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Characterizing the connectomic and morphological diversity of thalamic neurons

is key for better understanding how the thalamus relays sensory inputs to the

cortex. The recent public release of complete single-neuron morphological

reconstructions enables the analysis of previously inaccessible connectivity

patterns from individual neurons. Here we focus on the Ventral Posteromedial

(VPM) nucleus and characterize the full diversity of 257 VPM neurons, obtained

by combining data from the MouseLight and Braintell projects. Neurons were

clustered according to their most dominantly targeted cortical area and further

subdivided by their jointly targeted areas. We obtained a 2D embedding of

morphological diversity using the dissimilarity between all pairs of axonal trees.

The curved shape of the embedding allowed us to characterize neurons by a

1-dimensional coordinate. The coordinate values were aligned both with the

progression of soma position along the dorsal-ventral and lateral-medial axes and

with that of axonal terminals along the posterior-anterior and medial-lateral axes,

as well as with an increase in the number of branching points, distance from soma

and branching width. Taken together, we have developed a novel workflow for

linking three challenging aspects of connectomics, namely the topography, higher

order connectivity patterns and morphological diversity, with VPM as a test-case.

The workflow is linked to a unified access portal that contains the morphologies

and integrated with 2D cortical flatmap and subcortical visualization tools. The

workflow and resulting processed data have been made available in Python, and

can thus be used for modeling and experimentally validating new hypotheses on

thalamocortical connectivity.

KEYWORDS

single-cell morphology, VPM, somatosensory cortex, topography, connectomics,
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1 Introduction

Direct, orderly communication between cell populations in distant parts of the brain is
made possible by long-range projection neurons (LRPN). The LRPN axons create the brain-
wide circuits that enables the highly integrated brain functioning that makes perception,
memory, consciousness and skilled movement possible (Sherman, 2016). Depending on
their specific branching patterns, LRPN axons can establish parallel (point-to-point) or
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convergent/divergent (point-to-multi-point) connections, in
unidirectional or reciprocal patterns. Importantly, the functional
impact of the signals carried by LRPN axons on other cell
populations depends on the precise target distribution and the
number of their synapses, which is highly diverse and specific for
each LRPN type (Clascá, 2022).

Thalamic projection neurons are a key and well-characterized
group of LRPN situated deep within the brain. Some of them act as
the gateway for sensory information to the cerebral cortex. These
neurons cluster together forming the so-called first order relay
nuclei of the thalamus, and their axons innervate the ipsilateral
cerebral cortex in a focal orderly fashion. One of these nuclei
is the ventral posteromedial nucleus of the thalamus (VPM).
The VPM projection neurons receive monosynaptic inputs from
the trigeminal complex of the brainstem carrying mechano- and
nociceptive signals originating in the face and mouth, and relay
them to the somatosensory areas of the cortex. In many rodents,
this system includes a specialized subsystem that enables these
animals to use their motile mystacial vibrissae as high-resolution
haptic tactile probes (Bosman et al., 2011).

A number of studies have revealed interesting properties
of VPM LRPN neurons and of other thalamic nuclei (Waite,
1973; Saporta and Kruger, 1977; Ito, 1988; Sugitani et al., 1990).
The first observation is that these neurons are topographically
organized with respect to both their soma location and their
axonal terminals in the barrel cortex. The second observation is
the existence of region-specific heterogeneous projections from a
single nucleus (Han et al., 2018; Muñoz-Castañeda et al., 2021),
which suggests the organization of thalamic projections into higher
order connectivity motifs (Clascá et al., 2012). These findings
indicate that morphological diversity can be found even in a first-
order nucleus, which has traditionally been considered to be very
homogeneous in terms of the morphology of its neurons.

