
TYPE Original Research

PUBLISHED 02 February 2023

DOI 10.3389/fninf.2023.938689

OPEN ACCESS

EDITED BY

Fei He,

Coventry University, United Kingdom

REVIEWED BY

Bin Wang,

Taiyuan University of Technology, China

Jakub Nalepa,

Silesian University of Technology, Poland

*CORRESPONDENCE

Shuvra S. Bhattacharyya

ssb@umd.edu

Rong Chen

rchen@som.umaryland.edu

RECEIVED 07 May 2022

ACCEPTED 06 January 2023

PUBLISHED 02 February 2023

CITATION

Xie J, Chen R and Bhattacharyya SS (2023) A

parameter-optimization framework for neural

decoding systems.

Front. Neuroinform. 17:938689.

doi: 10.3389/fninf.2023.938689

COPYRIGHT

© 2023 Xie, Chen and Bhattacharyya. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A parameter-optimization
framework for neural decoding
systems

Jing Xie1, Rong Chen2* and Shuvra S. Bhattacharyya1,3*

1Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park,

MD, United States, 2Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland at

Baltimore, Baltimore, MD, United States, 3Institute for Advanced Computer Studies (UMIACS), University of

Maryland at College Park, College Park, MD, United States

Real-time neuron detection and neural activity extraction are critical components

of real-time neural decoding. They are modeled e�ectively in dataflow graphs.

However, these graphs and the components within them in general have many

parameters, including hyper-parameters associated with machine learning sub-

systems. The dataflow graph parameters induce a complex design space, where

alternative configurations (design points) provide di�erent trade-o�s involving key

operational metrics including accuracy and time-e�ciency. In this paper, we propose

a novel optimization framework that automatically configures the parameters in

di�erent neural decoders. The proposed optimization framework is evaluated in depth

through two case studies. Significant performance improvement in terms of accuracy

and e�ciency is observed in both case studies compared to the manual parameter

optimization that was associated with the published results of those case studies.

Additionally, we investigate the application of e�cient multi-threading strategies to

speed-up the running time of our parameter optimization framework. Our proposed

optimization framework enables e�cient and e�ective estimation of parameters,

which leads to more powerful neural decoding capabilities and allows researchers

to experiment more easily with alternative decoding models.

KEYWORDS

parameter optimization, neural decoding, real-time image processing, dataflow, data stream

mining

1. Introduction

Neural decoding based on neuroimaging signals is an important tool for understanding

neural codes for studying and treating brain disorders, such as Alzheimer’s disease and

Parkinson’s disease. Neural decoding systems in general have many parameters, including

hyperparameters associated with machine learning sub-systems. The parameters induce a

complex design space, where alternative configurations (design points) provide different trade-

offs involving key operational metrics, including accuracy and time-efficiency. Parameter

optimization of neural decoding systems is important for achieving strategic trade-offs between

accuracy and time-efficiency. For example, for off-line neural signal analysis, it is typically

desirable to optimize parameters to favor high accuracy at the expense of relatively long running

time. On the other hand, for real-time analysis, parameter optimization would typically be geared

towards maximizing accuracy subject to strict execution time constraints. Real-time neural

decoding is useful, for example, in precision neuromodulation systems, where stimulation to

the brain must delivered in a timely manner in relation to the current state of brain activity. The

diverse trade-offs that must be considered in neural decoding — depending on the application

scenario — creates a need for flexible and effective parameter optimization that can be used to

efficiently navigate the design spaces for configuring neural decoding systems.

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.938689
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.938689&domain=pdf&date_stamp=2023-02-02
mailto:ssb@umd.edu
mailto:rchen@som.umaryland.edu
https://doi.org/10.3389/fninf.2023.938689
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.938689/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

Neural decoding systems may involve both continuous-valued

parameters as well as discrete-valued parameters. In this work, we

refer to parameter optimization as the optimization of parameter

values for parameter sets that are in general hybrid combinations

of continuous and discrete parameters. Our view of parameter

optimization is therefore more general than parameter “tuning,”

which is typically associated only with continuous-valued parameters.

Parameter optimization for neural decoding is challenging due to

the complexity of the underlying design spaces, as described above.

With manual approaches, which are conventionally used, system

designers may be effective in selecting very high level parameters,

such as the types of decoding or preprocessing algorithms to be

used; however, it is extremely time consuming to study a wide range

of alternative design points in a way that comprehensively takes

into account the impact of and interactions between diverse sets of

relevant parameters. Moreover, conventional parameter optimization

approaches typically consider only algorithmic parameters, whereas

dataflow parameters, which have significant impact of time-

efficiency, are not considered. Here, by dataflow parameters, we

mean parameters associated with executing the different signal

processing modules in a neural decoding system on the targeted

hardware platform.

In this paper, we develop an optimization framework for

automated and holistic parameter optimization of neural decoding

systems. The framework considers both algorithmic and dataflow

parameters while jointly taking into account both the neural decoding

accuracy and execution time of the optimized solutions. The

proposed framework applies a population-based search strategy to

optimize the relevant algorithmic and dataflow parameters of the

given neural decoding system. The framework is general in that a

variety of search strategies can be plugged-in; it is not specific to

a single type of search method. To demonstrate this generality, we

apply two different search strategies in our experiments — Particle

Swarm Optimization (PSO), which is a randomized search strategy

that is effective for navigating nonlinear design spaces that are

based on diverse types of parameters (Kennedy and Eberhart, 1995),

and Genetic Algorithms (GAs), which is a metaheuristic method

that uses different kinds of biologically inspired operators, such as

mutation, crossover and selection, for evolving successive generations

of populations (sets of candidate solutions). We present a prototype

implementation of the proposed framework in a novel software

tool, which we refer to as the NEural DEcoding COnfiguration

(NEDECO) package, since the objective of the package is to help

experimental neuroscientists and neural decoding system designers

to arrive at strategically-optimized configurations of neural decoding

implementations.

NEDECO operates by iteratively executing alternative neural

decoding configurations to assess their performance and feed back

the assessment to help derive new candidate configurations to

evaluate. This approach of feedback-driven design space exploration

is carried out based on the PSO and GA methodology. To accelerate

the evaluation of neural decoding configurations, we exploit their

dataflow models to derive efficient multi-threaded executions of

the configurations on commodity, off-the-shelf desktop or laptop

computers that employ multicore processors. We perform an

extensive experimental evaluation of NEDECO in which we compare

its parameter optimization results to the manually-optimized

parameter configurations for two previously published systems

for neural decoding. Our results demonstrate the effectiveness of

NEDECO in deriving neural decoding implementations that offer

significantly improved trade-offs between decoding accuracy and the

speed at which decoding is performed.

The remainder of this paper is organized as follows. Section 2

presents related work in neural decoding and summarizes the

contribution of this paper in the context of the related work. In

Section 3, we introduce the architecture of NEDECO, including

the models and methods for automated parameter optimization

and the methods for accelerating the parameter optimization

process through efficient use of parallel processing resources. In

Section 4, we introduce the experimental methodology that we

use to demonstrate and evaluate NEDECO, and we present the

results of our experimental evaluation, which concretely demonstrate

the effectiveness of NEDECO when it is applied for parameter

optimization to multiple state-of-the-art neural decoding tools.

Finally, in Section 5, we summarize the developments of the paper,

and discuss limitations of NEDECO and directions for future work.

2. Background and related work

A number of previous research efforts have studied parameter

tuning for neural decoding. For example, Pnevmatikakis et

al. proposed a method for automatically tuning a selected subset

of parameters, including the calcium indicator dynamics and time-

varying baseline concentration, but the remaining parameters still

require manual tuning (Pnevmatikakis et al., 2016). Moreover, there

is no systematic integration between the human-tuned parameters

and the optimization of parameter values for the parameter-

subset that is automatically tuned. Giovannucci et al. eliminate

the hyper-parameter tuning in the a convolutional neural network

(CNN) classifier subsystem within their proposed neural decoding

model (Giovannucci et al., 2019). However, like the work of

Pnevmatikakis et al., the tuning process developed by Giovannucci

et al. targets a subset of parameters and requires a separate human-

driven tuning step for the remaining parameters. Additionally,

and perhaps most significantly, the parameter tuning processes in

Pnevmatikakis et al. (2016) and Giovannucci et al. (2019) are based

on the image analysis models and algorithms that they apply for their

neural decoding systems. The automation strategy cannot be directly

applied to other analysis models for neural decoding.

Glaser et al. (2020) present a tutorial and accompanying

software package to assist neuroscientists in applying machine

learning methods to neural decoding problems. While the machine

learning methods integrated in the software package outperforms

conventional neural decoding methods, the work of Glaser et al.

(2020) does not address the problem of automated parameter tuning.

Liu et al. (2011) proposed a real-time PSO method for power

system optimization. In this method, a novel approach was developed

to accelerate the particle evaluation (fitness evaluation) process. The

approach of Liu is representative of various works that focus on

fitness function acceleration. In contrast, NEDECO is designed as a

higher-level framework that can be integrated with a variety of search

strategies and fitness functions, and is developed and demonstrated

based on specific constraints and requirements that are involved in

the design and implementation of real-time neural decoding systems.

