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The main olfactory bulb is the key element of the olfactory pathway of 
rodents. To precisely dissect the neural pathway in the main olfactory bulb 
(MOB), it is necessary to construct the three-dimensional morphologies of 
the anatomical structures within it with micro-level resolution. However, 
the construction remains challenging due to the complicated shape of the 
anatomical structures in the main olfactory bulb and the high resolution of 
micro-optical images. To address these issues, we propose an interactive 
volume image segmentation method with micro-level resolution in the 
horizontal and axial direction. Firstly, we obtain the initial location of the 
anatomical structures by manual annotation and design a patch-based 
neural network to learn the complex texture feature of the anatomical 
structures. Then we  randomly sample some patches to predict by the 
trained network and perform an annotation reconstruction based on 
intensity calculation to get the final location results of the anatomical 
structures. Our experiments were conducted using Nissl-stained brain 
images acquired by the Micro-optical sectioning tomography (MOST) 
system. Our method achieved a mean dice similarity coefficient (DSC) of 
81.8% and obtain the best segmentation performance. At the same time, 
the experiment shows the three-dimensional morphology reconstruction 
results of the anatomical structures in the main olfactory bulb are smooth 
and consistent with their natural shapes, which addresses the possibility 
of constructing three-dimensional morphologies of the anatomical 
structures in the whole brain.
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1 Introduction

The olfactory sensation is highly significant for rodents, which 
involves the recognition of predators and foods, the formation of 
memories, and the adjustment of reproducing and feeding behaviors 
(Ashwell, 2012). The olfactory system of rodents comprises several 
brain regions, in which the most rostrally located main olfactory bulb 
(MOB) plays an important role in connecting the olfactory epithelium 
of the nasal cavity, and downstream higher functional areas, such as 
olfactory tubercle, piriform area, and entorhinal cortex (Luo, 2015).

Within MOB, the olfactory pathway is topologically organized 
with single-cell resolution. The glomeruli, which are generally globular 
with 40–189 μm in diameter, and which are located in the glomerular 
layer of MOB (GL), are the key elements integrating and dispatching 
the olfactory information of the pathway (Royet et al., 1988; Ashwell, 
2012). Every glomerulus gathers the 1 μm or thinner axons emitted 
from the olfactory receptor neurons (ORN) widely distributed on the 
olfactory epithelium that expresses the same receptor (Royet 
et al., 1988).

Therefore, to precisely dissect the olfactory pathway in MOB, the 
projection route and target of which should be located with single-cell 
resolution, thus urging to create a map that contains the precise three-
dimensional morphologies of the anatomical structures in MOB with 
10 to even 1 μm spatial resolution.

However, to the best of our knowledge, there are no studies of 
three-dimensional reconstruction with such high spatial resolution. 
This is because the shapes of anatomical structures in MOB are so 
complicated that the normal image acquisition techniques are not 
capable of completely resolving them. Giving the mitral layer of MOB 
(ML) as an example, this circular layer extends as broad as 140 μm 
range, while the narrowest part of which is only 5 μm wide, 
approximating to the diameter of single neuron soma (Quan et al., 
2013). Nevertheless, the spatial resolution of MRI techniques is 
generally hundreds of microns per pixel, thus being unable to obtain 
the morphological details of ML; traditional optical imaging 
techniques can reach micron or even sub-micron resolution in 
horizontal direction though, the axial resolution of which is still 
limited to tens or hundreds of microns per level, resulting in providing 
insufficient information for reconstructing precise and intact volumes 
of these anatomical structures in MOB as well (Hess et al., 2018).

Recently developed micro-optical imaging techniques are capable 
of obtaining cytoarchitectural images with micron resolution in both 
horizontal and axial directions. However, technical challenges still 
exist in recognizing the boundaries of MOB anatomical structures 
from such images and reconstructing their three-dimensional 
morphologies (Li et al., 2010; Gong et al., 2013; Yuan et al., 2015). Due 
to the large size of micro-optical images and the complex features of 
anatomical structure, it is unrealistic to directly apply the successful 
segmentation methods in MRI to micro-optical images (Feng 
et al., 2016).

Given the gap, some researchers tried to use statistical-based 
segmentation to identify the distribution of the cells or other 
indicators to determine the boundaries of nuclei (Mesejo et al., 2013). 
However, the validity of those methods depends on the accuracy of 
the cell detection procedure, which itself is a challenging issue. There 
are also some works (Xu et al., 2020) on end-to-end segmentation by 
constructing a traditional segmentation model which is sensitive to 
parameter settings.

Similarly, some researchers also introduce deep learning to the 
segmentation framework of micro-optical images. Chen et al. (2019) 
trained a classifier to learn various cytoarchitectural properties, 
which was then combined with certain registration techniques to 
locate the nuclei in the brainstem. This method determines the initial 
location of the nuclei by a few manually labeled data, which is prone 
to manual error. Some researchers (Wang et al., 2021; Qu et al., 2022) 
build fully convolutional neural networks based on U-Net 
(Ronneberger et al., 2015) or DeepLabV3+ (Chen et al., 2018) to 
coarsely segment brain regions with large volumes. Zhang et  al. 
(2019) used a one-shot learning strategy that took both the atlas and 
the images as the input of the fully convolutional neural network, 
which solved the problem of lack of labeled training data. Li et al. 
(2023) addressed a multiview semi-supervised segmentation network 
to accurately segment brain regions with several annotated brains. 
With the development of the vision image transformer (Dosovitskiy 
et al., 2020), some larger networks, like TransUNet (Chen et al., 2021) 
and Swin-Unet (Cao et al., 2021), were applied to medical images and 
addressed competitive performance. However, these methods take 
the downsampled images as the input of the fully convolutional 
neural network due to the limited computing power and acquire 
rough segmentation results with low resolution which lacks details 
and is inaccurate.

Here, we  proposed an interactive volume image segmentation 
framework for segmenting anatomical structures with micro-level 
resolution in the horizontal and axial direction. The proposed method is 
constructed by combining manual annotation and automatic 
segmentation. The sparse manual annotation provides both the training 
data and the localization of anatomical structures to be segmented, while 
the neural network automatically segments the rest slices to construct a 
dense annotation. A patch strategy with an annotation reconstruction 
process is applied to learn the precise features of the images with fast 
inference time. The accuracy of our method was 81.8% evaluated by 
DSC, which was higher than other methods. The average time cost for 
segmenting multi-target areas on every coronal slice with 1 μm/pixel 
resolution was within 4 min, which was remarkably fast. In this article, 
we addressed a patch-based neural network and a novel post-processing 
strategy to recognize anatomical structures in micro-optical images with 
super-high resolution. To the best of our knowledge, we reconstructed 
the three-dimensional morphologies of the anatomical structures in the 
MOB of the mouse brain with both the axial and horizontal resolution 
of 1 μm/pixel for the first time. The method proposed in this article may 
provide insight into precise and fast segmentation of anatomical 
structures with micro-level resolution.

2 Materials and methods

2.1 Framework

The proposed interactive segmentation framework can be divided 
into two parts: the training and predicting part, as shown in Figure 1. 
The training part contains initial localization and the training of the 
patch-based convolutional neural network (CNN). To obtain the 
training data and initial location of the anatomical structures, we first 
select some olfactory bulb slices at equal intervals on the original 
image as training slices, and manually annotate the anatomical 
structures in the training slices as training annotations. Then, 
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we extract patches from the training slices and train a patch-based 
CNN to learn the precise local texture features of different structures. 
The predicting part mainly includes predicting data extraction, CNN 
prediction, and annotation reconstruction. Excluding the training 
slices, the remaining slices are used as predicting slices. Since the 
massive computation of classifying each pixel, we randomly extract 
patches from the predicting slices and send them to the trained 
model for prediction. Then we reconstruct the pixel-level predicting 
annotations after post-processing. Finally, the final segmentation 

results of anatomical structures are composed of the training 
annotations and the predicting annotations.

2.2 Initial localization

Note that it is challenging to locate the region of interest in the 
micro-optical images with high resolution, we manually annotate some 
olfactory bulb slices at intervals to initially locate the anatomical 

FIGURE 1

The framework of the segmentation method. (A) The training phase of the segmentation method. (B) The predicting phase of the segmentation 
method. (a) The patch extraction process of the predicting phase. (b) The post processing of the predicting phase. (c) The CNN predicting part of the 
predicting phase.
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structures. Firstly, we select a olfactory bulb slice at interval n on the 
original image containing c (c ≥ 1) anatomical structures and obtain p 
(p < =100) olfactory bulb slices as training slices (TC, TC = {TC1, TC2, …, 
TCp}), while other olfactory bulb slices are used as the predicting slices 
(PC, PC = {PC1, PC2, …, PCnp-n}). Then we  annotate the anatomical 
structures in TC, and get the training annotation. Each anatomical 
structure in the training annotation is assigned a specific one-hot label.

Traversing training annotation, we separate the foreground area 
that contains all anatomical structures through binarization, and 
perform morphological expansion operation on the binarized 
foreground area, then we get the initial foreground area corresponding 
to TCi. After locating the anatomical structures in TC, we use the 
nearest neighbor method to interpolate n images between TCi and 
TCi + 1 in turn, and the interpolated images are used as the initial 
foreground area of each olfactory bulb slice between PCni and PCni + n. 
The initial location of the anatomical structures is composed of the 
initial foreground area in TC and PC.

2.3 Training of neural network

Compared to the fully convolutional neural network which 
focuses on the global information in images with low resolution, 
we build a patch-based neural network modified by InceptionV3 
(Szegedy et  al. 2016) to learn the texture information of each 
anatomical structure (Figure 2). The number of the output nodes in 
the last fully-connected layer is the same as the number of anatomical 
structures to be segmented, and the dropout (Hinton et al., 2012) is 
also added in front of the fully-connected layer to prevent overfitting. 
To reduce the amount of training parameters and the cost of training 
time, the input image of the InceptionV3 network is downsampled to 
a resolution of 100 × 100 pixel2 and normalized.

For the training data, we randomly select m patches with the size 
of p × p in the foreground area of each slice, and record the labels of 
the center points of these patches in the corresponding annotation. 
70% of the m data are used as training patches, and 30% are used as 
validating patches. After training, we obtain the trained model which 
is capable of classifying 10 regions such as GL; the external plexiform 

layer of MOB (EPL); ML; the inner plexiform layer of MOB (IPL); the 
granule cell layer of MOB (GCL); the accessory olfactory bulb (AOB); 
the anterior olfactory nucleus (AON); the subependymal zone (SEZ); 
the anterior commissure, olfactory limb (aco); and the lateral olfactory 
tract, general (lotg).

2.4 Annotation reconstruction

In general, the network should predict every pixel in the slices to 
obtain the segmentation results, but the high resolution of the micro-
optical images makes it time-consuming. Therefore, we randomly 
sample some patches to predict and reconstruct the predicting 
annotation. According to the initial location of the anatomical 
structures, we selected m patches with the size of p × p on PCi as the 
predicting patches of PCi. Repeating the above operations on PC, 
we get the predicting patch set.

For PCi, we construct a corresponding sparse map (SM) with c 
channels, while each channel corresponds to the probability that each 
pixel on PCi belongs to the corresponding anatomical structure of this 
channel. We traverse each patch in the predicting patch set and record 
the coordinates of its center point. Then we send each patch into the 
trained model and get a c-bit one-hot label. Each bit of the one-hot 
label corresponds to the probability that the center point of each patch 
belongs to a given anatomical structure. We fill the obtained c-bit 
one-hot codes into their corresponding pixels of the SM according to 
the recorded coordinates and finally obtain the SM with c channels 
which can be calculated by following formula:

 SM , OneHot M PC , ,x y x y pi( ) = ( )( )( )  (1)

where x and y are the coordinates of the center point in PCi, p is 
the patch size, M is the trained model, OneHot •( ) converts the 
output of M to the c-bit one-hot label, and PC , ,i x y p( )  is the 
corresponding predicting patch.