The concept of motifs plays a prominent role in neuroscience.
To provide proper context for the more mesoscopic motifs
introduced here, we discuss these prior uses of motifs. In a random
network, the directional connections from one neuron to another
neuron are made with a certain probability p. The probability for
an arbitrary pair to have a single connection is p. The probability
for a reciprocal connection is p2. However, when in a network
this probability is significantly higher than p2 than we say there
are connectivity motifs. This usage (Song et al., 2005) is derived
from earlier work in genetic networks (Milo et al., 2002) and
has since been applied in many other works (Perin et al., 2011;
Vasquez et al., 2013). Another related concept is circuit motifs,
which applies to networks comprised of multiple neuron types,
such as pyramidal cells, and multiple inhibitory neurons, such as
parvalbumin (PV), somatostatin (SOM) and vasoactive intestinal
peptide (VIP) expressing neurons and where there is a pattern
of connectivity, such as that SOM projects to VIP and PV, but
PV does not project to SOM (Pfeffer et al., 2013). Circuit motifs
can be related to computations they perform (Womelsdorf et al.,
2014) and oscillation frequencies they index (TerWal and Tiesinga,
2021). This is in contrast with the projection pattern motifs
characterized here, which are related to the presence of higher order
structure in projection patterns from individual neurons within a
source brain area to multiple target brain areas (Han et al., 2018).

This higher order structure should also be statistically significant,
meaning that it deviates from the null hypothesis of exclusive first-
order projections from a source to target brain areas. According to
the null hypothesis, the probabilities of source neurons targeting
two or more distinct target brain areas are statistically independent
of each other. Significant deviations from this assumption can be
considered as evidence for the higher-order organization of LRPN
neurons into motifs of projection patterns that are not random.

However, these qualities have been difficult to analyze
in experimental data, despite a tremendous development of
connectomics approaches in the past decades (Cazemier et al.,
2016). On the one hand, it remains impossible to extract single-
cell morphologies from a neural population using classical tracing
techniques (Oh et al., 2014; Harris et al., 2019) or diffusion tensor
imaging (Calabrese et al., 2015). On the other hand, electron
microscopy (Kasthuri et al., 2015) and direct synaptic labeling
(Druckmann et al., 2014) do not cover a large enough volume to
appropriately quantify the morphology of LRPN neurons. These
studies instead focus on local circuits, that is, local intracortical
projections.

Fortunately, recent developments in automated tissue-to-
volume reconstructions of single neurons based on fluorescence
micro-optical sectioning tomography (fMOST) (Li et al., 2010) or
light-sheet fluorescence microscopy (Economo et al., 2016), enable
to image these morphologies at light-microscopic resolution.
Despite this progress, characterizing projection motifs in hundreds
of single neurons is still challenging and labor intensive. As a result,
the sample sizes, even for themost intensively studied LRPN groups
are still small, since thousands of neuronal reconstructions are
needed to reach a nucleus-wide coverage similar to the mesoscale
population experiments by Oh et al. (2014) and Harris et al. (2019).
An additional challenge is that topographic maps in relation to
high-order connectivity patterns of the brain have not yet been
quantitatively characterized, which makes it hard to generalize
observations from related data and refine them intomathematically
rigorous approaches (Battiston et al., 2020; Bick et al., 2022).

While the existing large-scale repositories have made available
large amounts of single-neuron axonal reconstructions (Han et al.,
2018; Winnubst et al., 2019; Muñoz-Castañeda et al., 2021; Peng
et al., 2021; Gao et al., 2022), they nevertheless have failed to live-
up to expectation because each of them were used in isolation.
Therefore, data integration from multiple repositories into a
collaborative infrastructure, registered into a common reference
space and combined with cutting edge neuroinformatics tools for
statistical analysis, is necessary for providing context and insight
in the morphological distribution and structural organization of
thalamic nuclei.

Moreover, to characterize the projection diversity of a neuronal
population, we need to go beyond comparing different neurons
solely on the basis of their soma position and projection targets.
If two neurons with a different soma position in the same
source nucleus differ in the targeted areas, there is a number of
possible assumptions that can account for that difference. One
assumption is that the source region is heterogeneous, with these
two neurons belonging to different cell-types, which have different
morphologies. The second assumption is that they belong to the
same cell-type and that the differences in their projections are due
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to the position they occupy along the topographical axis within
that source region. The last assumption is that the difference
is a by-product of the anatomical parcellation scheme, such as
the Allen Reference Atlas (ARA) or the Paxinos & Franklin
(PF) atlas (Paxinos and Franklin, 2019), which implies that in a
different parcellation scheme the two neurons would be classified
as targeting the same area. For the first and second assumptions,
topographical and morphological analyses will have to be carried
out, respectively. For the third assumption, neurons would have to
be compared under different parcellation schemes, with the correct
one decided by the expert.