PSO methods have also been investigated for hyper-parameter

optimization in deep neural networks (Lorenzo et al., 2017; Yamasaki

et al., 2017; Guo et al., 2020; Li and Zhang, 2020; Singh et al., 2021).

Frontiers inNeuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

In contrast to these methods, our proposed NEDECO framework can

be applied to neural decoding systems that use any type of machine

learning model (not limited to DNN models); NEDECO can apply

other search strategies (not just PSO); and our work is the first to

apply such a general and comprehensive parameter optimization

framework to neural decoding, which is a useful contribution to

computational neuroscience.

To the best of our knowledge, NEDECO is the first software

tool for generalized, automated tuning of parameters in calcium-

imaging-based neural decoding systems. By “generalized”, we mean

that the tool works comprehensively over all decoding algorithm

parameters, works across a wide variety of model types and associated

information extraction algorithms rather than being restricted

to a specific type of model, and takes into account both the

neural decoding accuracy and run-time efficiency. In Section 4,

we demonstrate the flexibility of NEDECO by applying it to two

significantly different neural decoding tools from the literature —

the Neuron Detection and Signal Extraction Platform (NDSEP) (Lee

et al., 2020), and CellSort (Mukamel et al., 2009), using two

different methods as the underlying search strategy — particle swarm

optimization and genetic algorithms. Our experiments demonstrate

the ability of NEDECO to derive parameter settings that lead to

significantly improved neural decoding performance compared to

the previous published results using NDSEP and CellSort, which are

based on hand-tuned parameters.

3. Proposed method

NEDECO applies PSO for optimizing heterogeneous collections

of neural decoding system parameters, including continuous and

discrete parameters. Additionally, the PSO techniques of NEDECO

are implemented within a dataflow framework. This facilitates

the retargetability of the framework to different neural decoding

algorithms, and different platforms for optimization, and also

facilitates the acceleration of the optimization process on multi-

core computing platforms. The latter feature — acceleration of the

optimization process — is important because the the process is

computationally intensive, and higher quality solutions can generally

be produced within a given time period if more efficient execution

of the optimization engine is enabled. In Section 3.1, Section 3.2,

and Section 3.4, we review fundamentals of PSO, GAs, and dataflow

modeling, which are key foundations of NEDECO.

3.1. Particle swarm optimization

PSO is a form of population-based, randomized, iterative

computation for optimization in the context of complex,

multidimensional search spaces in which different dimensions

of a search space may have very different characteristics and

underlying data types (Kennedy and Eberhart, 1995). Inspired by the

social behavior of animal flocks, populations in PSOs are referred

to as swarms, and each member of a population (swarm) is referred

to as a particle. Each particle represents a candidate solution in

the context of the optimization problem that the enclosing PSO is

designed to solve. Operation of a PSO involves tracking the positions

of particles in the current swarm, and iteratively generating a new

swarm from the previous one, which leads to successive generations

of swarms. Intuitively, as swarms evolve, the quality of solutions

represented by the candidate solutions will tend to increase, which

leads to capability of the method to derive optimized solutions.

In general, the position of a particle in a PSO is an encoding of the

candidate solution. In NEDECO, particles move in an n-dimensional

space, where n is the number of parameters to jointly optimize in

the given neural decoding system. Each dimension corresponds to

a distinct parameter. The component of the position vector in a

given dimension gives the value of the corresponding parameter. This

can be viewed as a direct way of mapping candidate solutions for a

parameter optimization problem into particles (position vectors) for

a PSO.

Particles move (transition from one position to another) based

on velocity vectors that are maintained along with the particles. The

velocities are typically influenced by neighboring particles as well as

by a current “best” particle within the population. A best particle is

simply one whose associated design point maximizes the function

that the PSO is designed to optimize among all elements of the

current population. Here, we are assuming that the optimization

objective is one of maximization; the approach described here can

be adapted easily for minimization contexts.

Multiple particles may be tied to achieve the maximum function

value. In the case of such a tie, one of the maximizing particles may be

randomly selected as the best for the purpose of evolving the current

PSO population (that is, for exerting influence on other particles’

velocities). In NEDECO, this is the process by which multiple best

particles are handled; although in general, there are other ways of

handling ties.

As described in Section 3.1, the velocity of a particle p is

used to update its position, and the velocity is determined both

by neighboring particles of p in the swarm, as well as by the

current best particle in the population. The concept of a neighboring

particle is determined by the topology, which is a parameter of

the PSO. The topology can be represented by a graph. In the

connectivity graph, the vertices are in one-to-one correspondence

with the particles, and two vertices are connected by an edge if

the associated particles are neighbors in the given topology. For

example, in a fully connected topology, all particles other than p are

considered neighbors of p, while for a ring topology, the connectivity

graph is ring-structured, and therefore, each particle has exactly

two neighbors. A third commonly-used topology is the random

topology, as defined by Clerc (2007). A random topology involves

a dynamically evolving connectivity graph, which is initialized with

randomly-placed connections (edges). The connectivity graph for the

random topology ismodified (again using randomization techniques)

whenever there is no improvement in the population’s best particle

after a given transition from one generation of particles to the next.

Such a transition is known as an iteration of the PSO. Use of a random

or ring topology can help a PSO to further avoid getting stuck in

local optima.

3.2. Genetic Algorithms

Like a PSO particle, a candidate solution is an “individual” in

a population within a GA. Individuals in GAs are also referred

to as “chromosomes.” When a GA is used the search strategy in

NEDECO, eachGA population contains a set of chromosomes, where

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

each chromosome encapsulates a configuration of PNDS parameters.

Initially, populations are randomly generated within the search space.

To iteratively evolve toward better solutions, chromosomes within

populations undergo random alterations (mutations). Additionally,

pairs of chromosomes are randomly selected as “parents” from

which new individuals are derived; this processes is referred to in

GA terminology as “crossover.” In each GA iteration (population

generation) the PNDS is used to evaluate each individual of the

current population. The fitness is used to determine the probability

that a given individual is selected as a parent for crossover — that is,

whether or not the individual will influence the next generation of the

GA execution. For more details on GAs, we refer the reader to Back

et al. (1997).

In our GA implementation for use with NEDECO, six selection

methods are supported. These include proportional roulette wheel

selection (RWS), stochastic universal sampling (SUS), classic linear

rank-based selection (RNK), linear rank-based selection with

selective pressure (RSP), tournament selection (TNT), and transform

ranking selection (TRS). Additionally, three crossover methods

are supported, including one-point crossover (P1XO), two-point

crossover (P2XO), uniform cross-over (UXO), and three mutation

methods are supported, including boundarymutation (BDM), single-

point mutation (SPM), and uniform mutation (UNM).

3.3. Multiobjective optimization

NEDECO is designed to take into account two metrics for

optimization of parameters in a given neural decoding system

— both the accuracy of neural detection and the run-time

efficiency of the process. In terms of calcium imaging, this

joint consideration of both accuracy and efficiency is one of the

key innovative aspects of NEDECO. NEDECO applies a linear

aggregation approach (Parsopoulos and Vrahatis, 2002) to weighting

the objectives so that the user (neural decoding system designer) can

adjust the relative importance levels given to the twometrics based on

application requirements. For example, a neural decoding system that

is deployed in a closed-loop neuromodulation system would typically

have an increased weighting given to run-time efficiency, whereas an

offline system for batch processing of neuroscience datasets may have

much higher relative weighting for accuracy. The framework also

gives the system designer a simple means to tune the final achieved

trade-off. In particular, the NEDECO optimization process can be

iteratively re-executed — with the relative weightings varied between

iterations — in case the system designer would like to evaluate

different implementation options in terms of the provided trade-offs.

We apply a linear aggregation approach to handling multiple

objectives in NEDECO because a linear approach is intuitively

easy for the system designer to understand, especially when a

small number of different objective metrics is involved. A general

issue that may be considered when extending PSOs and GAs to

multiobjective design optimization contexts is that of extending the

concept of best solutions to encompass solution subsets that are

non-dominated in the sense of Pareto optimization (Zhou et al.,

2011). However, this issue is avoided when aggregating functions are

applied to map metric values in multiple dimensions into single-

dimensional values (e.g., into real numbers). Among aggregating

approaches, linear aggregation is perhaps easiest to understand and

most commonly used. This approach defines the aggregating function

as a linear combination a1m1 + a2m2 + . . . + aqmq of the (possibly

normalized) metric values m1,m2, . . . ,mq for a given candidate

solution, where there are q dimensions in the design evaluation

space. Here a1, a2, . . . , aq are coefficients of the linear aggregation; in

NEDECO, q = 2, and the coefficients are defined as a1 = z and a2 =

(1− z), where z is a single parameter that the system designer uses to

control the relative weighting given to the two metrics, accuracy and

run-time efficiency.

Various alternative approaches have been developed to handle

multiobjective optimization in PSOs and GAs, such as the hyper-

volume indicator approaches, which are standard in multiobjective

analysis using Pareto fronts. These approaches are more sophisticated

compared to linear aggregation [e.g., see Miettinen (1999), Jin et al.

