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Objective: In this study, we investigate whether a Convolutional Neural Network

(CNN) can generate informative parametric maps from the pre-processed CT

perfusion data in patients with acute ischemic stroke in a clinical setting.

Methods: The CNN training was performed on a subset of 100 pre-processed

perfusion CT dataset, while 15 samples were kept for testing. All the data used

for the training/testing of the network and for generating ground truth (GT)

maps, using a state-of-the-art deconvolution algorithm, were previously pre-

processed using a pipeline for motion correction and filtering. Threefold cross

validation had been used to estimate the performance of the model on unseen

data, reporting Mean Squared Error (MSE). Maps accuracy had been checked

through manual segmentation of infarct core and total hypo-perfused regions on

both CNN-derived and GT maps. Concordance among segmented lesions was

assessed using the Dice Similarity Coefficient (DSC). Correlation and agreement

among different perfusion analysis methods were evaluated using mean absolute

volume differences, Pearson correlation coefficients, Bland-Altman analysis, and

coefficient of repeatability across lesion volumes.

Results: The MSE was very low for two out of three maps, and low in

the remaining map, showing good generalizability. Mean Dice scores from

two different raters and the GT maps ranged from 0.80 to 0.87. Inter-rater

concordance was high, and a strong correlation was found between lesion

volumes of CNN maps and GT maps (0.99, 0.98, respectively).

Conclusion: The agreement between our CNN-based perfusion maps and the

state-of-the-art deconvolution-algorithm perfusion analysis maps, highlights
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the potential of machine learning methods applied to perfusion analysis. CNN

approaches can reduce the volume of data required by deconvolution algorithms

to estimate the ischemic core, and thus might allow the development of novel

perfusion protocols with lower radiation dose deployed to the patient.

KEYWORDS

machine learning, convolutional neural network (CNN), CT-perfusion imaging, perfusion
maps, stroke

1. Introduction

Occlusion of a cerebral artery causes the sudden decrease of
the blood perfusion in the vascular territory matching the occluded
vessel. The peripheral regions of the area affected by the vascular
occlusion have their blood flow deficit reduced by the collateral
circulation, in comparison to the center of the affected territory.
Ischemic lesions develop rapidly, originating from the center of the
occluded vascular territory and progressively expanding to most
peripheral regions.

From the onset of symptoms, in the ischemic hypo-perfused
area of the brain two different regions may be identified: a
central “core,” and a peripheral “penumbra,” where the former
corresponds to the area of irreversible damage, and the latter to
the area of a potential recovery, provided recanalization of the
occluded vessel. Therefore, identification of core and penumbra
may predict the fate of the tissue and drive reperfusion treatments
(Donahue and Wintermark, 2015; Wannamaker et al., 2018). The
extension of core and penumbra may be estimated using perfusion
techniques, in particular CT Perfusion (CTP). During CTP, a
series of low-dose scans is acquired after contrast bolus injection,
allowing for computing time-density curves; deconvolution of
these curves allows for generating parametric maps to track
perfusion parameters dynamics. Cerebral Blood Volume (CBV),
Cerebral Blood Flow (CBF), time to peak (TTP), time to peak
of the deconvolved tissue residue function (Tmax), and mean
transit time (MTT) are the estimated perfusion parameters most
frequently used in clinical practice. Ischemic core and penumbra
can be predicted by assessing perfusion parameters mismatch
across different parametric maps, i.e., brain tissues characterized by
reduced CBV and CBF, and increased MTT or TTP are interpreted
as core lesions (Konstas et al., 2009a,b; Campbell et al., 2011).

Tmax has been found to approximate both penumbra and core
identified with an increasing tissue perfusion delay (Demeestere
et al., 2020).

The role of CTP is of particular importance in patients with
unknown time from the onset of symptoms, or out of the 4.5- and
6-hours’ window used to select patients for intra-venous and intra-
arterial reperfusion treatments, respectively. Two trials (DAWN
and DEFUSE) demonstrated the clinical usefulness of intra-arterial
reperfusion in patients selected using CBV and CBF estimation
based on CTP (Albers et al., 2018; Nogueira et al., 2018).

Different algorithms are used to perform deconvolution of
time-intensity curves, some of which are not public and may
produce largely different maps (Kudo et al., 2010). In an ideal
setting of limited noise, low variance, and no motion artifacts,

a pixel-by-pixel analysis, as performed by deconvolution-based
algorithms, is probably the best choice to obtain realistic, affordable,
and reproducible maps. In a realistic setting, however, redundant
information is acquired in order to overcome problems due to
noise, large variance and movement. In practice, this imposes
obtaining more slices, requiring a larger number of acquisitions and
more X-ray exposure for the patients, to perform a series of spatial
pre-processing steps for noise and variance reduction and to extract
the arterial input function (AIF).

Luckily, Machine Learning (ML) approaches offer several
potential advantages over canonical algorithms when applied to
the problem of time-intensity curves deconvolution. In fact, ML
techniques allow extracting information that is relatively insensitive
to noise, misalignments, and intra-subjects variance (Dashtbani
Moghari et al., 2021a; Li et al., 2021a).

Several supervised and unsupervised machine learning
algorithms–e.g., Support Vector Machines, Random Forests,
Ridge Regression, Feed forward Neural Network - have been
applied to CTP and MRI perfusion showing better performance
compared to simpler linear models (McKinley et al., 2018;
Cheng et al., 2021).

In our study we explored whether a properly trained
Convolutional Neural Network (CNN), based on a U-Net-like
structure, can generate informative, AIF-independent, parametric
maps of CBV, CBF, and time to peak TTP on a pre-processed
dataset of CTP images. CTP images were obtained from a real-
world dataset of patients with acute ischemic stroke (AIS), no large
lesions on non-contrast CT scans, and candidates for reperfusion
therapies (Barber et al., 2000). This dataset was chosen because it
corresponds to the one used in the DAWN and DEFUSE trials, for
which perfusion studies drive reperfusion therapies. We released
publicly two versions of this dataset for data sharing following
the FAIR protocol [UniToBrain, doi: 10.5281/zenodo.481760, doi:
10.21227/x8ea-vh1, (Gava et al., 2021)].

The datasets and the CNN training were developed as a use case
of the European project DeepHealth1: a framework envisioned to
tackle the real needs of the health sector and facilitate the daily
work of medical personnel and expert users in terms of image
processing and the use and training of predictive models without
the need of combining numerous tools. To this end, the project will
combine open High-Performance Computing infrastructure with
ML techniques to support biomedical applications that require the
analysis of large and complex biomedical datasets.

1 https://deephealth-project.eu/
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2. Materials and methods

All procedures performed in this study involved human
participants and thus followed the ethical standards of our
institutional review board (Comitato Etico Interaziendale, CEI, id
number 596.345), and the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. The requirement for
written informed consent was waived because of the retrospective
nature of the study.

2.1. Clinical data

CT Perfusion data gathered for this study is part of a larger
open-access dataset developed for the DeepHealth project which
now includes 258 consecutive patients, obtained retrospectively
from hospital Picture Archiving and Communication System
(PACS) and is available for download (Gava et al., 2021).

Perfusion data from a subset of 115 patients were extracted. For
training the CNN, 115 subjects were randomly split into a training
set of 100, and a testing set of 15, used to compare our results to a
gold standard method.

CT Perfusion acquisition parameters were as follows: Scanner
GE 64 slice, 80 kV, 150 mAs, 44.5-s duration, 89 volumes (40 mm
axial coverage) with slice thickness 5 mm, injection of 40 ml of
Iodine contrast agent (300 mg/ml) at 4 ml/s speed.

2.2. Calculation of ground truth maps

We calculated perfusion maps, including CBF, CBV, and TTP,
using a pipeline of spatial pre-processing and a state-of-the-art fast
model-based non-linear regression (NLR) method developed by
Bennink et al. (2016).

Motion correction was done using Elastix 5.0.1, by rigid
registration of all CTP frames to the first frame (Bennink et al.,
2016). Registration was initiated on a coarse resolution level (8×
down-sampling), followed by a full-resolution level. The sum
of squared differences between the frames was minimized using
stochastic gradient descent with, respectively 2,000 and 8,000
samples and 300 iterations per resolution level.