For a morphological analysis, morphometrical measures
(morphometrics) are used to describe different axonal or
dendritic morphological properties of neurons and thus serve
as useful features for clustering neurons into types with distinct
morphological characteristics (Laturnus et al., 2020; Walker et al.,
2022). However, classical morphometrics are inadequate to capture
the local topology and geometry of axonal branches and terminals.
The reason is that morphometric analyses rely on global pre-
definedmeasurements and do not capture pair-wise local variations
between neurons, which obscures the estimation of neuronal
variability and biases the global morphometrics employed for this
purpose (Kanari et al., 2018; Batabyal et al., 2020). Therefore,
when estimating morphological diversity, one needs to take into
account the entire axonal tree instead of only regions of interest
or pre-computed morphometrics.

To address the aforementioned issues, we have developed
a workflow for translating ∼300 VPM axonal morphologies
into projection statistics with a twofold aim. We analyze the
topographical correlations between the VPM and various
somatosensory areas and identify distinct subpopulations
inside VPM that differ in their connection motifs across the
somatosensory areas. The projection statistics are measured
according to reconstructed axonal morphologies of long-range
projection neurons obtained from two publicly available high-
throughput databases, namely MouseLight (Winnubst et al., 2019)
and Braintell (Peng et al., 2021). We integrate data from both
datasets to deal with the limited sample size of the individual
datasets of reconstructed neurons, since together they comprise
the most extensive publicly available collection of reconstructed
neurons from the thalamus to date.

Moreover, we further characterize the morphological diversity
of VPM neurons beyond their projection patterns and in relation
to their topographical organization using a robust point-cloud
alignment and registration approach called Coherent Point Drift
(CPD) (Myronenko and Song, 2010). CPD can compute in an
unbiased fashion the morphological distance of two different
neurons based on their axonal morphology and anatomical
coordinates that goes beyond a given anatomical parcellation.
We use CPD to estimate the morphological distance between all
possible neuronal pairs, which in turn provides us a distance
criterion for defining gradients or clusters that characterize the
morphological diversity of VPM. To assess the robustness of
CPD-based morphological clusters or types, we overlay them with
the corresponding projection types and align them with their
topographical orientation along the dorsal-ventral axis. This allows
us to analyze the morphologies simultaneously in relation to their

topographical, morphological and projection properties. Finally,
we implement a number of 2D cortical flatmap and VPM spatial
plots for visually inspecting the newly characterized and diversified
morphologies in the spatial context of the cortical surface and
the VPM nucleus. This analysis could be in principle extended
to other types of thalamic projection cells which are structurally
more diverse, to help a comprehensive and objective delineation of
projection neuron types.

2 Materials and methods

2.1 Data retrieval and neurons reunited
portal

Over the past 5 years, five repositories of fully traced neurons
have been released: the “MouseLight” database (1,500 neurons,
Winnubst et al., 2019), the “Braintell” database (1,700 neurons,
Peng et al., 2021), the “prefrontal” database (6,300 neurons, Gao
et al., 2022) and the smaller collections of visual cortex neurons
(46 neurons, Han et al., 2018) and primary motor cortex neurons
(38 neurons, Muñoz-Castañeda et al., 2021). These five datasets
together comprise currently the most extensive collection of single-
neuron long-range projection data, bridging the gap between local
microcircuits and brain-wide axonal projections.

We thus decided to take the opportunity and facilitate access to
the community with the Neurons Reunited Portal: a unified access
portal to these resources (see Table 1). The website can be used to
browse all neurons, and it has a REST application programming
interface (API) to pre-select a set of neurons for visualization (see
Figures 1A, B).Neurons Reunited Portal is similar to Neuromorpho
(Ascoli et al., 2007) in terms of storing neuronal morphologies, with
the main difference that all morphologies are by default registered
to the common coordinate framework (CCF) v3.0, which allows
their direct use in data integration frameworks and spatial statistical
analyses such as the ones presented in this work.