(2001), Clerc and Kennedy (2002), Parsopoulos and Vrahatis (2002),

Dimanov et al. (2021)]. Investigation of such approaches in the

context of NEDECO is an interesting direction for future work.

3.4. Dataflow modeling

NEDECO is designed based on dataflow modeling concepts

— particularly, on a form of dataflow modeling for signal and

information processing systems that is called core functional

dataflow (Plishker et al., 2009). Dataflow is a model of computation

that is widely used in the design of signal and information processing

systems, including, in recent years, in the design of systems for neural

decoding (Lee et al., 2020).

In dataflow-based application modeling, applications are

represented as directed graphs in which the vertices, called actors

represent functional modules and each edge represents first-in, first-

out (FIFO) communication of data from one actor to another (Lee

and Parks, 1995). Each unit of data that is communicated along

a dataflow edge is referred to as a token. These tokens can have

arbitrary data types associated with them, such as integers, floating

point numbers, pointer types, and arbitrary classes in object-oriented

programming languages.

Actors are executed in terms of discrete units of execution, which

are referred to as firings, where the discrete units are typically defined

in terms of the numbers of tokens that are produced and consumed

from the edges. For example in synchronous dataflow (SDF), which is

an important specialized form of dataflow, each actor produces and

consumes a constant number of actors on each incident edge (Lee

and Messerschmitt, 1987). The numbers of tokens produced and

consumed by an SDF actor can vary from one incident edge to

another (and among different actors), but for each incident edge, the

number must be constant for all firings of the actor.

Dataflow representations are useful for formally representing

the high-level signal flow and computational organization of

signal and information processing systems. A wide variety of

methods have been developed for analysis and design optimization

of system implementations that are derived using dataflow

representations (Bhattacharyya et al., 2019). Due to the precise

manner in which components are interfaced— based on connectivity

in the dataflow graph and characterizations of token production

and consumption — dataflow-based representations also facilitate

“plug-and-play” signal processing architectures, where different

versions of an actor subsystem can be used at different times during

Frontiers inNeuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

execution or in different versions of the system. This enhanced

modularity is exploited in NEDECO to make the tool easy to retarget

for parameter optimization of different neural decoding systems.

For more background on dataflow modeling, analysis and design

optimization for signal and information processing systems, we refer

the reader to Lee and Parks (1995) and Bhattacharyya et al. (2019),

and for details on how dataflow methods can be applied to efficient

neural decoding, we refer the reader to Lee et al. (2020).

3.5. Core functional dataflow

Asmentioned in Section 3.4, NEDECO applies a form of dataflow

called core functional dataflow (CFDF), which is useful for designing

and integrating dataflow actors that involve different modes of

operation. A CFDF actor A has an associated set of modes M(A) =

{µ1,µ2, . . . ,µc(A)}, where c(A) denotes the number of modes in A.

Each mode µi corresponds to a distinct computational function that

is to be performed by the actor. Each firing f of a CFDF actor A has

associated with it a unique mode κ(f ) ∈ M(A), which governs the

type of computation that is to be performed during the firing.

For each dataflow edge e that is incident to A, the dataflow rate

associated with A and e is constant for a given mode. Here, by the

dataflow rate, we mean the number of tokens consumed by A from

e if e is an input edge of A, and the number of tokens produced by

A onto e if e is an output edge. CFDF is therefore similar to SDF in

its requirement of constant dataflow rates. However, CFDF is more

flexible in that this requirement is imposed only at the finer-grained

level of modes, rather than at the level of complete actors. Thus,

different modes of A can have different dataflow rates associated with

them. The requirement of constant mode-level dataflow rates and

the potential for heterogeneous dataflow behavior between modes

provides a useful combination of expressive power and analysis

potential when applying CFDF [e.g., see Plishker et al. (2009)].

3.6. Architecture design

Figure 1 illustrates the overall architecture of the NEDECO

platform. The platform is developed using the lightweight dataflow

(LIDE) package, which is a software tool that facilitates design

and implementation of dataflow-based software systems and tools

for signal and information processing (Lin et al., 2017). Dataflow

modeling in LIDE is “lightweight” in the sense that it involves

a compact set of application programming interfaces (APIs) that

can easily be retargeted to different implementation languages. This

makes it relatively easy to adapt LIDE for different design processes

and apply it to different systems and tools, such as NEDECO.

The block in Figure 1 labeled PNDS encapsulates the neural

decoding system that is being applied to NEDECO so that optimized

parameter configurations can be derived. Here, PNDS stands for

Parameterized Neural Decoding System. Integrating a PNDS into

NEDECO involves writing a compact software layer (“wrapper”) for

the PNDS so the overall decoding system can be executed as a CFDF

actor within NEDECO, and so the parameters of the PNDS can be

modified in a standard way, using the actor-parameter configuration

mechanisms of the underlying LIDE tool. Here, we use a minor

abuse of terminology where we use “PNDS” to describe both the

FIGURE 1

An illustration of the overall architecture of the NEDECO platform. The

PSO/GA Core means the actor could be either PSO Core actor or GA

Core actor.

neural decoding system whose parameters are being optimized and

the actor in NEDECO, as shown in Figure 1, that interfaces the neural

decoding system to overall PSO-based or GA-based optimization

process. A PNDS can be plugged into the NEDECO framework

either based on an existing neural decoding algorithm or based on

a newly-developed algorithm.

Each firing of the PNDS actor involves executing the given

neural decoding system repeatedly on a pre-defined dataset of

calcium imaging based neural images, and aggregating the resulting

measurements on execution time and accuracy. The wrapper

functionality is responsible for iterating across the given dataset, and

producing the results, encapsulated in the form of dataflow tokens, so

that they can be interpreted by the enclosing PSO orGA process. Each

token produced by the PNDS actor encapsulates a pair of floating-

point values — one that represents the accuracy and the other that

represents the execution time — where both values are averaged

across measurements taken for each image in the dataset.

In Section 4, we demonstrate and experiment with NEDECO

using two alternative neural decoding systems as the PNDS —

NDSEP and CellSort. However, NEDECO is not limited to NDSEP

and CellSort; the process of defining wrappers for integration with

NEDECO can be applied flexibly to other neural decoding systems,

which significantly broadens the applicability of the platform.

The PNDS itself need not be implemented using CFDF nor any

other kind of dataflow methods; only the CFDF-based wrapper is

needed to ensure its proper integration into NEDECO. Between

the two PNDSs that we experiment with in Section 4, NDSEP is

implemented using LIDE and its associated CFDF support, while

CellSort is implemented independently of LIDE, and without any

explicit connection to dataflow modeling.

The PSO/GA Core block in Figure 1 executes the core of the

PSO optimization process. This is a PSO or a GA implementation

that is encapsulated as a CFDF-based dataflow actor so that it can

be connected with arbitrary PNDSs that have associated NEDECO

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

FIGURE 2

Mode transition graph for the PSO Core actor.

wrappers. More details on the PSO Core actor and GA Core actor are

discussed in Section 3.7, and Section 3.8, respectively. The Set Params

block in Figure 1 receives tokens that encapsulate PNDS parameters

and associated values that should be used to change those parameters

in the next execution of the PNDS. A dashed edge is drawn in Figure 1

to connect the Set Params block to the PNDS because this is not

a dataflow connection. Instead, this is a connection that involves

calling interface functions associated with the PNDS wrapper to set

parameter values in the PNDS.

The Set Params block is not a pure dataflow actor since it

communicates with another actor using mechanisms other than the

passage of tokens through edges. The general approach of integrating

non-dataflow parameter manipulation with parameterized dataflow

subsystems is useful in many contexts of signal processing system

design (Bhattacharyya et al., 2019).

The Set Params block manages parameters in a general way so

it just needs to be reconfigured (rather than re-implemented) when

a new PNDS is applied to NEDECO. Reconfiguring the Set Params

block involves providing a set of pointers to parameter values in the

PNDS that can be varied by the PSO or GA, along with the sizes of

the data types associated with the parameters.

The Fitness Evaluation block in Figure 1 is a simple actor that

applies the linear aggregation function discussed in Section 3.3 to the

results produced by the PNDS actor. The actor can easily be replaced

by alternative actors (or extended in a parameterized way within the

same actor) to perform different aggregation functions.We anticipate

that future developments in NEDECO will include incorporation of

alternative aggregation functions to facilitate experimentation with

this aspect of the PSO-based and GA-based approach.

Further workflow details for the overall NEDECO architecture

are presented in the Supplementary material (Algorithm S1).

To summarize the flow of data in the optimization loop

represented in Figure 1, we start by observing that each token

produced by the PSO Core actor or the GA Core actor corresponds

to a single PSO particle or a single GA chromosome, which in turn

corresponds to a single candidate solution (parameter configuration)

for the PNDS. Each token produced by the PNDS actor provides

evaluation results — accuracy and execution time — for a given

candidate solution. Each firing of the Fitness Evaluation actor simply

converts the accuracy and execution results into a single floating

point value through a linear aggregation of the two components of

the input token. The update-populationmode of the PSOCore

actor and the update-crossover and update-complete

modes of the GA Core actor, which are the most important modes

of the core actors, each consume a block of P fitness evaluation

results (for all candidate solutions in the current population), and

use these results to generate the next generation of the population.

The resulting new candidate solutions are output, as a block of P

tokens upon completion of each of the update-population,

update-crossover, and update-completemodes.

3.7. PSO Core actor

In this section, we present design details for the PSO Core actor,

and in the following section we provide an overview of the GA

Core actor. These two actors are key components of NEDECO,

and are also envisioned to be applicable to a wide variety of other

parameter optimization contexts in computational neuroscience.

The PSO and GA optimization algorithms share similar operating

processes, including population initialization, iterative mutation of

individuals within the population, and iterative fitness evaluation.

The PSO Core actor has six CFDF modes,

which are referred to as the initialize-write,

initialize-read, update-population-write,

update-population-read, stopping-evaluation,

and write-outputmodes.

Figure 2 illustrates the mode transition diagram, which is a

graphical representation for a CFDF actor that shows how the

current mode of the actor transitions from one firing to the next.

A mode transition diagram is a general method for characterizing

CFDF actors. As part of the general design rules for CFDF actors,

the mode that a given firing transitions to is determined as part

of the functionality that implements the mode (Plishker et al.,

2009).

Table 1 represents the dataflow table for the PSO Core actor.

Like the mode transition diagram, the dataflow table is another

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

TABLE 1 Dataflow table for the PSO Core actor.

Mode Input Output

Initialize-write 0 P

Initialize-read -P 0

Stopping-evaluation 0 0

Update-population-write 0 P

Update-population-read -P 0

Write-output 0 0

general way for characterizing a CFDF actor. The rows of this

table correspond to different modes of the actor and the columns

correspond to different ports (incidences with input and output

edges). For each output port of a CFDF actor, the corresponding

column in the actor’s dataflow table specifies the number of tokens

produced in each mode, and similarly, for each input port, the

corresponding column gives the negative of the number of tokens

consumed from the port in each mode.

For the PSO Core actor, the parameter P gives the number

of particles in the PSO population. Thus, for example, we see

from the table that in the update-population-write mode,

the actor produces P tokens onto the actor’s output edge. In the

update-population-readmode, the actor consumes the same

number of tokens from the input edge.

In a given execution of NEDECO, the PSO actor starts in the

initialize-write mode. In this mode, the actor reads PSO

parameters, such as the population size P and the number and

types of PNDS parameters. The initialize-write mode then

constructs the initial swarm population by randomly generating

P particles. After generating the initial PSO population, the

initialize-writemode outputs P tokens on the actor’s output

edge, where each token encapsulates a pointer to a distinct particle

in the initial population. Then the actor mode is transitioned to

initialize-read.

In the initialize-read mode, the PSO Core actor

consumes a block of P fitness evaluation results, which correspond

to computed fitness values for the different configurations of the

PNDS, as defined by the different particles in the current PSO

population. Each of the fitness values is consumed as a single token

from the input edge to update-population. These fitness values

are used to initialize the best fitness value of each particles, as

well as the global best solution. The mode is then transitioned to

stopping-evaluation.

The update-population-writemode updates the particle

velocities and positions according to the best particle fitness and

positions (based on the best fitness achieved so far for a given

particle) and global best fitness and positions. The PSO Core actor

then produces the particles in the current population onto the actor’s

output edge (in a manner similar to the initialize-write

mode). The actor transitions to the update-population-read

mode afterwards.

In the update-population-read mode, the PSO Core

actor consumes a block of P fitness evaluation results, similar

to the initialize-read mode. The particles’ best positions,

best fitness and global best solutions are updated according

to these fitness results. After that, the actor transitions to the

stopping-evaluationmode.

In the stopping-evaluation mode, the PSO Core actor

first checks whether the stopping criterion for PSO evolution has

been reached. Stopping criteria can be configured by the user, and

can include factors such as a maximum number of PSO iterations

(generated PSO populations), and the maximum acceptable error,

which defines a level of accuracy that, when reached, triggers

termination of the PSO even if the maximum number iterations

has not yet been reached. Details on the stopping criteria used

in our experiments are discussed in Section 4. If the stopping

criterion for the PSO Core actor is reached, then the actor transitions

to the write-output mode. Otherwise, transitions back to

update-population-writemode.

The write-outputmode simply writes the final results of the

PSO-based optimization process to a set of output files. The generated

output includes the values of the optimized parameter settings — as

determined by the best particle within the final PSO population — as

well as diagnostic output that can be used to gain insight into how

the optimization process evolved through different generations of the

population. If the best particle is not unique — that is, if multiple

parameter settings achieve the maximum fitness value — then the the

parameter settings associated with all of the tied-for-best particles are

written in the output.

The overall time complexity per iteration of NEDECO using

PSO optimization is P × F where F denotes the fitness evaluation

time complexity when PNDS runs one time on the training dataset.

No complexity expression for F is provided in PNDS, which are

NDSEP (Lee et al., 2020) and CellSort (Mukamel et al., 2009) in

our experiments, so it’s difficult to derive because of third party

functions involved.

A pseudocode sketch of NEDECO integrated with the PSO Core

actor is given in Algorithm 1.

3.8. GA Core actor

To use a GA as the search strategy instead of a PSO, we simply

replace the PSO Core actor in NEDECO with the GA Core actor.

The GA Core actor has eight modes, as illustrated in Table 2. This

table shows the dataflow table of the actor. Here, P denotes the

number of individuals in the GA population, and CP is the number

of individuals that are selected for crossover in each GA iteration.

The GA implementation in NEDECO supports elitism (Back et al.,

1997) and has an associated non-negative integer parameter EL. If

EL > 0, then the top EL individuals, based on fitness evaluation, are

unconditionally carried over from one generation to the next. The

mode transition graph is illustrated in Figure 3. The GA Core actor is

designed in a manner similar to the PSO actor; further details on the

GA Core actor design are omitted from the paper for brevity; details

can be found in the Supplementary material (Algorithm S2).

The time complexity per iteration of NEDECO using GA

optimization is (P − EL) × F, where F denotes the fitness evaluation

time complexity when PNDS operates once across the entire training

dataset. The setting of EL that we use in our experiments is included

in Table 3.

Our implementation of the GA Core actor utilizes modified

versions of code fromMallet (2022).

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

/∗ PSO actor initialize-write mode ∗/

for each particle do

Initialize particle position and velocity

Evaluate fitness function

Send particle parameters to evaluate

end for

PNDS actor fired to evaluate parameters

/∗ PSO actor initialize-read mode ∗/

for each particle do

Read fitness values

Initialize Pbest, Gbest.

end for

while Not reach max iterations or error criteria do

/∗ PSO actor stopping-evaluation mode ∗/

/∗ PSO actor update-population-write mode ∗/

for each particle do

Update particle velocity and position

Send particle parameters to evaluate

end for

PNDS actor fired to evaluate parameters

/∗ PSO actor update-population-read mode ∗/

for each particle do

read fitness values

Update Pbest

end for

update Gbest if necessary

end while

/∗ PSO actor write-output mode ∗/

write results to output files

Algorithm1. A pseudocode sketch of NEDECO integratedwith the PSOCore

actor.

TABLE 2 Dataflow table for the GA Core actor.

Mode Input Output

Initialize-write 0 P

Initialize-read -P 0

Stopping-evaluation 0 0

Update-population-crossover-write 0 CP-EL

Update-population-crossover-read -(CP-EL) 0

Update-population-complete-write 0 P-CP

Update-population-complete-read -(P-CP) 0

Write-output 0 0

3.9. Accelerated execution of the PNDS actor

Parallel computing is commonly applied to PSO implementations

to help reduce the time required for optimization. In NEDECO, the

execution time is vastly dominated by that of the neural decoding

system that is being optimized. Recall that the neural decoding system

must be executed across the given dataset for every particle in every

population generation until the PSO terminates. However, execution

of multiple particles in the same population can be conducted in

parallel if adequate computing resource are available. The dataflow-

based model of NEDECO is utilized for efficient and reliable

exploitation of parallelism for particle evaluation when NEDECO is

operated on a multi-core computing platform.

For efficient multi-threaded execution on a multi-core platform,

each firing of the PNDS actor is encapsulated within a separate

thread, and blocks of Nt firings of the PNDS actor are executed

concurrently, where Nt is a user-defined parameter number that

specifies the number of threads allocated to NEDECO. The default

setting of Nt is simply Nt = Nc, where Nc is the number of cores or

virtual cores (if hyper-threading is present) on the targeted processing

platform. In Section 4, we include experimental results on the

measured execution time improvement of NEDECO that is achieved

through the incorporated features for accelerating particle evaluation.

When applying this multi-threaded approach to PNDS

acceleration, it should be noted that the measured execution time for

each particle evaluation is the single-threaded performance of the

associated neural decoding system configuration. If the optimized

neural decoding system will be deployed as a multi-threaded

implementation, then the single-threaded performance evaluated

within NEDECO can be viewed as an estimate to help compare the

relative processing complexity of alternative PNDS configurations.

An interesting direction for extending NEDECO is to incorporate

the ability to allocate multiple threads to the evaluation of individual

particles, which can provide a better estimate of performance

for a neural decoding system that will ultimately be deployed in

multi-threaded form.

A useful feature of the existing acceleration approach in

NEDECO is that it can be applied uniformly to any neural decoding

system that NEDECO is applied to— that is, regardless of whether or

not a multi-threaded implementation is available for the system.

4. Experiments

In this section, we demonstrate the utility of NEDECO through

experiments using two different calcium-imaging based neural

decoding systems. The systems that we apply in our experiments as

alternative PNDSs are the Neuron Detection and Signal Extraction

Platform (NDSEP) (Lee et al., 2020), and CellSort (Mukamel et al.,

2009). NDSEP is implemented in C++ so its integration with

NEDECO, which is also implemented in C++, requires no need

for interfacing between different programming languages. On the

other hand, CellSort is developed in MATLAB. The integration of

CellSort with NEDECO therefore helps to demonstrate the flexibility

of NEDECO in being usable with neural decoding systems that are

developed in languages other than the native language of NEDECO.

To integrate CellSort with NEDECO, features available in MATLAB

for interfacing with C++ code are utilized in the CFDF wrapper that

is used to interface CellSort to the rest of NEDECO.

When integrating a specific neural decoding system X into

NEDECO, we refer to the resulting setup for optimizing the

configuration of X as NEDECO-X. Thus, our experiments in this

section include experiments with NEDECO-NDSEP and NEDECO-

CellSort.

By default NEDECO uses PSO as its underlying optimization

strategy; however, NEDECO can be readily adapted to work with

other population-based optimization strategies. If NEDECO is

adapted to use a specific optimization strategy Y and integrated

with a specific neural decoding system X, we refer to the resulting

configuration as NEDECO-Y-X. If Y is not specified, then it is

Frontiers inNeuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

FIGURE 3

Mode transition graph for the GA Core actor.

assumed to be the default strategy PSO. In addition to experiments

with NEDECO-NDSEP and NEDECO-CellSort, this section also

includes experiments with NEDECO-GA-CellSort an NEDECO-GA-

NDSEP, where GA stands for “genetic algorithm.”

Experiments are repeated 10 times on each training/testing group

with the same configuration. Each of the 10 repetitions for a given

group is based on a different seed for the random number generator

used by NEDECO, which in turn generally leads to a different initial

population for the PSO.

All of the experiments reported on in this section were performed

using a 6-core (Intel i7-8700 @3.2GHz) desktop platform that

supports up to two simultaneously-executing threads per core. The

platform is equipped with 16 GB RAM.

4.1. Fitness function

The fitness function of a PSO measures the quality of a given

candidate solution with respect to the optimization objective of the

PSO. As described in Section 3.6, the fitness function is implemented

in the Fitness Evaluation block of Figure 1, and the function is

configured as a linear aggregation of measurements on neuron

detection accuracy and execution time.

In our experiments, the accuracy component of the fitness

function is configured in terms of the Overall Dice Coefficient (ODC)

for neuron detection, which intuitively captures the ratio of the

overlap between detected and ground truth neurons to the area of

the neuron mask, where the area is measured in terms of number of

pixels. By definition, ODC values always lie within the interval [0, 1].

For details and motivation on using the Dice coefficient to measure

accuracy for image segmentation problems, we refer the reader to Zou

et al. (2004). For a given calcium imaging dataset, we typically have

a single neuron mask, and the neuron detection process produces a

single overall detection result for the dataset. Thus, the ODC provides

a measure of neuron detection accuracy for an entire dataset in the

context of NEDECO. It is for this reason that we use “overall” in the

term ODC. When computing the ODC, if there are more than one

detections that match a single neuron in the ground truth, then only

the best match having the highest overlapping portion is kept. On the

other hand, if a detection matches multiple neurons in ground truth,

only the best match is taken into consideration.

The execution time component τ (p) of the fitness function of

each particle p is normalized to be in the interval [0, 1], which is

the same interval that defines the range of ODC. In particular, τ (p)

is defined by τ (p) =
W(p)

Wmax(p)
, where W(p) is the execution time

measured for the most recent evaluation of p (using the PNDS actor),

andWmax is the maximum execution time observed so far, across all

particles in all populations that have been generated and evaluated

through the current PSO iteration.

The fitness function is a weighted harmonic mean of the accuracy

and execution time assessments, as defined above; for background

on fitness functions of this form, we refer the reader to Reyes-Sierra

et al. (2006). The fitness function F(p) value for a given particle p in

NEDECO can be expressed as:

F(p) = 1−
1

a1
D(p)

+
a2

TimeScale

; (1)

TimeScale = 1− τ (p); (2)

a1 + a2 = 1. (3)

Here, a1 and a2 are both positive-valued weights for the

component objectives, as discussed in Section 3.3. A higher value of

a1 corresponds to a higher relative importance weighting for accuracy

compared to execution time. Unless stated otherwise, we use the

setting a1 = 0.8, a2 = 0.2, which is representative of cases in

which accuracy is the emphasized objective but some consideration

to execution time is also important.

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

4.2. Dataset

In our experiments to evaluate NEDECO-NDSEP andNEDECO-

CellSort, we employ the Anterior Lateral Motor Cortex (ALM)

dataset (Li et al., 2015). ALM is a real-world two-photon calcium

imaging dataset that is acquired from the anterior motor cortex

in mice while the mice perform a tactile delay-response task. The

dataset includes 11 189 frames of calcium imaging data. As a pre-

processing step, we apply CaImAn-NoRMCorre (Giovannucci et al.,

2019) for motion correction. The objective of this preprocessing

step is to eliminate the influence of motions on the model training

and evaluation.

To evaluate NEDECO on the ALM dataset, we employ k-fold

cross-validation with k = 3. The 11 189 calcium imaging frames

are randomly split into 3 folds. In each of the three experiment

groups, corresponding to our selection of k = 3, we select a different

fold to be the testing dataset, while the other two datasets are used

for training. Here, by “training,” we mean executing NEDECO to

optimize parameters, while by “testing,” we mean evaluating the

optimized system configuration that results from the training process.

The temporal order of the frames in the training and testing sets is

retained to keep temporal features intact.

4.3. PSO and GA actor configuration

Table 3 lists PSO configuration settings and GA settings that

are used in our experiments with both NDSEP and CellSort. These

settings were derived empirically by experimenting with the PSO and

GA under different configurations. Background on the first two PSO

parameters listed in Table 3 is included in Section 3. Discussion of

the other parameters in the table is beyond the scope of this paper;

for background on these parameters, we refer the reader to Clerc

and Kennedy (2002) and Hopgood and Mierzejewska (2008). The

stopping criterion (see Section 3.7) for both the PSO and GA is set

to 50 iterations in all experiments.

4.4. NDSEP

We first demonstrate NEDECO by using it to optimize

parameters of NDSEP, which is designed to be a real-time neural

decoding system for calcium imaging. NDSEP takes as input a video

stream captured by a miniature calcium imaging device as input, and

produces as output a set of detected neuronmasks as well as extracted

neuron signals corresponding to the masks. Details of NDSEP for

neuron detection are in Lee et al. (2020).

Table 4 lists parameters in NDSEP that need to be configured. For

details on themeanings of these parameters, we refer the reader to Lee

et al. (2020). The range of each parameter is given in Table 4 along

with an indication of whether the parameter is continuous-valued or

integer-valued. The admissible ranges of the parameters are imposed

based on limits on the parameter values that defined by NDSEP.

However, even with these limitations imposed on the parameter

value ranges, the overall search space of parameter combinations is

extremely large and prohibitively expensive for exhaustive evaluation

(theoretically, the search space is infinite since some parameters

are continuous-valued).

TABLE 3 PSO and GA configuration settings.

Hyper-parameter Value

PSO

Number of particles 24

Neighborhood strategy Ring

Neighborhood size 10

c1 1.496

c2 1.496

wmin 0.3

wmax 0.7298

GA

Population size 24

Selection method Roulette wheel selection

Crossover method One-point crossover

Mutation method Single point mutation

Crossover rate 0.5

Mutation rate 0.05

Selective pressure 1.5

Elite population size 1

Mating population size 24

TABLE 4 Parameters in NDSEP.

Parameter Type Minimum
value

Maximum
value

Threshold step Continuous 10.0 100.0

Minimum circularity Continuous 0.0 1.0

Minimum convexity Continuous 0.0 1.0

Minimum inertia ratio Continuous 0.0 1.0

Gaussian blur size Integer 1 60

Gaussian standard Continuous 0.0 1.0

Median blur size Integer 1 60

Table 5 shows training and testing results for NEDECO-PSO-

NDSEP and NEDECO-GA-NDSEP using the aforementioned k-fold

cross-validation approach, where k = 3. Experiments are repeated 10

times on each fold. The average ODC and frame rate values resulting

from the training and testing datasets are shown in Table 5, where

the average and standard deviation are taken over all 30 experimental

runs. Here, the frame rate ρ, which is the average time to execute

neuron detection on a single frame, is calculated as: ρ =
nf
ttot

, where

nf is the number of image frames in the given dataset, and ttot is the

total processing time for the dataset.

Table 5 also shows the average and standard deviation values for

recall and precision results among the 30 repeated experiments. Here,

precision and recall are calculated for the neuron detection results. A

threshold Tdice is used to distinguish between true and false positives

in neuron detection results — if the Dice coefficient λ(δ) for a given

detection δ is greater than or equal to Tdice, then the detection is

categorized as a true positive (TP) result; on the other hand, if λ(δ) <

Tdice, then the detection is categorized as a false positive (FP) result.

For the precision and recall results in Table 5, we use Tdice = 0.5.

Frontiers inNeuroinformatics 10 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

TABLE 5 Training and testing results for NEDECO-PSO-CellSort and NEDECO-GA-CellSort.

Method Training Testing

Dice
coe�cient

Recall Precision Frame rate
(fps)

Dice
coe�cient

Recall Precision Frame rate
(fps)

PSO 0.5968 0.6853 0.9380 207.9 0.5549 0.6292 0.9167 206.9

(±0.0069) (±0.0185) (±0.0429) (±23.5000) (±0.0120) (±0.0298) (±0.0315) (±23.8284)

GA 0.5781 0.6908 0.8894 186.4498 0.5310 0.6329 0.8904 186.8505

(±0.0157) (±0.0798) (±0.0188) (±44.2536) (±0.0105) (±0.0443) (±0.0577) (±23.7246)

FIGURE 4

Minimum, maximum, quartiles, and average of the ODC over all k = 3

experimental groups for NEDECO-NDSEP.

Figure 4 shows the minimum, maximum, quartiles, and average

of the ODC over all 30 experimental runs (across all 3 groups) for the

training and testing datasets. The right side of Figure 4 also shows the

ODC achieved by the base NDSEP configuration, which is the original

hand-optimized configuration of NDSEP (Lee et al., 2020).

Compared with the hand-optimized Base NDSEP configuration,

NEDECO-PSO-NDSEP and NEDECO-GA-NDSEP demonstrate

major advantages. In Figure 4, we see that both NEDECO-PSO-

NDSEP and NEDECO-GA-NDSEP consistently achieve significantly

higher ODC values compared to Base NDSEP. The recall and

precision levels achieved by Base NDSEP are 0.725 and 0.495,

respectively. From Table 5, we see that the recall levels produced by

NEDECO-NDSEP are marginally worse compared to Base NDSEP,

however, the precision produced by NEDECO-NDSEP is much

better. The slightly improved recall of NDSEP results because missed

detections are intuitively easier to notice, whereas multiple detections

on the same ground truth neuron are more difficult avoid, especially

when the detections correspond to very small regions of interest.

Moreover, the frame rates shown in Table 5 are also significantly

higher compared to the frame rate provided by Base NDSEP, which

is 149.9 fps. This demonstrates the potential for increased execution

time performance provided by NEDECO.

Figure 5 illustrates measured results from the application of

multi-threading to accelerate firings of the PNDS actor in NEDECO-

NDSEP. Recall that a firing of the PNDS actor corresponds to

execution of the neural decoding system (NDSEP in this case) on the

entire given dataset. The horizontal axis in the figure corresponds

to successive PSO iterations; recall that in each PSO iteration, the

PNDS actor fires once to evaluate all of the particles in the current

population. The vertical axis corresponds to the measured execution

time for firings of the PNDS actor. The different curves in the figure

correspond to different numbers of threads (i.e., different values of

Nt). For each setting ofNt shown in Figure 5, we executed NEDECO-

NDSEP 10 times, and averaged the results at each PSO iteration

number to derive curve associated with Nt .

From the results shown in Figure 5, we see significant

improvements in execution time with increasing use of threads with

the improvements saturating for each value of Nt for later PSO

iterations. The only exception in terms of increasing values of Nt is

for Nt = 12, which performs marginally worse than Nt = 8. It is

anticipated that this trend for higher values ofNt is due to factors such

as excessive contention for resources among the allocated threads or

overheating in the processor.

Figure 6 shows the measured speedups associated with the data

illustrated in Figure 5. Here, the speedup associated with Nt = p is

calculated as T1
Tp
, where T1 and Tp are corresponding execution time

measurements associated with single-threaded (sequential) execution

and execution with Nt = p. T1 and Tp are calculated by averaging the

PNDS actor execution time over 50 iterations, as shown in Figure 5.

These execution time improvements reflect not only faster

operation of the NEDECO optimization process, but also

improvements in the average frame rate associated with PSO

particles (candidate NDSEP configurations).

4.5. CellSort

CellSort is a widely used Matlab-based tool for neuron instance

segmentation and signal analysis (Mukamel et al., 2009). The CellSort

algorithm for deriving neuron segmentation masks involves three

main steps — Principle Component Analysis (PCA), Independent

Component Analysis (ICA), and Image Segmentation. Like NDSEP,

CellSort involves several parameters that need to be set by the user.

These parameters have a major impact on the segmentation results.

Moreover, CellSort runs much more slowly compared to NDSEP,

which leads to a corresponding slowdown for the PSO-based

optimization process of NEDECO-CellSort. However, from our

experiments, we found that a large portion of the time in CellSort is

spent in the PCA step, which has no associated parameters that need

to be configured by the user. Thus, the PCA step can be executed as a

pre-processing step to the PSO optimization process, and there is no

need to include PCA computation as part of the PNDS actor.

Frontiers inNeuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

FIGURE 5

Measured results produced from use of multi-threading to accelerate operation of NEDECO-NDSEP.

FIGURE 6

Speedups associated with the data illustrated in Figure 5.

Table 6 summarizes the parameters involved in configuring

CellSort. These parameters are jointly optimized by NEDECO-PSO-

CellSort and NEDECO-GA-CellSort. The parameters PCl, PCf, and

mu are associated with the ICA step of CellSort. These parameters

respectively specify the first principal component to be kept for

dimension reduction, the last principal component to be kept, and

the weight to use for temporal information in the spatial-temporal

ICA process. The other four parameters in Table 6 are associated

with the image segmentation step. The smwidth parameter gives

the standard deviation for the Gaussian smoothing kernel; the

areal and areah parameters respectively give the minimum and

maximum areas (in pixels) for segments that are to be retained; and

the thresh parameter gives the threshold for spatial filters.

TABLE 6 Parameters in CellSort.

Parameter Type Minimum
value

Maximum
value

PCl Integer 1 60

PCf Integer 61 150

mu Continuous 0.0 1.0

smwidth Continuous 0.0 10.0

areal Integer 50 500

areah Integer 501 2000

Thresh Continuous 1.5 10.0

We used the ALM dataset to demonstrate and experiment with

NEDECO-CellSort. For NEDECO-CellSort, we used the same 3-

fold cross-validation approach that is described in Section 4.2,

and we averaged across 10 trials for each experiment setting.

We ran experiments using NEDECO-CellSort that parallel the

experiments for NEDECO-NDSEP reported in Table 5 and Figure 4.

The corresponding results for NEDECO-CellSort are shown in

Table 7 and Figure 7, respectively. To measure precision and recall,

we used the same threshold setting, Tdice = 0.5, that we used for

NEDECO-NDSEP (see Section 4.4). In Table 6, we list the execution

time (over the whole dataset) instead of the frame rate because

CellSort is not designed to operate in a real-time fashion, with

frame-by-frame input/output.

The Base CellSort configuration (see Figure 7) used in our

experiments was derived through a labor-intensive hand-

optimization process using the ALM dataset. This optimization

process took approximately three weeks. The parameter settings

resulting from this hand-optimization process are discussed in

Frontiers inNeuroinformatics 12 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

TABLE 7 Training and testing results for NEDECO-PSO-CellSort and NEDECO-GA-CellSort.

Method Training Testing

Dice
coe�cient

Recall Precision Time(sec) Dice
coe�cient

Recall Precision Time(sec)

PSO 0.5169 0.5352 0.8112 20.4834 0.4138 0.3992 0.7425 21.38

(±0.0146) (±0.0365) (±0.0683) (±10.0690) (±0.0253) (±0.0410) (±0.0739) (±13.5110)

GA 0.4833 0.4824 0.7784 40.9305 0.4106 0.3623 0.8259 25.9015

(±0.0074) (±0.0527) (±0.1094) (±10.1727) (±0.0384) (±0.0586) (±0.1011) (±7.7650)

FIGURE 7

Minimum, maximum, quartiles and average of the ODC over all k = 3

experimental groups for NEDECO-CellSort.

Lee et al. (2020). NEDECO-CellSort eliminates the need for such

labor-intensive hand-optimization, and at the same time, produces

significantly more accurate and efficient configurations of CellSort.

From Table 7 and Figure 7, we see that trends for accuracy

metrics (ODC, recall and precision) and execution time are similar

for NEDECO-X-CellSort as those for NEDECO-X-NDSEP presented

in Section 4.4. The recall and precision levels achieved by Base

CellSort are 0.7101 and 0.3043, respectively. From Table 5, we see

that the recall levels produced by NEDECO-X-CellSort are worse

compared to Base CellSort, however, the precision produced by

NEDECO-X-CellSort is better, and the degree of improvement in

precision significantly exceeds the degree of reduction in recall. The

F1 score, which can be viewed as an aggregation of the precision and

recall metrics, for the NEDECO-PSO-CellSort and NEDECO-GA-

CellSort results are 0.5132 and 0.5037, respectively, which represent

improvements compared to the F1 score of 0.4260 for Base CellSort.

We measured the execution time of Base CellSort to be be 52.77

seconds (again averaged over 10 trials). This is significantly slower

than the training- and testing-time averages of 20.48 and 21.38

seconds for NEDECO-PSO-CellSort, and 40.93 and 25.9015 seconds

for NEDECO-GA-CellSort, as shown in Table 7.

In summary, our experiments demonstrate that NEDECO greatly

reduces the effort involved in optimizing the parameters of CellSort

while producing configurations of CellSort (for the different cross-

validation groups) that are significantly more accurate in terms of F1

score and ODC, and also significantly more efficient compared to the

baseline, hand-optimized version of CellSort.

4.6. Multiobjective optimization

In this section, to evaluate the linear aggregation multiobjective

approach described in Section 3.3, we perform a comparison with

NSGA-II. NSGA-II is a widely used multiobjective genetic algorithm.

For details on NSGA-II, we refer readers to Deb et al. (2000). In

our experiments, NEDECO-PSO-CellSort is compared with NSGA-

II-CellSort, where we optimize CellSort using the MATLAB-based

NSGA-II Package (Seshadri, 2022). Unlike our previous experiments

that fix the values of a1 and a2 (see Section 4.1), NEDECO-PSO-

CellSort is trained with different values of (a1, a2) — in particular, a1
is increased from 0.1 to 0.9, and a2 is correspondingly decreased from

0.9 to 0.1. The increase/decrease is performed with a step size of 0.1.

NEDECO-PSO-CellSort is trained 9 times with the different settings

for (a1, a2) to derive 9 Pareto fronts.

In this experiment, we applied the same 3-fold cross-validation

approach that is described in Section 4.2.We repeated the steps above

to obtain 9 Pareto fronts in total, 3 on each fold. NSGA-II-CellSort

was trained for 50 iterations as well with the same population size of

24. Training was repeated 9 times with different seeds (for random

number generation), 3 on each fold.

Results on the test dataset are reported in Figure 8. Here,

we randomly pick two Pareto fronts from NEDECO-PSO-CellSort

and three from NSGA-II-CellSort. From the results, we see that

NEDECO-PSO-CellSort outperforms NSGA-II-CellSort with better

Pareto fronts. We use the AUC (area under the curve) (Bhowan

et al., 2010) metric to evaluate the Pareto fronts. The average AUC of

NEDECO-PSO-CellSort is 0.3971 while the average AUC of NSGA-

II-CellSort is 0.2121. The averaging is performed across all generated

Pareto fronts; in contrast, only a proper subset of Pareto fronts

is shown in Figure 8 to avoid excessive clutter in the illustration.

In summary, the linear aggregation multiobjective approach of

NEDECO significantly outperforms NSGA-II in our experiments.

5. Discussion

In this paper, we have motivated the problem of parameter

optimization for neural decoding systems, and we have presented

a novel framework called the NEDECO package. NEDECO

automatically performs parameter optimization to significantly

improve the effectiveness of neural decoding systems. NEDECO

applies methods from particle swarm optimization genetic algorithm,

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

FIGURE 8

Pareto fronts derived from NEDECO-PSO-CellSort (solid lines)

vs. NSGA-II-CellSort (dotted lines). Dots having the same color

represent solutions derived from the same experiment. Pareto fronts

are generated based on sets of dots having the same color.

and dataflow modeling to develop a modular framework into which

a wide variety of neural decoding systems can be integrated to

help derive more effective configurations of the systems. NEDECO

is also innovative in its consideration of multidimensional design

evaluation spaces rather than being focused only on accuracy. In our

current prototype of NEDECO, we have focused on the objectives

of neuron segmentation accuracy and execution-time efficiency. This

particular combination of design evaluation metrics is motivated by

the important applications of neural decoding in real-time contexts,

especially in the context of neuromodulation systems.

We have demonstrated the adaptability of NEDECO to different

optimization algorithms and systems by presenting case studies of

its integration with two state-of-the-art neural decoding systems —

NDSEP and CellSort. The experimental results indicate significant

performance improvements for both NDSEP and CellSort when

their system parameters are optimized using NEDECO. Moreover,

it is demonstrated that the dataflow-based design of NEDECO

leads to structured and efficient utilization of multi-core computing

technology to accelerate the optimization process of NEDECO.

Compared to the accuracy results demonstrated in the original

work on NDSEP (Lee et al., 2020), the Base NDSEP and Base CellSort

algorithms, which have manually-tuned parameters, demonstrate

worse results in the experiments reported on in this paper. This

is because of the more strict evaluation of neuron segmentation

performance that is employed in this paper. For example, in Lee et al.

(2020), when comparing with the ground truth mask, if the detected

region of interest overlaps with any of the neurons in the mask, a

match is counted, regardless of whether or not the ground truth

neuron already has a match. However, in this paper, true positives are

counted based on a threshold on the percentage of overlapping pixels

associated with the match. The multiple-to-one match situation is

excluded as well. By making the evaluation more strict in this way,

we are able to present better insight into the accuracy performance of

the investigated neural decoding systems.

From Section 4, we see similar performance trends between

NEDECO-PSO and NEDECO-GA when CellSort and NDSEP are

applied, respectively, as the PNDS. However, we cannot conclude

from our experiments that in general NEDECO-PSO and NEDECO-

GA have similar effect to optimize neural decoding systems

(regardless of the PNDS used). Users benefit from the flexibility to

try both search strategies — PSO and GA — for a given PNDS and

operational scenario and to utilize the one that performs best. A

useful direction for future work is to incorporate additional search

strategies to further enhance this form of flexibility.

Due to the lack of suitable calcium imaging datasets for neuron

detection, the experiments in this paper are presented only on the

ALMdataset. Formost existing calcium imaging datasets, the absence

of ground truth results prevents the evaluation of calcium imaging

processing platforms. Additionally the ground truth in the ALM

dataset is a mask representing the whole dataset, so when the dataset

is split into training and testing subsets, some of the neuron activity

can be lost, which introduces challenges to model optimization,

and can make testing performance worse than expected in terms of

accuracy. The smaller the subset is, the more activity is in general

lost. In terms of the k-fold cross validation, with a greater k value, the

test subset will be too small to keep from losing too many neuron

activities. This is why we use a small k value of 3 in Section 4.

To address this issue, an important direction for future work is

development of and experimentation with datasets that have ground

truth information available at the frame level (Sità et al., 2022).

We are among the first to apply automated parameter

optimization to calcium-imaging-based neural decoding and

provide a dataflow-based implementation, which helps to enhance

the scalability, modularity, and efficiency of the framework.

Theoretically, the proposed framework can handle any parameter

optimization method. The current implementation includes two

parameter optimization approaches, GA and PSO. We chose these

approaches because they are representative of widely-used search

techniques that are relevant to complex and irregular search spaces.

The focus of this paper is to demonstrate the utility of automated

parameter optimization for calcium imaging based neural decoding;

the focus of the paper is not to advocate for the superiority of any

specific search technique.

Data availability statement

NEDECO is being made available as open source software

for the research community. The software can be accessed

via https://code.umd.edu/dspcad-pub/dspcadwiki/-/wikis/software/

Software. Further inquiries can be directed to the corresponding

authors.

Author contributions

JX wrote the first draft of themanuscript, conducted experiments,

and iteratively revised the manuscript. RC and SB contributed to the

conception and design of the study, contributed to revising the first

manuscript draft, and subsequent drafts. All authors contributed to

the article and approved the submitted version.

Funding

This work was supported in part by the NIH NINDS

(R01NS110421) and the BRAIN Initiative.

Frontiers inNeuroinformatics 14 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://code.umd.edu/dspcad-pub/dspcadwiki/-/wikis/software/Software
https://code.umd.edu/dspcad-pub/dspcadwiki/-/wikis/software/Software
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Xie et al. 10.3389/fninf.2023.938689

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fninf.2023.

938689/full#supplementary-material

References

Back, T., Hammel, U., and Schwefel, H. (1997). Evolutionary computation:
Comments on the history and current state. IEEE Trans. Evolut. Comput. 1, 3–17.
doi: 10.1109/4235.585888

Bhattacharyya, S. S., Deprettere, E., Leupers, R., and Takala, J. (2019).
Handbook of Signal Processing Systems. 3rd edition. New York, NY, USA: Springer.
doi: 10.1007/978-3-319-91734-4

Bhowan, U., Zhang, M., and Johnston, M. (2010). “Auc analysis of the pareto-
front using multi-objective gp for classification with unbalanced data,” in Proceedings
of the 12th Annual Conference on Genetic and Evolutionary Computation, 845–852.
doi: 10.1145/1830483.1830639

Clerc, M. (2007). Back to random topology. Available online at: http://clerc.maurice.
free.fr/pso (accessed July 12, 2020).

Clerc, M., and Kennedy, J. (2002). The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Trans. Evolut. Comput. 6, 58–73.
doi: 10.1109/4235.985692

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii,” in
International Conference on Parallel Problem Solving From Nature, (Springer) 849–858.
doi: 10.1007/3-540-45356-3-83

Dimanov, D., Balaguer-Ballester, E., Singleton, C., and Rostami, S. (2021).
Moncae: Multi-objective neuroevolution of convolutional autoencoders. arXiv preprint
arXiv:2106.11914.

Giovannucci, A., Friedrich, J., Gunn, P., Kalfon, J., Brown, B. L., Koay, S. A., et al.
(2019). CaImAn an open source tool for scalable calcium imaging data analysis. Elife 8,
e38173. doi: 10.7554/eLife.38173

Glaser, J. I., Benjamin, A. S., Chowdhury, R. H., Perich, M. G., Miller, L. E.,
and Kording, K. P. (2020). Machine learning for neural decoding. eNeuro 7, 1–16.
doi: 10.1523/ENEURO.0506-19.2020

Guo, Y., Li, J.-Y., and Zhan, Z.-H. (2020). Efficient hyperparameter optimization for
convolution neural networks in deep learning: A distributed particle swarm optimization
approach. Cybern. Syst. 52, 36–57. doi: 10.1080/01969722.2020.1827797

Hopgood, A. A., and Mierzejewska, A. (2008). “Transform ranking: a new
method of fitness scaling in genetic algorithms,” in International Conference on
Innovative Techniques and Applications of Artificial Intelligence, (Springer) 349–354.
doi: 10.1007/978-1-84882-171-2-26

Jin, Y., Olhofer, M., and Sendhoff, B. (2001). “Dynamic weighted aggregation for
evolutionary multi-objective optimization: Why does it work and how?,” in Proceedings
of the 3rd Annual Conference on Genetic and Evolutionary Computation, 1042–1049.

Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization,” in Proceedings of
ICNN’95-International Conference on Neural Networks, (IEEE) 1942–1948.

Lee, E. A., and Messerschmitt, D. G. (1987). Synchronous dataflow. Proc. IEEE 75,
1235–1245. doi: 10.1109/PROC.1987.13876

Lee, E. A., and Parks, T. M. (1995). Dataflow process networks. Proc. IEEE 83, 773–799.
doi: 10.1109/5.381846

Lee, Y., Xie, J., Lee, E., Sudarsanan, S., Lin, D.-T., Chen, R., et al. (2020). Real-time
neuron detection and neural signal extraction platform for miniature calcium imaging.
Front. Comput. Neurosci. 14, 1–20. doi: 10.3389/fncom.2020.00043

Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R., and Svoboda, K. (2015). A motor cortex
circuit for motor planning and movement. Nature 519, 51–56. doi: 10.1038/nature14178

Li, Y., and Zhang, Y. (2020). Hyper-parameter estimation method with particle swarm
optimization. arXiv preprint arXiv:2011.11944.

Lin, S., Liu, Y., Lee, K., Li, L., Plishker, W., and Bhattacharyya, S. S. (2017).
The DSPCAD framework for modeling and synthesis of signal processing systems. in
Handbook of Hardware/Software Codesign, eds. S. Ha, and J. Teich (Springer) 1–35.
doi: 10.1007/978-94-017-7267-9-36

Liu, W., Chung, I.-Y., Liu, L., Leng, S., and Cartes, D. A. (2011). Real-time particle
swarm optimization based current harmonic cancellation. Eng. Applic. Artif. Intell., 24,
132–141. doi: 10.1016/j.engappai.2010.08.004

Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., and Pastor, J. R. (2017).
“Particle swarm optimization for hyper-parameter selection in deep neural networks,”
in Proceedings of the Genetic and Evolutionary Computation Conference, 481–488.
doi: 10.1145/3071178.3071208

Mallet, O. (2022). Galgo-2.0. Available online at: https://github.com/olmallet81/
GALGO-2.0 (accessed August 25, 2022).

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. New York, NY: Kluwer
Academic Publishers.

Mukamel, E. A., Nimmerjahn, A., and Schnitzer, M. J. (2009). Automated analysis
of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760.
doi: 10.1016/j.neuron.2009.08.009

Parsopoulos, K. E., and Vrahatis, M. N. (2002). “Particle swarm optimization method
in multiobjective problems,” in Proceedings of the 2002 ACM Symposium on Applied
Computing, 603–607. doi: 10.1145/508791.508907

Plishker, W., Sane, N., and Bhattacharyya, S. S. (2009). “A generalized scheduling
approach for dynamic dataflow applications,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, (Nice, France) 111–116.
doi: 10.1109/DATE.2009.5090642

Pnevmatikakis, E. A., Soudry, D., Gao, Y., Machado, T. A., Merel, J., Pfau, D., et al.
(2016). Simultaneous denoising, deconvolution, and demixing of calcium imaging data.
Neuron 89, 285–299. doi: 10.1016/j.neuron.2015.11.037

Reyes-Sierra, M., Coello, C. C., et al. (2006). Multi-objective particle swarm
optimizers: A survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2, 287–308.
doi: 10.5019/j.ijcir.2006.68

Seshadri, A. (2022). Nsga - ii: A multi-objective optimization algorithm. Available
online at: https://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-
multi-objective-optimization-algorithm (accessed August 25, 2022).

Singh, P., Chaudhury, S., and Panigrahi, B. K. (2021). Hybrid mpso-cnn: Multi-
level particle swarm optimized hyperparameters of convolutional neural network. Swarm
Evolut. Comp. 63, 100863. doi: 10.1016/j.swevo.2021.100863

Sità, L., Brondi, M., Lagomarsino de Leon Roig, P., Curreli, S., Panniello, M.,
Vecchia, D., et al. (2022). A deep-learning approach for online cell identification and
trace extraction in functional two-photon calcium imaging. Nat. Commun. 13, 1–22.
doi: 10.1038/s41467-022-29180-0

Yamasaki, T., Honma, T., and Aizawa, K. (2017). “Efficient optimization of
convolutional neural networks using particle swarm optimization,” in 2017 IEEE
Third International Conference on Multimedia Big Data (BigMM), (IEEE) 70–73.
doi: 10.1109/BigMM.2017.69

Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., and Zhang, Q. (2011).
Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evolut.
Comput. 1, 32–49. doi: 10.1016/j.swevo.2011.03.001

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M., Kaus, M. R., Haker, S.
J., et al. (2004). Statistical validation of image segmentation quality based on a spatial
overlap index1: scientific reports. Acad. Radiol. 11, 178–189. doi: 10.1016/S1076-6332(03)
00671-8

Frontiers inNeuroinformatics 15 frontiersin.org

https://doi.org/10.3389/fninf.2023.938689
https://www.frontiersin.org/articles/10.3389/fninf.2023.938689/full#supplementary-material
https://doi.org/10.1109/4235.585888
https://doi.org/10.1007/978-3-319-91734-4
https://doi.org/10.1145/1830483.1830639
http://clerc.maurice.free.fr/pso
http://clerc.maurice.free.fr/pso
https://doi.org/10.1109/4235.985692
https://doi.org/10.1007/3-540-45356-3-83
https://doi.org/10.7554/eLife.38173
https://doi.org/10.1523/ENEURO.0506-19.2020
https://doi.org/10.1080/01969722.2020.1827797
https://doi.org/10.1007/978-1-84882-171-2-26
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/5.381846
https://doi.org/10.3389/fncom.2020.00043
https://doi.org/10.1038/nature14178
https://doi.org/10.1007/978-94-017-7267-9-36
https://doi.org/10.1016/j.engappai.2010.08.004
https://doi.org/10.1145/3071178.3071208
https://github.com/olmallet81/GALGO-2.0
https://github.com/olmallet81/GALGO-2.0
https://doi.org/10.1016/j.neuron.2009.08.009
https://doi.org/10.1145/508791.508907
https://doi.org/10.1109/DATE.2009.5090642
https://doi.org/10.1016/j.neuron.2015.11.037
https://doi.org/10.5019/j.ijcir.2006.68
https://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm
https://doi.org/10.1016/j.swevo.2021.100863
https://doi.org/10.1038/s41467-022-29180-0
https://doi.org/10.1109/BigMM.2017.69
https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/10.1016/S1076-6332(03)00671-8
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	A parameter-optimization framework for neural decoding systems
	1. Introduction
	2. Background and related work
	3. Proposed method
	3.1. Particle swarm optimization
	3.2. Genetic Algorithms
	3.3. Multiobjective optimization
	3.4. Dataflow modeling
	3.5. Core functional dataflow
	3.6. Architecture design
	3.7. PSO Core actor
	3.8. GA Core actor
	3.9. Accelerated execution of the PNDS actor

	4. Experiments
	4.1. Fitness function
	4.2. Dataset
	4.3. PSO and GA actor configuration
	4.4. NDSEP
	4.5. CellSort
	4.6. Multiobjective optimization

	5. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


