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Background: Mechanical thrombectomy (MT) is effective for acute ischemic 
stroke with large vessel occlusion (AIS-LVO) within an extended therapeutic 
window. However, successful reperfusion does not guarantee positive prognosis, 
with around 40–50% of cases yielding favorable outcomes. Preoperative 
prediction of patient outcomes is essential to identify those who may benefit from 
MT. Although machine learning (ML) has shown promise in handling variables 
with non-linear relationships in prediction models, its “black box” nature and the 
absence of ML models for extended-window MT prognosis remain limitations.

Objective: This study aimed to establish and select the optimal model for 
predicting extended-window MT outcomes, with the Shapley additive explanation 
(SHAP) approach used to enhance the interpretability of the selected model.

Methods: A retrospective analysis was conducted on 260 AIS-LVO patients 
undergoing extended-window MT. Selected patients were allocated into training 
and test sets at a 3:1 ratio following inclusion and exclusion criteria. Four ML 
classifiers and one logistic regression (Logit) model were constructed using pre-
treatment variables from the training set. The optimal model was selected through 
comparative validation, with key features interpreted using the SHAP approach. 
The effectiveness of the chosen model was further evaluated using the test set.

Results: Of the 212 selected patients, 159 comprised the training and 53 the test 
sets. Extreme gradient boosting (XGBoost) showed the highest discrimination 
with an area under the curve (AUC) of 0.93 during validation, and maintained 
an AUC of 0.77 during testing. SHAP analysis identified ischemic core volume, 
baseline NHISS score, ischemic penumbra volume, ASPECTS, and patient age as 
the top five determinants of outcome prediction.

Conclusion: XGBoost emerged as the most effective for predicting the prognosis 
of AIS-LVO patients undergoing MT within the extended therapeutic window. 
SHAP interpretation improved its clinical confidence, paving the way for ML in 
clinical decision-making.
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Introduction

Mechanical Thrombectomy (MT) has established its efficacy as a 
primary treatment for acute ischemic stroke with large vessel 
occlusion (AIS-LVO), providing substantial benefits, especially within 
the initial 6-h therapeutic window (Wahlgren et al., 2016; Bhan et al., 
2020). However, a significant proportion of AIS-LVO patients, 
estimated to be  approximately 30–40%, present to care facilities 
beyond this traditional window, specifically between 6 and 24 h from 
symptom onset (Jadhav et al., 2018; Gunda et al., 2021). While the 
DEFUSE 3 (Endovascular therapy following imaging evaluation for 
ischemic stroke 3) and DAWN (Diffusion-weighted imaging or 
computerized tomography perfusion assessment with clinical 
mismatch in the triage of wake up and late presenting strokes 
undergoing neurointervention with Trevo) trials have indicated the 
potential benefits of MT in this extended time window, they also 
highlighted the variability in outcomes (Jabal et al., 2023; Zhan et al., 
2023), with beneficial functional outcomes at 90 days observed in 
roughly 45 and 49% of patients, respectively (Albers et  al., 2018; 
Nogueira et  al., 2018). This variation in outcomes suggests that 
successful reperfusion does not guarantee favorable recovery for a 
significant proportion of patients undergoing MT (Campbell et al., 
2015). Hence, it necessitates the development of precise and time-
efficient risk assessment tools to optimize patient selection, hence 
enhancing outcomes of those most likely to benefit from extended-
window MT.

The intricate clinical and imaging biomarkers, along with their 
indirect, combined, or complex effects, present a significant challenge 
for traditional prediction models, such as logistic regression (Logit), 
which often struggle to capture the non-linear relationships between 
diverse prognostic factors (Drozdowska et al., 2019). Machine learning 
(ML) has emerged as a promising tool to handle high dimensional 
data and identify complex interactions among variables, and it holds 
great potential in optimizing outcome prediction models (Obermeyer 
and Emanuel, 2016). In particular, ML models that integrate various 
types of clinical and imaging features have shown potential in 
providing immediate prognostic information in time-sensitive 
situations such as acute stroke, thus supporting critical decision-
making processes (Xie et  al., 2019; Brugnara et  al., 2020; Jiang 
et al., 2021).

However, research into utilizing ML for predicting the outcomes 
of extended-window MT in AIS-LVO patients remains limited. These 
complex clinical scenarios, with numerous interrelated clinical and 
imaging biomarkers, pose a significant challenge for the existing 
predictive models (Nishi et al., 2019). Additionally, the “black box” 
nature of many advanced ML models raises interpretability issues, 
leading to a trust gap among clinicians (Adadi and Berrada, 2018; Tjoa 
and Guan, 2021; Nazir et al., 2023). This lack of transparency, coupled 
with the need for research targeting this important clinical area, 
highlights the urgent need for predictive tools that are both applicable 
and interpretable in this specific scenario.

In response to the urgent need for interpretable predictive tools, 
this study proposes the introduction of an interpretation stage to the 
ML framework to enhance transparency and clinician confidence. 
Specifically, the utilization of Shapley additive explanation (SHAP), an 
approach offering solutions to the “black box” issue by elucidating 
each variable’s contribution to the prediction outcome, is at the core 
of our research. This study aims to develop a SHAP-interpreted ML 
model to predict the outcomes of extended-window MT in AIS-LVO 
patients. By integrating a diverse range of demographic, clinical, and 
neuroimaging variables, we plan to provide valuable insights into 
patient selection prior to MT, thereby contributing to more targeted 
treatment strategies and better clinical outcomes.

Materials and methods

Patient information

A retrospective analysis was conducted on a database of 260 
AIS-LVO patients who were treated with MT and successfully 
reperfused at our center from January 2019 to January 2023. Included 
were patients (1) aged 18–90 years; (2) with confirmed occlusions in 
the anterior circulation, particularly in the M1/M2 segment of the 
middle cerebral artery (MCA) or intracranial internal carotid artery 
(ICA); (3) arrived at the emergency department 6–24 h after the last 
known well time or symptom onset, outside the standard 6-h 
therapeutic window; and (4) meeting the DEFUSE 3 trial eligibility 
criteria (Nogueira et  al., 2018), namely an ischemic core (IC) 
volume < 70 mL, a mismatch ratio (MMR) ≥ 1.8, and a mismatch 
volume > 15 mL. The exclusion criteria were (1) patients with 
occlusions in the anterior cerebral artery or vessels with an internal 
diameter of less than 2 mm; (2) those with a premorbid modified 
Rankin Scale (mRS) score over 2; (3) patients with a history of 
intracranial hemorrhage, brain surgery, or significant territorial lesion; 
and (4) patients with any missing relevant clinical or radiological data. 
This study complied with the Helsinki Declaration and received 
approval from the institutional review boards of Shanghai Putuo 
Liqun Hospital (RT202204). Due to the retrospective nature of the 
investigation, the requirement for informed consent was waived. All 
data involved in this research were anonymized to uphold 
patient privacy.

Pretreatment variables extraction

A wide range of pretreatment variables was extracted, including 
demographic, clinical, and neuroimaging data. The demographic and 
clinical variables comprised age, gender, onset-to-door time, and 
baseline national institutes of health stroke scale (NIHSS) score. 
Additionally, relevant comorbidities, such as hypertension, diabetes 
mellitus, hyperlipidemia, previous ischemic stroke, coronary heart 
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disease, arterial fibrillation, and current smoking status, were 
incorporated into the clinical dataset.

Baseline neuroimaging data were obtained using a 64-slice 
multidetector CT scanner (Brilliance iCT; Philips Medical Systems, 
Best, Netherlands), which incorporated non-contrast CT (NCCT), CT 
angiography (CTA), and CT perfusion (CTP) scans. The neuroimaging 
variables consisted of the occlusion site, the Alberta stroke program 
early CT score (ASPECTS), and collateral scores.

CTP analysis was conducted utilizing the brain CT perfusion 
software, under the Philips IntelliSpace platform (Version 9.0, Brain 
CT Perfusion Package, Philips Healthcare, Best, Netherlands). By 
manually setting regions of interest corresponding to an artery and a 
vein, perfusion parameters including mean transit time (MTT), 
cerebral blood volume (CBV), and cerebral blood flow (CBF) were 
subsequently derived. Criteria for defining ischemic penumbra (IP) 
included a relative MTT > 150% and a CBV > 2.0 mL/100 g. Conversely, 
IC was characterized by a relative MTT > 150%, coupled with a 
CBV < 2.0 mL/100 g (Wintermark et  al., 2006). The MMR was 
calculated by dividing the total hypoperfused tissue volume (the sum 
of the IC and IP volumes) by the IC volume.

Data pre-processing

In preparation for an unbiased ML analysis, an essential step 
undertaken was the standardization of all variables, with the precise 
methodology varying based on the nature of the variable. Continuous 
variables were standardized to a scale with a mean of zero and a 
standard deviation of one. This standardization was crucial for 
continuous variables as it allowed them to contribute equally to the 
ML model, thereby enhancing its predictive performance, irrespective 
of their original scales (Ali et al., 2014). Categorical variables, on the 
other hand, were binarized and assigned a value of either “0” or “1.” 
Ordinal variables, such as ASPECTS and NIHSS scores, were scaled 
to lie within a [0, 1] range. An important component of the prognostic 
estimation was the dichotomization of the mRS score at 90 days (mRS-
90), with scores ranging from 0 to 2 indicative of favorable outcomes 
(Saver et al., 2016). To ensure the robustness of the predictive model, 
the dataset was partitioned randomly into training and test subsets, 
following a 3:1 distribution.

ML model derivation and validation

To predict favorable outcomes in AIS-LVO patients, four 
supervised ML classifiers—k-nearest neighbors (KNN), random 
forests (RF), support vector machine (SVM), and extreme gradient 
boosting (XGBoost)—were utilized. A 10-fold cross-validation 
strategy, combined with grid search algorithm, optimized the model 
hyperparameters and mitigated overfitting. The training set was 
partitioned into inner training and test subsets, rotating roles in 
subsequent iterations for robust validation. This fine-tuning was 
integral to achieving high model generalizability and accuracy. All 
algorithms, cross-validation procedures, and hyperparameter 
optimizations were implemented using the Python Scikit-
Learn library.

A traditional Logit model was also developed for comparing the 
predictive capabilities of the ML models. Variables potentially 

correlated with favorable outcomes were evaluated using univariate 
Logit model. Subsequently, variables identified as significant in the 
univariate analysis (p < 0.05) were incorporated into the construction 
of the multivariate Logit model for outcome prediction.

After the model derivation, each model was subjected to a 
validation process to assess its discrimination, calibration, and clinical 
utility. Our selection for the optimal predictive model was guided by 
superior performance in discrimination, coupled with satisfactory 
results in both calibration and clinical utility.

Model interpretability and testing

Following validation, the optimal predictive model was identified. 
We  integrated the SHAP methodology for a more insightful 
interpretation of the model’s performance. Grounded in cooperative 
game theory, SHAP serves as a model-agnostic tool capable of 
elucidating predictions across various ML models (Chalkiadakis et al., 
2012). It quantifies the average marginal contribution of each input 
parameter to a model’s prediction, providing a robust mechanism for 
evaluating feature importance (Martini et al., 2021). In our study, this 
method facilitated the calculation of absolute mean SHAP values for 
each feature by taking the mean of the absolute values of the SHAP 
values across all instances in the training set. This calculation 
disregards the direction of impact (positive or negative), focusing 
solely on the magnitude of influence each feature has on the model’s 
predictions, thereby enabling a rank ordering of feature importance. 
This process was crucial for understanding the specific contribution 
of each feature to the prediction, effectively identifying the most 
influential variables. It would significantly elevate the interpretability 
of our model, illuminating the pivotal predictors and their respective 
roles in the predictive outcomes observed within our training cohort 
of patients.

Further, the effectiveness of the model was rigorously 
evaluated using a test set. This assessment further affirmed its 
capabilities in terms of discrimination, calibration, and clinical 
utility, offering a more comprehensive understanding of its 
predictive capability.

Statistical analysis

Statistical evaluations were conducted using the chi-square test or 
Fisher’s exact test for categorical variables, and the Mann–Whitney U 
test for ordinal variables. For continuous variables, the suitability of 
their distributions was evaluated via the Shapiro–Wilk test, guiding 
the use of either Mann–Whitney U test or independent-sample t-test 
accordingly. Model performance was evaluated with the receiver 
operating characteristic (ROC) curve, with the area under the curve 
(AUC) serving as a measure of model discrimination. Delong’s test 
facilitated comparisons among AUCs. Calibration curve analysis 
assessed the goodness of fit for each model. Moreover, decision curve 
analysis (DCA) was employed to estimate the net benefits associated 
with each model at varying threshold probabilities, providing insights 
into the clinical utility of the models. A two-tailed value of p of less 
than 0.05 was indicated statistical significance. Statistical processing 
of data was executed using IBM SPSS Statistics (v 22.0, SPSS Inc.) and 
Python (v 3.7.1).
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Results

Patient characteristics

Figure 1 presents the flowchart of the patient selection process and 
model derivation and validation. From the initial pool of 260 patients, 
212 (consisting of 126 males, mean age 68.2 ± 10.5 years) were selected 
for further analysis. The median baseline NIHSS score among these 
patients was 14, with an interquartile range (IQR) from 10 to 18. 
Distribution of occlusion sites was as follows: intracranial ICA 
(n = 25), MCA M1 segment (n = 153), and MCA M2 segment (n = 34). 
This cohort was divided into training (159 individuals) and test (53 
individuals) datasets. Over a subsequent 90-day period, favorable 
functional outcomes were observed in 40.8% (65/159) of the training 
set and 37.7% (20/53) of the test set. Table 1 provides a comprehensive 
comparison of patient characteristics between these two datasets, 
indicating no significant differences in all evaluated parameters (all 
p > 0.05).

Outcome-based comparison in the training 
set

Table 2 offers a comparison of various characteristics within the 
training set patients, categorized by their mRS-90 scores. The findings 
indicated that patients with favorable outcomes were typically 
younger, displayed lower baseline NIHSS scores, and experienced 
shorter onset-to-door times. Additionally, these patients showed 
distinct neuroimaging patterns, with reduced IC and IP volumes, 
elevated ASPECTS, and increased MMR. Moreover, a higher 
proportion of these patients had a collateral score of 2–3.

Model comparison for favorable outcomes

In the assessment of MT outcomes, a comparative analysis was 
conducted employing four ML classifiers (KNN, SVM, RF, and 
XGBoost) alongside a Logit model, with findings illustrated in 
Figure 2. The ROC curves (Figure 2A) delineated significant variations 
among the models, where XGBoost exhibited the highest 
discriminatory power with an AUC of 0.93, while SVM, RF, Logit, and 
KNN followed with AUCs of 0.92, 0.92, 0.89, and 0.86 respectively; 
however, the difference between XGBoost and KNN was not 
statistically significant (p  > 0.05, DeLong test). Moving on to the 
calibration curves (Figure 2B), minor deviations were noted, with 
Logit and RF models showing slightly lower alignment, yet all models 
demonstrated reliable performances. In the DCA (Figure  2C), 
XGBoost displayed superior efficacy, while RF indicated somewhat 
lower performance. Therefore, XGBoost emerged as the optimal 
model, exhibiting exemplary predictive performance with a Precision 
of 0.93, a Recall of 0.87, and an F1 Score of 0.90, marking it as the best 
among those analyzed.

Testing of the optimal model

The XGBoost model, identified as the optimal predictive model, 
was subjected to further evaluation with a test dataset. Variables from 
this set were applied to the XGBoost model, followed by a comparison 
between the predictions and actual patient outcomes. This analysis is 
illustrated through the ROC, calibration, and DCA curves in Figure 3. 
Despite a slight reduction in performance relative to the training set, 
the XGBoost model demonstrated considerable discriminative power, 
with an AUC of 0.77 on the ROC curve (Figure 3A). The calibration 

FIGURE 1

Workflow showing patient selection and model derivation and validation. AIS-LVO, acute ischemic stroke with large vessel occlusion; MT, mechanical 
thrombectomy; MCA, middle cerebral artery; ICA, internal carotid artery; DEFUSE 3, Endovascular therapy following imaging evaluation for ischemic 
stroke; ACA, anterior cerebral artery; mRS, modified Rankin Scale; ML, machine learning; KNN, k-nearest neighbors; RF, random forest; SVM, support 
vector machine; XGBoost, extreme gradient boosting; Logit, logistic regression; SHAP, Shapley additive explanation.
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curve revealed a strong alignment between the predicted probabilities 
and actual event frequencies (Figure 3B). The DCA curve further 
displayed significant net benefits across prediction probabilities 
ranging from 0 to 0.8 (Figure 3C), further establishing the potential of 
the XGBoost model in predicting MT outcomes. Additionally, the 
model manifested a Precision of 0.90, a Recall of 0.70, and an F1 Score 
of 0.79, indicating satisfactory predictive capacity.

Model interpretation

SHAP analysis, which quantifies the influence of individual 
features within the ML model, was utilized for interpreting the 
XGBoost model. IC volume, baseline NIHSS score, IP volume, 
ASPECTS, and patient age emerged as the top five key determinants 
(Figure  4A). To visually represent the cumulative impact of each 
variable, a summary plot of the SHAP values was constructed 

(Figure 4B). This plot enables a detailed understanding of how each 
predictor influences predictions for individual patients. The analysis 
demonstrated that the model associated smaller IC volume, lower 
NIHSS score, reduced IP volume, higher ASPECTS, and younger age 
with an increased likelihood of achieving a favorable outcome 
after MT.

Discussion

An accurate preoperative evaluation of MT prognosis is crucial, 
considering that successful reperfusion does not necessarily 
correspond to a favorable recovery. This is particularly true for 
patients in the extended therapeutic window, as they might exhibit 
more complex clinical outcomes owing to prolonged ischemic time. 
In the present study, we  conducted a comparative analysis of the 
prognostic capabilities of four ML classifiers and a Logit model, based 

TABLE 1 Comparative analysis of demographic, clinical, and 
neuroimaging variables between the training and test sets.

Variables Training 
set 

(n  =  159)

Test set 
(n  =  53)

P-value

Age, years 68.0 ± 10.6 68.9 ± 10.5 0.589a

Male, n(%) 93 (58.5%) 33 (62.3%) 0.628c

Baseline NHISS 13 (10, 17) 14 (12, 18) 0.163b

Onset-to-door time, h 10 (7, 13) 10 (7, 14) 0.583b

Comorbidities

Diabetes, n(%) 42 (26.4%) 15 (28.3%) 0.788c

Hypertension, n(%) 80 (50.3%) 27 (50.9%) 0.937c

Hyperlipidemia, n(%) 27 (17.0%) 12 (22.6%) 0.357c

Previous ischemic stroke, 

n(%)
11 (6.9%) 3 (5.7%) 1.000d

Coronary heart disease, 

n(%)
26 (16.4%) 6 (11.3%) 0.376c

Arterial fibrillation, n(%) 48 (30.2%) 14 (26.4%) 0.601c

Smoking, n(%) 53 (33.3%) 14 (26.4%) 0.348c

Neuroimaging parameters

ASPECTS 6 (5, 7) 6 (5, 7) 0.420b

Collateral 

score, n(%)
0 9 (5.7%) 4 (7.5%)

0.577e1 62 (39.0%) 23 (43.4%)

2 61 (38.4%) 21 (39.6%)

3 27 (17.0%) 5 (9.4%)

IC volume, mL 10.8 (6.0, 17.4) 11.6 (7.4, 18.3) 0.475b

IP volume, mL 120.4 ± 47.6 115.8 ± 44.2 0.536a

MMR 11.5 (8.0, 21.1) 9.4 (7.3, 21.8) 0.334b

mRS-90 0–2 score, n(%) 65 (40.8%) 20 (37.7%) 0.686c

a and b for numerical variables analyzed with independent-sample t-test and Mann–Whitney 
U test, respectively; c and d for categorical variables analyzed with chi-square test and Fisher’s 
exact test, respectively; e for ordinal variable analyzed with Mann–Whitney U test. NHISS, 
national institutes of health stroke scale; ASPECTS, Alberta stroke program early CT score; 
IC, ischemic core; IP, ischemic penumbra; MMR, mismatch ratio; mRS, modified Rankin 
Scale.

TABLE 2 Comparison of clinical, demographic, and neuroimaging 
characteristics stratified by mRS-90 scores in the training set.

Variables Favorable 
outcome 
(n  =  65)

Poor 
outcome 
(n  =  94)

P-value

Age, years 62.9 ± 9.3 71.5 ± 10.1 <0.001a

Male, n(%) 34 (52.3%) 59 (62.8%) 0.188c

Baseline NHISS 10 (9,12) 16 (13, 19) <0.001b

Onset-to-door time, h 8 (7, 11.5) 10 (7, 13) 0.011b

Comorbidities

Diabetes, n(%) 14 (21.5%) 28 (29.8%) 0.246c

Hypertension, n(%) 28 (43.1%) 52 (55.3%) 0.129c

Hyperlipidemia, n(%) 10 (15.4%) 17 (18.1%) 0.656c

Previous ischemic 

stroke, n(%)
4 (6.2%) 7 (7.4%) 1.000d

Coronary heart disease, 

n(%)
9 (13.8%) 17 (18.1%) 0.477c

Arterial fibrillation, 

n(%)
18 (27.7%) 30 (31.9%) 0.569c

Smoking, n(%) 19 (29.2%) 34 (36.2%) 0.361c

Neuroimaging 

parameters

ASPECTS 7 (6, 8) 6 (5, 7) <0.001b

Collateral 

score, n(%)
0 0 (0.0%) 9 (9.6%)

0.004e1 22 (33.8%) 40 (42.6%)

2 26 (40.0%) 35 (37.2%)

3 17 (26.2%) 10 (10.6%)

IC volume, mL 5.3 (3.5, 9.9) 16.0 (10.7, 21.1) <0.001b

IP volume, mL 94.9 ± 33.0 137.9 ± 48.2 <0.001a

MMR 14.4 (8.8, 27.2) 10.1 (7.4, 16.5) 0.005b

a and b for numerical variables analyzed with independent-sample t-test and Mann–Whitney 
U test, respectively; c and d for categorical variables analyzed with chi-square test and Fisher’s 
exact test, respectively; e for ordinal variable analyzed with Mann–Whitney U test. NHISS, 
national institutes of health stroke scale; ASPECTS, Alberta stroke program early CT score; 
IC, ischemic core; IP, ischemic penumbra; MMR, mismatch ratio.
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FIGURE 2

Comparative performance of ML classifiers and Logit model in predicting MT outcomes. (A) Presents the ROC curves, with XGBoost achieving the 
highest AUC (0.93), followed by SVM and RF (both 0.92), and Logit (0.89), while KNN reveals the lowest (0.86). (B) Illustrates calibration curves, where 
the X-axis shows the predicted probabilities and the Y-axis denotes the actual event frequency, with an ideal model aligning with the 45-degree line, 
signifying a precise match between predictions and observed outcomes. (C) Exhibits DCA, with the X-axis for threshold probabilities and the Y-axis for 
net benefit. “Treat All” represents a scenario of treating all individuals, while “Treat None” illustrates treating no individuals. The DCA reflects the net 
benefit of employing the models at various threshold probabilities compared to treating all or none. Despite minor variations, all models exhibit 
satisfactory performance in both calibration and DCA curves. ML, machine learning; MT, mechanical thrombectomy; KNN, k-nearest neighbors; SVM, 
support vector machine; Logit, logistic regression; RF, random forest; XGBoost, extreme gradient boosting; ROC, receiver operating characteristic; 
DCA, decision curve analysis.

solely on clinical and imaging features readily available in the 
emergency department. Our findings indicated that the XGBoost 
model outperformed others in terms of optimal discrimination, 
satisfactory calibration, and clinical utility in both the training and test 
datasets. Notably, the application of SHAP enhanced the 
interpretability and transparency of the XGBoost model, illuminating 
the fundamental features influencing stroke outcomes. By leveraging 
such knowledge, it might be feasible for clinicians to individualize 
treatment plans for optimizing clinical outcomes, and offer timely and 
personalized care driven by the results of the ML model, thereby 
potentially enhancing management in AIS-LVO patients.

In our study, we compared the prognostic performance of four 
ML models—KNN, SVM, RF, and XGBoost—against the conventional 
Logit model. These ML models are particularly suited to handle 
intricate non-linear relationships between variables and outcomes, 
giving them an edge over Logit (Uddin et al., 2019; Silva et al., 2022). 
While all models showed similar calibration and clinical utility, their 
performance varied substantially in terms of discrimination. KNN, 

being sensitive to noise and outlier data points, along with its degraded 
performance in complex and high-dimensional datasets (Abu Alfeilat 
et al., 2019), showed the lowest discrimination. On the other hand, 
SVM, RF, and XGBoost, with their superior ability to manage 
non-linear relationships, outperformed Logit. Consistent with 
previous research (Heo et al., 2019; Chiu et al., 2021; Zhang et al., 
2022), our study reinforced the superiority of ML models over Logit 
predicting outcomes of endovascular treatment for stroke. However, 
most existing studies are confined to a 6-h therapeutic window, with 
limited research focusing on ML predictions for extended-window 
MT. A study by Lu et al. (2022) remains the exception, although it 
primarily builds predictive models based on variables available 
post-MT, providing minimal insights into MT decision-making. 
Given the sizable cohort of AIS patients presenting beyond the 
therapeutic window, it becomes crucial to rapidly and precisely predict 
the potential benefits of MT, especially within the emergency 
department setting. To address this need, our models strategically 
incorporated only pre-intervention clinical and imaging variables. 
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These purposefully designed predictive models could assist in 
identifying patients most likely to benefit from MT, potentially 
enhancing both the decision-making process and therapeutic 
outcomes for these patients.

This study represented the first application of ML models to 
predict clinical outcomes in AIS-LVO patients undergoing MT within 
the extended therapeutic window. To address the interpretability 
challenges intrinsic to complex ML models, the study incorporated 
the SHAP methodology. This approach offers a transparent illustration 
of decision-making processes at the cohort level, augmented by user-
friendly visualization tools (Nohara et  al., 2022). The feature 
importance offered by SHAP elucidates the contribution of individual 
variables to the model’s predictive power, facilitating trust between 
clinicians and AI algorithms (Alabi et  al., 2022; Jabal et  al., 2022; 
Xiong et  al., 2022). Further investigation of the XGBoost model, 
validated as the optimal ML model for predicting MT outcomes, 
revealed key predictors including IC volume, baseline NIHSS score, 
IP volume, ASPECTS, and patient age.

While baseline NIHSS score, ASPECTS, and patient age are well-
established predictors in stroke prognosis, the enhanced predictive 
accuracy of the present model was primarily attributed to the inclusion 
of IC and IP volumes. This enhancement finds support in the collective 

findings of O'Connor et al. (2020), Hamann et al. (2021), and Zhang 
et al. (2022), who all emphasized the significance of cerebral infarction 
volume and CTP-derived core volumes in ML models for predicting 
MT outcomes. However, a common limitation across these studies 
was their focus on patients within the standard therapeutic window. 
In research extending beyond this window, Lu et  al. (2022) also 
identified IC volume and mismatch volume as key variables in their 
ML models, yet the predictive accuracy was compromised, likely due 
to a limited sample size.

These variables delivered enhanced performance within the 
XGBoost framework. The robustness of the XGBoost model can 
be attributed to its proficiency in handling and interpreting complex 
non-linear relationships between variables and outcomes (Sheridan 
et al., 2016). As a gradient boosting algorithm, XGBoost captures 
sophisticated, non-linear relationships through iterative construction 
and optimization of decision trees, thereby unmasking intricate data 
patterns (Torlay et al., 2017; Mateo et al., 2021). In conjunction with 
SHAP, XGBoost allows for a transparent depiction of the significant 
influence each variable has on the predicted outcome. This unique 
combination equips XGBoost as an efficient tool in the rapid 
identification of AIS patients who are likely to benefit from MT, even 
beyond the standard therapeutic window, within the high-pressure 

FIGURE 3

Assessment of MT outcomes using the optimal predictive model in the test set. (A) Illustrates the discriminative capability of the model with a notable 
AUC of 0.77. (B) Presents the calibration curve, demonstrating a strong agreement between the predicted and actual outcome. (C) Shows the DCA 
curve, emphasizing the substantial net benefits delivered by the model over a prediction probability range from 0 to 0.8. MT, mechanical 
thrombectomy; XGBoost, extreme gradient boosting; ROC, receiver operating characteristic; AUC, area under the curve; DCA, decision curve analysis.
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FIGURE 4

Interpretation of the predictive model via SHAP Analysis. In (A), the absolute mean SHAp values demonstrate the global impact of each feature on the 
model prediction. Features are ranked along the y-axis based on their importance, with those at the top contributing more to the model. (B) Presents a 
summary of SHAp values for each feature, illustrating the relationship between the feature value and its effect on the model prediction. Each dot 
corresponds to an individual patient. The color gradation from blue to red reflects the value of the feature, with redder dots indicating higher values 
and bluer dots indicating lower values. The horizontal axis denotes the SHAP value corresponding to each feature. Positive SHAP values contribute 
positively to the MT outcome prediction and vice versa. The position of a dot along the x-axis indicates the degree of impact that the corresponding 
feature has on the model prediction for a specific patient. SHAP, Shapley additive explanation; NHISS, national institutes of health stroke scale; 
ASPECTS, Alberta stroke program early CT score; MT, mechanical thrombectomy.

environment of an emergency department. Notably, its reliance on 
readily available pre-intervention clinical and imaging variables 
eliminates the need for additional testing technologies, thereby 
preventing any increase in clinical burden. This efficient integration 
of ML in the decision-making process highlights its potential to 
revolutionize stroke management, and ultimately improve 
patient outcomes.

In acknowledging the limitations of this study, it is first essential 
to consider that our research was conducted in a single institution, 
using a specific CT scanner, and on a relatively limited patient cohort. 
These factors could introduce inter-observer variability due to 
potential differences in equipment or operators, which could, in turn, 
impact the efficacy of the employed ML models. Second, the 
retrospective design of the study and adherence to the DEFUSE 3 trial 
selection criteria might limit the wider applicability of our findings 
across different patient populations and therapeutic settings. Lastly, to 

maintain clinical feasibility, the ML model incorporated only standard 
pre-intervention variables. Although the inclusion of novel techniques 
or indicators may enhance the discriminative power of the model, 
such improvements necessitate further rigorous validation. Future 
investigations should be  planned to conduct larger, multi-center, 
prospective studies to further improve the reliability and precision of 
the model. The introduction of inter-rater reliability tests could help 
offset potential observer variability, thereby enhancing the reliability 
and widespread applicability of the model.

Conclusion

This study represented an important progress in the management 
of AIS-LVO patients through the development of an interpretable ML 
model. By incorporating routinely available clinical and imaging 
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variables, this model held the potential to accurately identify patients 
suitable for MT within an extended therapeutic window. The 
incorporation of SHAP analysis not only strengthened the 
interpretability of the model but also promoted its reliability in clinical 
settings. By providing accurate predictions of three-month post-MT 
functional outcomes, this model had the potential to guide the 
development of personalized and effective treatment strategies, 
thereby paving the way for improved patient outcomes.
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