Moreover, the registration of morphologies in CCF enables
their visualization in the Scalable Brain Atlas (SBA) composer 3D
visualization tool (Bakker et al., 2015), which works as a back-
end for the portal. SBA composer can simultaneously visualize all
morphologies that are selected by a user, overlaid on a 3D mesh
of the CCF mouse brain template (Figures 1C, D). In addition, by
clicking on the various brain regions that each neuron originates
from or traverses, SBA can render the respective region as a semi-
transparent mesh, as well as color-code the laminar distribution of
the neurons with different colors, which can significantly enhance
the identification and characterization of different sub-types of
neurons. Beyond the selection and visualization of morphologies,
we have connected the portal with offline Python-based script
modules to search for neurons with particular properties, such
as “originating in the thalamus and mainly targeting the primary
visual cortex" or with similar morphologies as a number of pre-
selected neurons. These enhanced search facilities are part of the
workflow presented in this work and have been integrated through
bi-directional API interfaces that establish a communication
between a Jupyter Notebook analyzing the selected neurons and the
Neurons Reunited Portal.
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TABLE 1 Hyperlinks for websites, tool descriptions and format descriptions related to our analysis.

NeuronsReunited morphology database viewer https://neuroinformatics.nl/HBP/neuronsreunited-viewer/

NeuronsReunited cortical flatmap viewer https://neuroinformatics.nl/HBP/allen-flatmap/

Repository of our Code on the EBRAINS Collaboratory https://wiki.ebrains.eu/bin/view/Identity/#/units/all:projects:hbp_pp:neuronsreunited

Github Code Repository for the analysis performed in this work https://github.com/ntimonid/morphological_embedding

Github Code Repository for mesoscale statistics https://github.com/ntimonid/Mesoscale_Extractor

Github Code Repository for finding similar neurons https://github.com/ntimonid/Neuron_Aligner

Allen Institute for Brain Science https://alleninstitute.org/

AMBCA repository (Oh et al., 2014; Harris et al., 2019) https://help.brain-map.org/display/mouseconnectivity/Documentation

CCF v3.0 (Wang et al., 2020) http://connectivity.brain-map.org/3d-viewer

MouseLight database (Winnubst et al., 2019) https://ml-neuronbrowser.janelia.org/

Braintell database (Peng et al., 2021) https://braintell.org/seu-allen/index.html

Cortical flatmap templates (Knox et al., 2018) https://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/

NumPy https://numpy.org/

Matplotlib https://matplotlib.org/

NIfTI files https://nifti.nimh.nih.gov/

JSON files https://en.wikipedia.org/wiki/JSON

SBA Composer (Bakker et al., 2015) https://sba-dev.incf.org/composer/index.php

MorphoPy library (Laturnus et al., 2020) https://morphopy.readthedocs.io/en/latest/

Coherent Point Drift library (Myronenko and Song, 2010) https://github.com/siavashk/pycpd

Xml dom minidom library https://docs.python.org/3/library/xml.dom.minidom.html

Extensible 3D script library https://www.x3dom.org/

See main text for details.

From the above datasets, we stored the complete morphological
reconstructions from MouseLight, Braintell and the visual and
motor cortex databases. For the prefrontal cortex database, we
currently store only the neuronal soma positions. The complete
prefrontal reconstructions will be available in the next upgrade of
the portal. The original file format of all obtained morphologies
is swc (Stockley et al., 1993), which is the de facto format for
morphological reconstructions. To store the morphologies in the
portal we converted their respective swc files to JavaScript Object

Notation (JSON) file formats. The reason for file conversion is
because JSON provides a greater degree of flexibility in using
Python-related libraries for the analysis described in this work
(see Supplementary Section 1.1 for more details regarding the data
analyzed in this work).

In the workflow described in this study, we analyzed data
from two sources of reconstructed neurons from the large online
repositories of MouseLight and Braintell. We did not include data
from the other databases since they do not contain VPM neurons,
which are the focus of this study. A major reason for considering
VPM instead of other thalamic nuclei is that it is comprised
of a well-studied group of LRPN neurons. Another reason is
that it is the most densely sampled nucleus in the thalamus and
the second most densely sampled area across the entire mouse
brain, when considering all neuronal reconstructions from the
MouseLight and Braintell databases together: the first area is the
secondary motor cortex (MOs) with 352 neurons and the third

area is the caudoputamen (CP) with 256 neurons. In the following
sections, we describe different parts of the analysis we conducted
to better comprehend the VPM neuronal diversity (see Figure 2
for a schematic description of the various steps comprising the
workflow).

2.2 Data pre-processing

We retrieved data by using an API to download reconstructed
neuronal morphologies from the Neurons Reunited Portal, from
which 27 were from MouseLight and 256 were from Braintell. The
morphologies were downloaded in the JSONfile format, for reasons
described in Section 2.1. Neurons with a soma position not located
in the VPM were filtered out prior to the analysis.

When selecting neurons from the Braintell database, we first
had to use a strict selection criterion regarding the registration
procedure. For each Braintell neuron, manual corrections were
made by Peng et al. (2021) to provide its correct soma area, in order
to mitigate errors caused by their fully automated reconstruction
pipeline (see Supplementary Section 1.1). However, the corrected
3D coordinates of the soma of each neuron were not released
after correction, which would have allowed users to fully utilize
the neuron in analyses such the one described here. Therefore,
we excluded 26 Braintell morphologies with a manually corrected
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FIGURE 1

Illustration of the di�erent parts of the Neurons Reunited Portal. (A) Partial view of the portal webpage indicating all available databases for

visualization and analysis. For each database, the following format has been adopted: the first line describes the name of the database, the second

line provides a hyperlink to the respective online publication, the third line is a button enabling the visualization of the somata of all related neurons,

the fourth line is a search bar that allows users to search for related neurons with a simple click, and the last line provides hyperlinks for related

websites, terms of use, raw data and data citation, if available. (B) Inset of the webpage zooming in on the search bars illustrating how a user can

search neurons by database and source brain area. In this example, the keyword “VPM" has been entered in the Braintell search bar. As a result, a list

of VPM neurons has appeared to help the user with selecting the appropriate subset of neurons. The acronyms used to characterize each neuron are

a combination of the acronyms of taxonomical subdivisions to which the source area of the neuron belongs according to ARA, together with the

naming convention provided by the home database of the neuron. For instance, the top acronym appearing on the search bar refers to thalamus

(TH), sensory-motor cortex related (DORsm), ventral group of the dorsal thalamus (VENT), ventral posterior complex (VP) and ventral posteromedial

nucleus (VPM), while the remaining acronym is the name id of the neuron given by Braintell. (C) Visualization of all available morphologies that are

hosted in the portal as clickable spheres. The neurons are color-coded based on their respective database: the light blue color corresponds to

Braintell, orange corresponds to MouseLight, red corresponds to the visual cortex database, purple corresponds to the prefrontal database and light

green corresponds to the motor cortex database. By clicking on a cell body, its respective morphology gets rendered in a similar fashion to panel (C).

The brain template is in horizontal view. (D) Visualization of the selected VPM morphologies using the SBA Composer visualization tool. The red and

blue colors correspond to dendritic and axonal, segments, respectively. The brain template is in a sagittal view that is slightly rotated around the

superior-inferior axis such that the relationship between axons, dendrites and soma is more clearly visible.

soma region that did not match the original one. We considered
these cases to be potentially misregistered or not originating in the
VPM. We thus retrieved 257 morphologies in total for analysis,
after applying this selection criterion for all VPM Braintell neurons
and after obtaining all VPMMouseLight neurons.

Each morphology was represented as a list of two arrays in
which the first corresponds to the anatomical coordinate of each
point in CCF and the second contains relevant information about
each point, such as its identity (soma, dendrite, axon), its index
in the first list and the index of its parent in the list. The parent
of a point corresponds to its direct ancestor in the morphological
tree, which could be either an axonal branch, dendritic branch or

the soma. We label the first array as the “point” array, since its
elements are points in 3D space, and the second array as the “line”
array, since its elements are lines that connect the points from the
first array.

Prior to analysis, we had to ensure for all neurons that
the orientation of the coordinate system was the same as for
CCF (anterior-posterior, superior-inferior, left-right with origin
at the anterior-superior-left corner), by means of an affine
transformation. We represented all morphology coordinates at a
10 µm resolution, which is the highest available resolution for
the ARA template. First, Braintell neurons are already oriented
at PIR (anterior-posterior, superior-inferior, left-right) at 1 µm
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FIGURE 2

Flowchart providing a step-by-step description of our workflow for the analysis of LRPN neurons. