their corresponding blocks for each participant. The two 
phases and eight orientations from the output from the Gabor filter bank 
were collapsed at each position for all scales for each fixation episode. 
The simulated fMRI time series consisted of segments in which the filter 
output for each fixation was expanded in time according to their 
durations. The artificial time series were convolved with the canonical 
HRF function and downsampled to the fMRI TR (2.5 s). In contrast to 
real data, no noise was added to the artificial time series, to optimize the 
possibility of detecting the influence of gaze patterns on the classifiers. 
Correlation matrices (size: number of Gabor-filters x number of Gabor-
filters) were calculated with these time series for each stimulus in all 
participants. The same classification procedures and permutation tests 
used for the fMRI data were applied to these artificial correlation matrices.

Results

Classification results in the main 
experiment

The accuracy of the classifiers for the three preprocessing 
schemes is shown in Figure  3. Inter-subject classifications for 
specific properties (for level, averaging Global vs. Local for E and 
for U; for letter, averaging E vs. U for Global and Local) were 

FIGURE 3

Classification accuracy as a function of stimulus property and preprocessing scheme. The specific (Spe.) classifiers were LOSO (inter-subject). The 
Abstract (Abs.) case were intra-subject cross-classifications. Significance of rejection of null hypothesis (chance or 0.5 proportion correct) in the 
permutation test is exhibited above the bars. CR is common response, HRFc is deconvolution with the canonical hemodynamic function, and FIR is 
deconvolution with finite impulse responses.
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significant in the permutation tests for the CR and for the signals 
deconvolved with the canonical HRF, but not for the signals 
deconvolved with FIRs. This implies stability across subjects of the 
intra-V1 correlation topologies associated with each stimulus 
condition except for FIR deconvolution.

The intra-subject invariant cross-classification for Level was 
significant for all preprocessing schemes, which means that a 
change in letter identity did not adversely affect this prediction. 
In contrast, invariant Letter cross-classification was at just above 
chance for the CR and non-significant for both types of 
deconvolved signals in the permutation tests. These results 
indicate that the spatial scale of stimuli (invariant to shape) is well 
reflected in the topology of intra-V1 networks, whereas letter 
shape independent from the spatial scale is not. Summarized 
otherwise, the classifications with the CR matrices were always 
accurate, with canonical HRF deconvolution classification was 
also good except for abstract Letter, whereas with FIR 
deconvolution classification was accurate only for abstract Level. 
We also examined cross-classifications with a LOSO scheme to 
verify stability of results across subjects. The results were 
analogous to the intra-subject case (average accuracy for abstract 
Level CR = 0.75, HRFc = 0.66, FIR = 0.61; for Letter CR = 0.63, 
HRFc = 0.55, FIR = 0.50).

Equivalence of weight map structure from 
the level cross-classifier

Since accuracy in the cross-classifier for letter identity was at 
chance, we only show transformed weight maps for abstract Level. 
The concordance of the weight maps for the Level cross-classifier 
across the two letter identities was large for all preprocessing 
schemes (median Kendal W from about 7.5 to 0.8). As seen in 
Figure 4 the confidence interval is well above chance (0.5). This 
indicates that the structure of the weights for classifying level are 
common across the two letters and is congruent with accurate 
learning transfers between the two instances of level cross- 
classifiers.

Topology of weight maps for the abstract 
level cross-classification

The feature weight maps of abstract Level were examined in more 
detail to characterize the V1 connections driving the successful 
discriminations. This classifier was trained repeatedly using sampling 
with replacement across participants and the intra-V1 connections 
(i.e., edges of the correlation matrices) that appeared in the 2.5 and 
97.5% tails of the empirical distribution of the median bootstrap 
values were selected as most significant edges.

The most significant edges (contributing to classification 
accuracy) can be observed in the representation of V1 correlation 
matrices in Figure  5. The significant edges with the common 
response occupy all quadrants, for both levels, although slightly 
more for right–right connection for the Global, and slightly less 
for left–left for the Local level. The pattern of results is strikingly 
different after HRFc and FIR deconvolution. In these matrices, 
significant edges for the Global level are predominantly 
interhemispheric (left–left and right–right), whereas intra-
hemispheric (right–right and left–left) edges dominate for the 
Local level. We tested the nonindependence of the distribution 
counts across quadrants as a function of preprocessing scheme, 
and if the weights were positive (Local) or negative (Global), with 
a loglinear model in R. All models were highly significant 
(p < 0.0001), with the best fit for the one including all two-way 
associations of factors.

The Graph plots (Figure 6) confirm the findings of the matrix 
plots while adding more details of the topology of the connections. 
For the Common Response, significant links are long and predominate 
in the up-down direction especially in the left VF but are also present 
for horizontal and quadrant specific links. Note that these position 
roughly follows the upright strokes common to the Global U and E 
(absent in the right VF). In contrast, many long and short links widely 
spread across the VF are significant for the local condition. For both 
matrices with deconvolved data, the Global level significant links 
tended to be  inter-hemispheric (linking left and right VFs), both 
horizontal and diagonal in orientation, with few connections between 
the upper and lower VFs. Up-down and interquadrant connections 

FIGURE 4

Concordance of feature weight maps in the two directions of abstract Level cross-classification. These directions were U -  >  E and E-  >  U. 
Concordance was measured with Kendall’s W coefficient in repeated classifier training instances with resampling across participants with replacement. 
For the three types of preprocessing, the bootstrapped confidence intervals were above chance, indicating equivalent structure of the weight maps.
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dominated the topology of the Local level. HRFc and FIR associated 
topologies were very similar.

Counts of all positive and negative (favoring Local and Global 
respectively) weights are shown as a function of sub-network in 
Figure 7. Differences in underlying distributions across all the multiple 
contingency tables are very clear and were confirmed by the tests with 
the DiffXtables package (all comparisons significant at p-value <2.2e-
16). The relative abundance of weights favouring the Global level is 
greatest for the lower horizontal VF sub-networks (LRlo), followed by 
the principal (DiagP) and secondary diagonal (DiagS), and then the 
lower horizontal sub-network. Interestingly, in these sub-networks the 
number of counts is largest for the FIR, second largest for HRFc, and 
smallest for the CR. In other sub-networks there are more counts for 
CR but very few for the two deconvolved cases. The counts for weights 
favouring the Local show a very different pattern. For the deconvolved 

data the most involved sub-networks are the up-down links in both 
left (UDle) and right (UDr) VFs and the connections limited to the 
lower quadrants (LoLeq and LoRq). The CR counts are the largest for 
these weights but present in all sub-networks.

Analyses of eye movements

To drive the prediction of stimuli from intra-V1 matrices, eye 
movement patterns need to be  different for each stimulus type and 
consistent across participants. The post-hoc analysis using DeepMReye, 
failed to reveal any systematic difference in gaze placement (as inferred 
from the eyeball fMRI signals) between stimulus conditions. All 
coefficients in the linear mixed effects analysis were small (<0.02) and the 
associated t-tests were non-significant (abs(t) < 1.2).

FIGURE 5

A binary matrix representation of the edges contributing most to abstract Level cross-classification for the three pre-processing methods (acronyms as 
in Figure 3). Edges were selected if their weights in the classifier were in the top (selecting Local) and lowest (selecting Global) 2.5% of the weight value 
distribution. In each matrix the left V1 vertices are placed sequentially on the top (y axis) and to the left (x axis) of the plots, and the right hemisphere 
vertices follow.
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Additionally, we tested the possible role of eye movements in 
a control experiment under conditions that would have 
exaggerated any between-stimulus difference in gaze patterns. 
Figure 8 displays the fixation-time heatmaps for the four stimuli 
used here averaged across participants. The gaze patterns are very 
similar for all stimuli. Figure 9 shows the difference in fixation-
time heatmaps between the Global and Local levels for all the 
participants. It is obvious that the heatmaps do not replicate 
across individuals, with different configurations of fixation 
location preferences for the level contrasts. Similar results were 
obtained for the letter contrast.

Gaze heat maps are critical here since they reflect cumulative and 
interactive effects of fixation position and duration that could 
potentially affect the fMRI time series. Neither Letter nor Level was 
significant after correction for multiple comparisons with the cluster 
mass method in the iMap4 LMM analysis. This negative result was 
obtained for all the smoothing kernels tested. Even with an 
uncorrected threshold p-value of 0.001, Level was significant at only 
2 pixels.

Classification of simulated correlation 
matrices

The classification of simple, specific, discriminations was 
significantly above the chance level. However, both cross-classifications 
(Level and Letter) were at chance level. Thus, neither the abstract Level 
(independent from the letter shape) nor the abstract Letter shape was 
decoded accurately from the simulated correlation matrices (see 
Figure 10).

Discussion

Prediction of specific feature conjunctions based on intra-V1 
correlation matrices was highly accurate for all fMRI preprocessing 
methods, but also possible with time series simulating the effects of 
eye movements on V1 fMRI. More interestingly, cross-classification 
of stimulus properties was accurate only for Level (ignoring Shape), 
but failed for Shape (ignoring Level) and for the simulations of eye 

FIGURE 6

Graph plot representation in the visual field of the edges contributing most to Level cross-classification for the three pre-processing methods 
(acronyms as in Figure 3). These are the same edges represented in Figure 5. Axis represents degrees of visual angle, and the central grey circle the 
fixation point. Color represents the weight value.
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movement effects. Cross-classification of Level was most accurate for 
the FIR deconvolved data, then for HRFc deconvolved data, and less 
so for the common response (CR), although significant in all three. 
The weight maps for this Level cross-classifier differed between fMRI 
preprocessing methods, involving distinct V1 sub-networks. The 
weight maps for deconvolved data suggested that support for the 
Global over the Local- level mainly involved inter-hemispheric links. 
In contrast, support for the Local level was found in localized intra-
hemispheric links.

Specific classifications were highly accurate in all conditions, 
which was expected since they would harness all the differences in 
retinotopic stimulation between stimuli. Since the accuracy of these 
classifications was equivalent across fMRI preprocessing schemes, 
both shared stimulus-evoked responses and activity idiosyncratic to 
individuals could have contributed to the discriminations. The 
simulations did rule out role for eye movements in this type of 
classification. We  conclude that MVPA with specific stimuli are 

difficult to interpret. However, the stable association of intra-V1 
correlation matrices with stimulus type across individuals found here 
encourages the search for ways of disentangling the potential sources 
of the underlying networks.

The most noteworthy finding in this article was that intra-subject 
cross-classification was accurate for abstract Level (i.e., learning 
transfer for Level occurred across letters identities) for all 
preprocessing methods, which contrasts with a failure in cross-
classification for letter identity (except for a modest effect with the 
CR). Also, the feature weight maps for the Level cross-classifiers 
separately trained on deconvolved data associated to each letter were 
very concordant with each other. This similarity of weight maps 
buttresses the idea (Tian and Zalesky, 2021) of a common intra-V1 
connectivity topology for Level irrespective of letter shape. Before 
additional discussion of these results, we  examine the possible 
contribution of eye movement artifacts to V1 synchrony in 
our experiment.

FIGURE 7

Number of weights favoring each level in intra-V1 sub-networks as a function of preprocessing scheme. Edges of each sign in the intra-V1 correlation 
matrices were counted within the sub-networks comprising connections in specific directions (see lower insert).
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Post-hoc assessments of eye movements during the fMRI 
experiment, conducted with the convolutional neural network 
DeepMReye, did not uncover systematic variations in gaze positions 
across different stimulus conditions. Acceptable accuracy has been 
reported with this method in across-subjects decoding schemes with 
multiple fMRI datasets (Frey et  al., 2021). Although this result is 
probably valid since each subject served as his own control in future 
studies it would be best to perform intra-experiment calibration of 
DeepMReye. Systematic variations in gaze positions across different 
stimulus conditions were also absent in the control experiment. 
Moreover, the simulations based on this off-line control experiment 
discourage the idea that fMRI activity associated with eye movements 
explain the accurate cross-classification of Level described here. Note 
that these negative results were obtained despite the fact that stimuli 
in this control were larger than in the original fMRI experiment, a 
condition that would have optimized detection of different degrees of 
eye movement between stimulus-types.

The simulated time series were generated from with a Gabor 
pyramid model with of filters for many spatial resolutions were used. 
However, real signals are additionally contaminated by noise. Thus, 
our simulations (together with the larger stimulus size compared to 
the fMRI experiment) are probably over-optimistic as to potential 
information for classification. Ramírez and Merriam (2020) rightly 
point out that decisions about parameters determining the signal 
to-noise ratio (SNR) of simulated brain patterns in forward models of 
brain activity, can lead to inconclusive when trying to explain effects 
in fMRI experiments, especially if the not chosen adequately. 

Nonetheless, classification of abstract Level was not possible. The 
small effect of stimulus type on gaze pattern in experiments 
contradicts a previous study (Sasaki et  al., 2001), reporting more 
bigger eye movements when attending to Global than to Local stimuli. 
However, the Global stimuli (about 30 DVA) were very large, and the 
Local stimuli small (about 2.4 DVA), a size ratio of about 13. In 
contrast, here Global (under 5.3 DVA) and Local (under 1.05 DVA) 
letters were both small, with a size ratio of about 5, thus confined to 
the fovea/parafovea.

Since accurate cross-classification of Level was achieved for all 
types of fMRI preprocessing, both stimulus-evoked responses 
common to all individuals and idiosyncratic activity could have 
enabled this discrimination. Deconvolution with canonical HRFs or 
FIRs are liable to miss-modeling (Lindquist et  al., 2009) thus not 
accounting for all the stimulus-evoked signals. Yet, this procedure 
undoubtedly reduces the contribution of the common response. Given 
that the classifier weight maps are very different between the CR and 
the deconvolved data, we may conclude that distinct neural sources 
are shaping them. Examination of the graph plots of influential feature 
weights, and their relative presence in V1 sub-networks, shows that 
the identification of Global and Local stimuli is based on different 
network patterns for each type of processing. This means that the 
common response and subject-idiosyncratic activity both provide 
information that allows prediction of abstract Level, but they do so via 
distinct V1 sub-networks.

The weights that support Global stimuli in the Level cross-
classifier based on the common response correspond to links that 
follow the outline of the Global letters within the right VF, where both 
U and E share upright strokes. The weights favoring the Local level 
have a broader distribution, in many directions and in many 
sub-networks, which corresponds with retinotopic layout of the local 
stimuli. Given that CR reflects the stimulus-evoked response, these 
patterns could reflect mappings of the feedforward effects of retinal 
stimulation, although the details of this are not clear.

The weight maps for he cross-classifiers based on deconvolved 
data indicate that support for Global stimuli came from links 
crossing the representation of the vertical meridian in V1 and 
basically those mapping of the lower visual field. This is the 
congruent with the fact that the Global, but not Local, lettres 
spanned both visual fields. It is also consistent with evidence that 
Global visual perception is more accurate in the lower compared 
to the upper VF (Previc, 1990; Christman, 1993; Levine and 
McAnany, 2005). This advantage could be explained by greater 
sensitivity in the lower visual field to lower spatial frequency 
components (Niebauer and Christman, 1998), which are needed 
to extract Global shapes, including those necessary to perceive 
Global Navon figures (Flevaris and Robertson, 2016).

This suggests an interesting hypothesis. Shifting attention 
towards the Local or Global levels is thought to occur by filtering 
out higher/lower spatial frequencies from the representation of 
the retinal input (Flevaris et al., 2011, 2014). When processing 
Navon figures, the control of spatial scale is essential (Flevaris 
and Robertson, 2016). Clear differences in spatial frequency 
spectra (see Iglesias-Fuster et al., 2014) exist between. Our Global 
and Local stimuli. These differences in spatial frequency could 
influence the which type of intra-V1 links are attentionally 

FIGURE 8

Mean Gaze heatmaps for different stimuli. The grid in black lines is 
the background stimulus (which defines the dimensions of all other 
stimuli, see Figure 1), placed at the center of the stimulation screen. 
The overlaid heatmaps represent the mean density of fixation times 
were placed at each site of the screen, collapsing trials and 
participants for each stimulus, as measured in the control 
experiment. There is very little difference between stimuli in density 
distribution. This was formally tested with the iMap4 toolbox.
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selected, thus driving the weight maps for Level cross-
classification described here. In a prior study by our group using 
activation-based MVPA (Valdés-Sosa et al., 2020), information 
about Level (independent from shape) was found in the scene-
selective cortex (medial ventral occipitotemporal and middle 
occipital areas). This area could be  a source of feedback 
contributing to the intra-V1 network effect of Level.

Decoding of shape that is tolerant to changes in size is present 
in the fMRI activations of higher-order-visual areas such as LOC 
(Grill-Spector, 2003). In our previous study with the same data used 
here, information about shape invariant to Level was found in 
activations from these object-selective cortices (Valdés-Sosa et al., 
2020). Several hypotheses can be advanced as to why abstract cross-
classification for letters in V1 failed here. One is that the fMRI 
synchrony patterns at the Local level could have been more 
susceptible to the blurring produced by inter-subject functional 
misalignment or small eye movements given their small size. 
Another possibility is that shape-invariant representations do not 
influence intra-V1 networks through feedback. Although robust 
functional connections exist between the foveal and parafoveal 
region of V1 and LOC (e.g., Baldassano et al., 2016), this coupling 
can be  modulated by task requirements (e.g., Al-Aidroos et  al., 

2012), and perhaps was not present in our experiment. These ideas 
also require additional testing.

This study has several limitations. Higher-powered replications 
are needed, given the possibility of false positive results and inflated 
effect sizes in results from small samples (Button et al., 2013). Another 
limitation of this study is the lack of calibration of the eye movements 
measurements during the fMRI recording. Eye movements produce 
uncontrolled blurring of the retinotopic stimulus representation, 
which could weaken the correspondence of topologies across 
participants. An additional limitation is that we used a small range of 
stimulus shapes. More diverse stimuli (as used in our previous work, 
Iglesias-Fuster et  al., 2014) would allow better testing of 
V1-connectivity patterns.

We conclude that intra-V1 correlations carry multivariate 
information about observed Navon letters that is stable across individuals. 
Furthermore, information of an abstract property, the Level of the stimuli, 
was present in the intra-V1 correlation matrices. Although eye 
movements could influence the fMRI to enable decoding of specific 
stimulus properties, this does not seem to be possible for abstract Level. 
Stimulus-evoked activity drives part of the synchrony in intraV1 fMRI 
activity but seems to play a lesser role in the sub-networks that allow 
abstract classification of stimulus level. These spatial organization of the 

FIGURE 9

Gaze heatmaps for individual cases. Each panel is a map from one participant representing the difference between Global and Local stimuli (collapsing 
across letter identity) of the time gaze was spent at each screen point. Blue coloring at a point reflects larger fixation time for Local, and yellow for 
Global.
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V1 sub-networks related to abstract level discrimination could mirror 
asymmetries found in psychophysical studies.
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FIGURE 10

Classification accuracy as a function of stimulus property for the time series simulating eye movement effects. The specific (Spe.) classifiers were LOSO 
(inter-subject). The Abstract (Abs.) case were intra-subject cross-classifications. Significance of rejection of null hypothesis (chance or 0.5 proportion 
correct) in the permutation test is exhibited above the bars.
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