Next, we  calculated the signal density on the channel of SM 
corresponding to the anatomical structure t. The signal density 

FIGURE 2

Architecture of the patch-based neural network modified by InceptionV3.
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calculation means using a 50 × 50 pixel2 window to scan each pixel. 
We calculate the average gray value of all pixels within the window, 
which illustrates the confidence that the center pixel belongs to the 
anatomical structure t. Repeat the above calculation to obtain the 
confidence map of each channel. Lastly, we compare the confidence 
of each pixel among different channels and determine the anatomical 
structure to which the pixel belongs by choosing the identifier 
number of the channel with the highest confidence value, thus 
obtaining a rough segmentation result (RR) which can be calculated 
by following formula:

 
RR , Softmax SM ,x y x i y j

i j
( ) = + +( )











=− =−

∑ ∑
25

25

25

25

 
(2)

where Softmax •( )  calculates the class with the highest confidence.
Since some anatomical structures in the rough segmentation 

result consist of multiple small-area connected domains which are 
usually false positive results, we  also perform post-processing to 
further optimize the rough segmentation result. The post-processing 
is to redistribute the connected domains of each anatomical structure 
in the rough segmentation result and appoint the false positive 
connected domains with smaller areas to their closest anatomical 
structure to obtain a more precise prediction annotation.

Finally, through iterative predicting of PC, the predicting 
annotations is obtained. Since the original image is composed of TC 
and PC, the segmentation result of the original image, is composed of 
the predicting annotations and the training annotations according to 
the order of the olfactory bulb slices in S.

2.5 Quantitative evaluation

To quantitatively evaluate the segmentation performance of our 
method, we apply the dice similarity coefficient (DSC), which is a 
popular metric for medical image segmentation evaluation to score 
the similarity between predicted segmentation and ground truth 
(Müller et al., 2022). Since the segmentation performance is related to 
the accuracy of the classifying network, precision, and recall are also 
added. Precision indicates the model’s capability to detect the 
background class in an image, while recall evaluates the capabilities 
for correctly identifying true negative classes (Müller et al., 2022). 
These metrics are calculated as follows:

 
DSC A B

A B
,( ) = × ∩

+
2 | |
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A B
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B
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(5)

Here for each anatomical structure, A and B represent the binary 
images with automatically segmented results and ground truth 

respectively, | |A  and | |B  represent the total number of pixels with 
a value of 1 in the binary image, and | |A B∩  represents the total 
number of pixels with a value of 1 in both A and B.

2.6 Data preparation

For the experiment data, we used the Nissl-stained brain images 
from C57BL/6 J adult mice acquired by the Micro-optical sectioning 
tomography (MOST) system (Li et al., 2010). The mice were 8-week-
old males, and the original resolution of the obtained image dataset 
was 0.32 μm in the horizontal direction and 1 μm in the coronal and 
axial direction. We  downsampled the dataset in the horizontal 
direction to a resolution of 1 μm (11,400 × 9,000 × 13,200 pixel3) to 
ensure the speed of segmentation.

2.7 Test environment

The experimental environment of this method consists of one 
GPU server, which is equipped with four NVIDIA V100 GPU cards, 
a 12-core CPU (Intel Xeon-6126w × 2), and 192 GB memory. The 
software resources of this method are listed in Table 1.

3 Results

3.1 Performance

To train the neural network, the batch size of our model was set 
as 100, the epoch was 50, the applied optimizer was Adam optimizer 
(Kingma and Ba, 2014), and the learning rate was 1e−4. Also, an early 
stopping strategy was adopted to prevent overfitting which would stop 
training if the validation loss did not decrease within five epochs. The 
learning rate planning strategy was applied so that the learning rate 
would be reduced by half for every five epochs.

To evaluate the performance of our method, we  selected 10 
anatomical structures in the olfactory area as the target to 
be segmented. Our data consisted of 13,200 coronal slices, 2,900 of 
which contained the olfactory areas. So we  selected these 2,900 
coronal slices as S in which 29 coronal slices were further selected at 
100 μm intervals as TC, while the remaining ones formed PC. We got 
TA by manually annotating in TC and randomly selected 220,000 
training patches as TP. We used TP to train the designed CNN and got 
a model T to segment PC. To evaluate the performance of our method, 
14 coronal slices were selected as test slices. The ground truth of target 
anatomical structures in test slices was labeled by three experts.

TABLE 1 Software resources.

Software Link

PyTorch v.1.7.0 https://pytorch.org/

Keras v.2.6.0 https://keras.io/

PyCharm v.2021.2 https://www.jetbrains.com/

Anaconda v.5.2.0 https://www.anaconda.com/

Python v.3.6.5 https://www.python.org/
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Figure 3 shows the segmentation results of our method for all 
anatomical structures in the olfactory area. It can be seen from the 
figure that the real shape of each anatomical structure is completely 
preserved. Additionally, from the enlarged view, we can see that the 
segmented boundaries are very close to the natural boundaries between 
neighboring anatomical structures. Figure 4 shows the segmentation 
results of specific anatomical structures on consecutive coronal slices. 
The morphological changes of four anatomical structures along the 
axial direction can be seen from this figure, which also proves that our 
method can still obtain better segmentation results even if the 
morphology of the target structure varies sharply along coronal slices.

Since our method segments the boundaries of anatomical 
structures on 2D images, while the anatomical structures are three-
dimensional objects, it is necessary to verify the continuity of the 
segmented boundaries along the axial direction. Figure 5 shows the 
three-dimensional reconstruction of the target anatomical structures 
and their reslices on sagittal and horizontal planes. The reconstructed 
surfaces of the three anatomical structures are smooth, and are 
consistent with their natural shapes as well, which demonstrates the 

segmented contour of each anatomical structure by our method is also 
continuous in the axial direction.

In addition, we quantitatively evaluated the segmentation results 
of the anatomical structures in the olfactory area on 14 test slices. 
We calculated the similarity between the segmentation results and the 
ground truth of the anatomical structures. Figure 6A shows the DSC, 
precision, and recall of the segmentation of each anatomical structure. 
The DSC of most anatomical structures exceeds 0.7, the precision and 
recall exceed 0.8, and these three indices of some anatomical structures 
such as GCL and EPL, even exceed 0.9. Figure 6B shows a box plot of 
the DSC for each anatomical structure. The average DSC of 10 
anatomical structures is higher than 0.8. Even for IPL which has a 
slender and complex shape, the average DSC is also higher than 0.6.

3.2 Comparison with other methods

In this section, we compared our method with other segmentation 
methods, including DeepLabV3 (Chen et  al., 2018), U-Net, and 

FIGURE 3

Segmentation results of anatomical structures in olfactory areas. The first column is the original image, the second column to the fourth column are 
the ground truths, the segmentation results, the superimposed image of the segmentation results and the original image, and the enlarged view of the 
red box in the superimposed image. Different colors represent different anatomical structures. Cornflower blue: GL, Lime green: EPL, Indian red: ML, 
Medium turquoise: IPL, Deep pink: GCL, Yellow: AOB, Cyan: AON, Blue: SEZ, Dark sea green: aco, and Green: lotg.
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TransUNet. 29 coronal slices were used as TC and 14 coronal slices as 
test slices. Due to the large size of the slice, the input and output of 
DeepLabV3, U-Net, and TransUNet were both the sampled patches. 
Specifically, the input size of these three models were both 512 × 512 
pixel2 constraint by the capacity of GPU memory. Figure 7 shows the 
segmented boundaries of target structures by all the methods. The first 
column is the original images, and the last five columns are the 
segmentation results of different methods and the ground truths. 
We can see that there are some problems in the segmentation results of 
the compared methods, such as irregular shapes, unsmooth boundaries, 
and wrong locations of anatomical structures. However, our method not 
only acquires accurate boundaries but also gets the most similar shapes 
and locations to the ground truths, which proves that our method can 
be well applied to segmentation task of the anatomical structures.

Furthermore, we quantitatively compare the segmentation results 
of different methods. Table 2 shows the DSC, precision, and recall of 
the four methods, each value shown in this table is the average of the 
performance on 10 anatomical structures. It can be concluded that our 
method obtains the highest scores.

3.3 Selection of receptive field and 
sampling number

The receptive field is a crucial factor that can affect the 
segmentation performance. In the convolutional neural network, the 

size of the receptive field changes with the input size. The patch with 
a large receptive field contains not only the texture characteristics of 
the anatomical structures but also the relative position information 
among their neighboring anatomical structures. However, an 
excessively large receptive field will lead to a decrease in the 
discrepancy among adjacent patches, resulting in low-efficient 
recognition capacity and inaccurate segmentation boundaries. To find 
the best receptive field size, we  consecutively set seven different 
receptive fields of our network. As can be seen from Figure 8A, with 
the increasing of the receptive field, the segmentation performance 
improves continuously, until the receptive field reaches the peak when 
the receptive field is 800 × 800 pixel2. When the receptive field 
continues to increase, the segmentation performance begins to 
decrease slowly, so we  finally set the receptive field of our neural 
network to 800 × 800 pixel2.

The number of sampling patches is also an important parameter. 
Due to the high resolution of our original images, only part of all 
extracted patches will be selected for prediction. The more patches are, 
the more accurate the segmentation result will be, but also more time 
cost will be required. We select six different patch numbers for testing 
the best patch number. As can be  seen from Figure  8B, with the 
increase of the patch number, the segmentation performance also 
improves. However, when the average DSC increases to about 0.8, it 
converges gradually to a constant, but the time cost for prediction still 
increases linearly. Therefore, we  choose 100,000 as the best patch 
number which decreases the predicting time per slice in 4 min.

FIGURE 4

Localization results of different anatomical structures on different olfactory bulb slices. Different colors represent different anatomical structures. Royal 
blue: GL, Pale turquoise: IPL, Medium orchid: SEZ, and Spring green: AON.
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4 Discussion

In this paper, we  propose an interactive volume image 
segmentation framework for the anatomical structures with micro-
level resolution in the horizontal and axial direction. Firstly, we get 
the manual annotation with interval, and then use the patch-based 
convolution neural network to learn the texture features of each 
anatomical structure, and to classify the pixels in the image. Finally, 

TABLE 2 Performance evaluation of different methods.

Method DSC Precision Recall

DeepLabV3 0.752 ± 0.081 0.848 ± 0.044 0.855 ± 0.075

U-Net 0.763 ± 0.083 0.878 ± 0.050 0.850 ± 0.070

TransUNet 0.672 ± 0.174 0.809 ± 0.079 0.768 ± 0.182

Our methods 0.818 ± 0.072 0.886 ± 0.058 0.913 ± 0.041

The bold values means the highest metrics of different methods.

FIGURE 5

(A) The anterior and lateral view of 3D reconstruction results for ML, GCL, SEZ, and AOB. (B) The reslices of segmentation results in coronal, sagittal, 
and horizontal planes. Different colors represent different anatomical structures. Cyan: ML, Green: GCL, Medium orchid: SEZ, and Yellow: AOB.

FIGURE 6

(A) Quantitative performance of different anatomical structures. (B) DSC box plot of different anatomical structures.
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the precise reconstruction is performed by the density calculation 
and post-processing. Our method can segment multiple anatomical 
structures simultaneously through one network, and the 

segmentation results have high accuracy while the morphology of the 
anatomical structures can be preserved. Compared with DeepLabV3, 
U-Net, and TransUNet, our method can achieve higher accuracy.

FIGURE 7

Segmentation results of different methods. The first column is the original image, and the second column to the fifth column is the segmentation 
results of DeepLabV3, U-Net, TransUNet, and our method. The last column is the ground truth of segmentation. Different colors represent different 
anatomical structures. Cornflower blue: GL, Lime green: EPL, Indian red: ML, Medium turquoise: IPL, Deep pink: GCL, Yellow: AOB, Cyan: AON, Blue: 
SEZ, Dark sea green: aco, and Green: lotg.

FIGURE 8

(A) Segmentation performance of different receptive fields; (B) DSC and predicting time of different patch number.
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We showed the two-dimensional segmentation results and three-
dimensional reconstruction results of the anatomical structures in 
MOB, which were the same as the natural morphology of the 
anatomical structures. Even if the interval between the manually 
annotated slices was large, the segmentation results obtained still had 
good continuity in the axial direction, which was very suitable for the 
accurate localization of the anatomical structures. The accuracy of our 
method is not affected by individual variations due to the combination 
of human involvement. Since the reliable results on MOB in this 
article, we believe that our method has the potential to be the basis of 
a user-interactive annotating tool, assisting in illustrating the brain 
atlas and other anatomical structures annotating tasks in the future.

Nevertheless, there still needs further improvement in our 
approach. Our method needs manual annotation, which is difficult for 
people without anatomy knowledge. Also, although the existing 
methods can segment a coronal slice in 4 min, due to the large size of 
the whole brain image set, a faster method is still needed for large-
scale processing in the future. Therefore, our future work is to build 
an automatic and faster segmentation framework of 
anatomical structures.
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