After motion correction, the CTP frames were filtered using a
3D bilateral filter, guided by the mean of all CTP frames (Klein et al.,
2010). The spatial kernel size (standard deviation) was 3 mm and
the range kernel size 20 Hounsfield units.

The CBV, CBF, and TTP were estimated by fitting a model to
the measured attenuation curve in each voxel by means of non-
linear regression. The model convolves the measured AIF with a
box-shaped impulse response function (IRF). The CBF determines
the height of the box, the MTT determines its width and the TTP
determines its position on the time-axis (Tomasi and Manduchi,
1998). A downhill-simplex algorithm was used to minimize the sum
of squared errors in 300 iterations. The initial CBF, MTT, and TTP
were 60 mL/100 g/min, 5 s, and 3.5 s, respectively.

Arterial input function and Venous output function (VOF)
calculations were done automatically on a 100 voxels sample.

The box-shaped model developed by Bennink et al. (2016)
describes the impulse response function (IRF) of the perfused tissue

in terms of CBV, MTT, and tracer delay. The box-shaped IRF
enables fast NLR analysis, which is critical in a clinical setting such
as ischemic stroke.

The time attenuation curve of the tissue and the relative
CBV, CBF, and TTP maps were estimated using the AIF in
conjunction with the IRF.

2.3. CNN training

The filtered and registered images were the only input provided
to the U-Net-like architecture. This network architecture has been
originally developed for image segmentation, however, it proved to
be robust and performed well in other scenarios as well (Chen et al.,
2018; Falk et al., 2019). The original architecture was proposed by
Ronneberger et al. (2015) and consisted of 18 convolutional layers
with 3 × 3 filters, 4 up-convolution layers with 2 × 2 kernels,
4 max-pool layers with 2 × 2 kernels, and 1 convolutional layer
with 1 × 1 convolution. Differently from similar models, U-Net is
able to extract features at different spatial resolutions and, thanks
to its “copy and crop” connections which resemble the residual
connections in ResNets (He et al., 2016), the model automatically
selects the optimal resolution(s) to extract features for the target
training task, disregarding the other scales. In the original work,
the authors proposed an extraction with five different resolutions
(from 572× 572 down to 32× 32), which required a large number
of filters per layer, from 64 at the highest resolution to 1,024 at the
lowest.

To apply it to our problem, we needed to introduce
modifications at the architectural level to fit our problem.

For segmentation tasks a state-of-the-art choice is to use max-
pooling layers for sub-sampling:

y = max (x_1, x_2, . . . , x_N)

This operator, however, introduces a non-linear behavior that
prevents the forward propagation of a great part of the information
content (Sabour et al., 2017). Moreover, since the use of the
standard max-pool layer in our context was suboptimal as we do
not expect sparse features to be extracted, we employed average
pooling layers in place of max-pool. By the same token, we used
2 × 2 kernels instead of 3 × 3 kernels not only for the average
pooling and for the up-convolution, but also for the convolutional
layers. The input to our model then were 512 × 512× t image
stacks (in place of 572 × 572 × 3), where t defines the number
of CT volumes acquired. The CT scans were processed, hence, as
3D tensors, where the third dimension is time. Depending on the
chosen time granularity, the number of input channels changed
accordingly. The overall CNN structure is displayed in Figure 1.

During training, instead of using standard cross-entropy loss,
or dice score/focal loss, which are typical in segmentation tasks,
we minimized the mean squared error loss (MSE), which was
compatible with the desired ground truth output. No additional
information (like the AIF) was provided to the CNN: all
the information is implicitly extracted or inferred from the
registered CT scans.

The model was pre-trained on 128 × 128 sub-sampled inputs
for 250 epochs, after that it was fine-tuned for 50 additional epochs
on the full 512× 512 resolution. Training on full resolution images
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FIGURE 1

U-Net architecture deployed. The model takes scans of size 512 × 512, acquired in t different time instants. The bottleneck layer is placed after four
encoding stages, and the output is a 512 × 512 map.

requires high consumption of GPU memory and the time needed
to reach model convergence becomes very high.

Training on down-sampled images, on the contrary, allows
us to reach a solution in a much shorter time since the task is
simplified. The pre-training step produces a suitable initialization
for the model: this type of approach is often used for training
generative networks, and the results are comparable and smoother
than those produced with very high dimensional image training.
The training of the entire model for each target is done using
Adam with a learning rate 10−5, b1 = 0.9, b2 = 0.999, and batch
size equal to 8.

The output of the model was a 512 × 512 map (Figure 2),
where all the pixel values were normalized in the range 0–
1. The entire model was trained using an SGD optimization
strategy with a learning rate decay policy self-tuned according
to the performance on the validation set. The source code
is publicly available at https://github.com/EIDOSLAB/Neural-
Network-derived-perfusion-maps.

To evaluate the performance of the CNN model in generating
new maps, we implemented a threefold cross-validation protocol
on the training dataset.

2.4. CNN performance

The accuracy of CNN maps was carried out through the
segmentation of the infarct core (CBV) and total hypo-perfused
territory (CBF, TTP), on the test set of 15 CNN-parametric maps.
The process is performed manually by two expert radiologists
using ITK-SNAP open-source software (Yushkevich et al., 2006).
Segmentation was carried out section-wise following the axial
direction.

To avoid bias induced by repetitive evaluation of the
same patients, GT-maps segmentation was performed by two
different radiologists.

An example of a core segmentation on both CNN and GT
maps is displayed in Figure 3. We notice that the map is perfectly
reconstructed everywhere, except in the core region, where the

CNN generated map has a positive, uniform bias, which however
does not compromise the segmentation of the core area.

Penumbra volumes correspond to the mismatch between the
total hypo-perfused region and the ischemic core.

The CNN segmented volumes from both raters were matched
with the GT to assess overlapping regions by calculating the Dice
Similarity Coefficient (DSC).

Dice Similarity Coefficient was also calculated by matching
CNN segmentations from different raters of the same set of maps
to evaluate inter-rater concordance.

Pearson correlation coefficient (r) was used to assess the
relationship between the lesion volumes on GT and CNN maps.
Bland-Altman and coefficient of repeatability (CR) analysis was also
performed across volumes segmented on CNN and GT maps to
assess agreement between the different methods.

Intraclass correlation coefficient (ICC) was used to assess
reliability across volumes segmented from different raters.

Friedman test was used to look into significant differences
across volumes of segmented lesions.

Statistical analysis was performed using the 3D-convert toolbox
from ITK-SNAP, intraclass_corr function in Python 3.6.5 (ICC1k,
pingouin library),2 and Statistical Package for the Social Sciences
(SPSS) software (version 27.0.1.0).

3. Results

In Table 1 we reported the final performance of the models
as both the MSE evaluated on the training set and the one
obtained on the validation set. We would like to remark that
the threefold slit was performed on the patient’s base. The
MSE for both the generation of CBV and CBF is very low, in
the order of 0.01 (corresponding to a PSNR close to 20 dB),
having a generalization gap of 0.001 only. This shows that these
two maps can be produced with very high fidelity, even on

2 https://pingouin-stats.org/build/html/generated/pingouin.intraclass_
corr.html
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FIGURE 2

(A,B) CNN output maps from the testing set (CBV, CBF, and TTP); (C,D) matching sections of GT maps. There is a small infarct core displayed in the
CBV map at the right basal ganglia (black arrows) and an extended penumbra showed in the CBF and TTP maps across right middle cerebral artery
territories (white arrows).

new subjects. Differently from the previous two maps, TTP’s
generation results more problematic, with an average MSE of
0.017 and a higher generalization gap. Given the extremely high
non-linearity of TTP maps, a worse generation performance is
expected. All the training and validation results are shared in
Figure 4.

A total of 3 out of 15 CTP datasets used as CNN testing
exhibited normal perfusion parameters on both GT and CNN-
parametric maps and resulted in negative vessel occlusion on
CT Angiography (CTA). Normal perfusion maps were excluded
from DSC analysis to avoid overestimation of the segmentations
comparison results.

Segmented core (CBV) and hypo-perfused regions (CBF/TTP)
volumes of the remaining patients were shown in Figures 5, 6; 3
out of 12 patients presented with hypo-perfused territories without
ischemic cores.

Mean DSC for all CBV lesions ranged from 0.80 to 0.86 and for
CBF/TTP lesions from 0.82 to 0.87, with high DSC values are found
both across and within different methods of perfusion analysis.
DSC resulting from segmentation matching are presented as mean
and standard deviation (SD) in Table 2.

Friedman test did not reveal a significant difference among
segmented volumes on CBV and CBF/TTP maps. Mean ICC for
absolute agreement were excellent for volumes segmented both on
CBV and CBF/TTP maps (0.98 C.I. 0.95–1.00; 0.99 C.I. 0.98–1.00).

We also found a strong positive correlation (r = 0.99, r = 0.98
with p < 0.001) between CBV–CBF/TPP lesion volume on GT and
CNN maps for both raters (Table 2).

Bland–Altman analysis displays good agreement between the
CNN proposed method and the GT in estimating hypo-perfused
regions on CTP maps (Figure 7); CR for Rater 1 and Rater 2 were
19.9–17.7 and 20.9–18.4.
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FIGURE 3

Core segmented on CNN CBV map (A); core segmented on GT CBV map (B); and the difference between the two maps (C).

TABLE 1 Threefold cross-validation results for CBV, CBF, and TTP.

Metric MSE train folds MSE validation fold

CBV Split 1 0.010 0.010

Split 2 0.009 0.014

Split 3 0.010 0.009

Average 0.010± 0.001 0.011± 0.003

CBF Split 1 0.012 0.010

Split 2 0.011 0.015

Split 3 0.011 0.014

Average 0.012± 0.001 0.013± 0.002

TTP Split 1 0.015 0.044

Split 2 0.019 0.037

Split 3 0.017 0.024

Average 0.017± 0.002 0.035± 0.010

Resulting MSE for CBV, CBF, and TTP CNN maps.

Mean absolute volume differences across the ischemic core
from different observers and the GT were 1.20 ± 2.31 cm3 (Rater
1) and 2.27 ± 5.44 cm3 while mean volume differences for the
whole hypo-perfused region were 9.37 ± 4.84 cm3 (Rater 1) and
8.52± 6.49 cm3 (Rater 2).

4. Discussion

The study demonstrated that parametric maps generated by
our CNN-based approach are comparable to maps resulting from
a state-of-the-art CTP NLR algorithm when working on pre-
processed images.

There is a high DSC and strong linear correlation between CNN
and GT segmented volumes.

The performance of the CNN at estimating ischemic core and
penumbra is comparable to a state-of-the-art CTP NLR algorithm
without additional inputs such as AIF or VOF.

4.1. Is AIF selection mandatory?

To precisely estimate perfusion parameters, the proposed CNN
requires only registered CT scans, while deconvolution-based
CT and MRI brain perfusion analysis methods need additional
inputs, such as the AIF curve measured in a large feeding artery
(Fieselmann et al., 2011). This suggests that our CNN is capable
of combining information from arterial and tissue density to
obtain quantitative estimates for the CBV, CBF, and MTT. On the
other hand, other recent automated CTP analysis methods such
as RAPID (Campbell et al., 2015), use AIF and the venous output
function (VOF) from a major venous system to compute perfusion
parameters and subsequently estimate ischemic core and penumbra
(Laughlin et al., 2019).

In a model developed by Hess et al. (2018) the performance
of the CNN in regressing the Tmax parameter on DSC-MRI
perfusion imaging increases with the addition of bolus information.
Future regression of the Tmax using our CNN could show if the
assumption made by Hess et al. (2018) for MRI perfusion imaging
also extend to CTP.

4.2. Translation to a general population

The CTP datasets were obtained from a population of patients
eligible for reperfusion therapy, with limited or no hypodense
lesions on non-contrast CT.

Such a population was targeted to simulate the clinical setting
where CTP is a key parameter for clinical decisions: when the time
of onset is not known, CTP allows to effectively select patients for
treatment, as shown in DAWN and DEFUSE-3 trials (Albers et al.,
2018; Nogueira et al., 2018). Our method shows a highly accurate
performance on patients with no vessel occlusion on CTA and
normal CTP parameters on GT maps, therefore suggesting that our
CNN-based approach can yield highly reliable results even within
the general population. Moreover, hypodense lesions may mark an
ischemic core on CTP; this can introduce additional information
to be exploited by our CNN-based approach without additionally
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FIGURE 4

Train and validation curves for the threefold cross-validation results on CBV (A,B), CBF (C,D), and TTP (E,F).

estimating the tissue-curve offset, as required by deconvolution-
based algorithms.

4.3. Limitations

The CNN was tested on a high dose/signal-to-noise ratio (SNR)
dataset with limited axial coverage, thus an application to noisier
datasets is required for a complete comparison with state-of-the-
art techniques. Moreover, in order to confirm its robustness, our
approach should undergo further testing on a larger population
sample and use the latest CTP protocols from different scanners.

4.4. Applications and developments

Considering the highly similar performance of CNNs and
deconvolution-based algorithms, one might ask why the former
approach might be preferable. ML algorithms have been largely
proven to overcome conventional image processing algorithms
in practically every field [segmentation (Zhou et al., 2017;
Clèrigues et al., 2019; Kloenne et al., 2020), noise reduction (Chen

et al., 2017; Xiao et al., 2019; Kloenne et al., 2020; Dashtbani
Moghari et al., 2021a), novelty detection (Chen et al., 2017;
Zhang et al., 2019), radiation dose reduction (Chen et al., 2017;
Dashtbani Moghari et al., 2021b; Li et al., 2021a)] and in recent
years its use is expanding also to CTP and MRI perfusion
imaging. In particular, the generation of synthetic maps using
ML approaches has been performed with MRI DSC perfusion
by Ho et al. (2016) and Meier et al. (2019). Meier et al. (2019)
obtained results similar to ours: they compared the performance
of a commercial FDA-approved perfusion software and a CNN not
only to generate Tmax MRI perfusion maps, but also to identify
selection criteria for reperfusion therapies. They concluded that
CNN-based approaches may lead to greater standardization, a
faster analysis pipeline, and increased robustness (Meier et al.,
2019). Ho et al. (2016), instead, estimated voxel-wise MRI
perfusion parameters using a deep learning approach exploiting
the concentration time curve and AIF as inputs. Their approach,
however, proved to be time-consuming and thus not ideal for
clinical practice.

de la Rosa et al. (2021) developed a novel supervised CNN
designed for estimating vascular function (AIF and VOF) in
perfusion imaging, which showed improved CTP results when
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FIGURE 5

Test sample ischemic core segmentation volumes from Rater 1 (R1), Rater 2 (R2), GT 1 and GT 2.

FIGURE 6

Test sample CBF/TTP segmentation volumes from Rater 1 (R1), Rater 2 (R2), GT 1 and GT 2.
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TABLE 2 Average DSC and lesion volumes Pearson correlations.

DSC and Pearson correlation CBV CBF/TTP

Rater 1/GT 1 (DSC) 0.82± 0.07 0.85± 0.07

Rater 2/GT 1 (DSC) 0.79± 0.05 0.83± 0.09

Rater 1/GT 2 (DSC) 0.81± 0.07 0.84± 0.05

Rater 2/GT 2 (DSC) 0.80± 0.06 0.82± 0.07

Rater 1/Rater 2 (DSC) 0.85± 0.10 0.87± 0.06

GT1/GT 2 (DSC) 0.86± 0.05 0.85± 0.07

Rater 1/GT 1 Pearson r 0.99 0.98

Rater 2/GT 1 Pearson r 0.99 0.99

Rater 1/GT 2 Pearson r 0.98 0.99

Rater 2/GT 2 Pearson r 0.99 0.99

Resulting DSC of CBV and CBF/TTP segmentation expressed as mean and SD; Pearson
correlation between CBV-CBF/TTP volumes on GT and CNN maps.

combined with traditional deconvolution algorithms. Their CNN
used CTP 4D CTP data as inputs to generate the AIF and VOF
curve associated with a probability map showing the voxel-wise
contribution to the estimated parameters (de la Rosa et al., 2021).

In the ISLES-2018, challenges Song was ranked first using a
deep learning method based on a U-Net architecture to produce
synthetic diffusion-weighted imaging (DWI) images by combining
information from CTP raw data and post-processed parametric
maps. The CNN-derived DWI images were compared to the DWI
GT using a discriminator to determine whether the presented
image was synthetic or not. The information useful to determine
the origin of the DWI maps were fed back into the deep-learning
algorithm to improve the prediction of the synthetic DWI images
(Hakim et al., 2021).

In a recent study Kuang et al. (2020) developed a ML
model based on a random forest classifier to predict ischemic
tissue probability in each voxel. They combined different CTP
parameters with specific clinical time variables (onset to imaging
and imaging to reperfusion). Their threshold-free model proved to
perform better than the current clinically used method with fixed
thresholding (Kuang et al., 2020). Similarly, Robben et al. (2019)
showed that a deep learning approach using in combination native
CTP images with metadata such as time parameters and treatment
outcome was able to effectively predict the final infarct probability.

In their work, Dolz et al. (2018) propose a “multipath dense
U-Net,” where the connectivity with respect to the original
architecture is enhanced on the encoder side. In this work, the
model takes as input the perfusion maps (in particular, CBV, CTP,
DWT, and MTT) and outputs the segmentation of the infarcted
tissue. Besides, architecture is further modified by introducing
inception modules in the encoder.

Segmentation of ischemic stroke lesions from MRI imaging is
the task tackled by Kadry et al. (2021). Leveraging the ISLES 2015
database, a U-Net architecture is trained to learn and extract the
segmentation of the ischemic stroke lesions. Differently from the
original U-Net architecture, the authors leverage over the VGG-
11 backbone having on the encoder side 32, 64,128, 256, and 512
filters in the various depth stages (which are then mirrored in the
decoder).

Very recently, Li et al. (2021b) have proposed a multi-scale
U-Net model for ischemic stroke lesion segmentation. The authors
here combine multiple convolution kernel sizes in the same layer,
similarly to inception modules and as seen in the work from
Dolz et al. (2018), but they also introduce the knowledge of
dilated convolution which allows for extracting non-strictly local
information.

FIGURE 7

Bland–Altman plots showing agreement between total hypo-perfuse volume measurements derived from CNN and GT maps for Rater 1 (A,B) and
Rater 2 (C,D).
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In order to assess performance on segmentation of ischemic
stroke lesions, Pinheiro et al. (2019) provided an extensive study
on many configurations of U-Net and V-Nets, applied to relatively
small datasets of MRI and CT images. The authors showed that
deeper U-Nets perform better than shallow ones, and that including
CT modality improves the results. Finally, they showed that
employing perfusion maps yields much better results than using
raw perfusion data alone.

In our work, we leverage the key messages from Pinheiro et al.
(2019) to focus on the following question: can a neural network
model produce perfusion maps that allow for a more accurate
segmentation afterward? To answer this question, we cannot base
our work on the existing literature, which has employed the U-Net
model as a black box to extract the segmentation of the ischemic
lesion from the raw perfusion or from the already-processed maps.
Instead of using the U-Net model to solve the segmentation
problem, we employ it to solve the regression problem of matching
the perfusion maps. These contain the information needed by the
medical expert to predict the extension of the ischemic lesion.

5. Conclusion

The proposed CNN-based method generated informative, AIF-
independent perfusion maps of patients with AIS, approximating
perfusion mismatch in brain tissues very well. Our ML model
performed similarly to the state-of-the-art NLR perfusion analysis
methods used as GT in estimating CBF, CBV, and TTP
parametric maps.

More frequent use of ML methods for perfusion analysis can
lead to the reduction of data inputs needed for perfusion mismatch
prediction and therefore to a smaller radiation dose for the patients.
In the near future, combining different ML approaches to CTP
analysis and integrating clinical parameters in the model, has the
potential to bring new improved standards in terms of acquisition
protocols and ischemic core prediction.
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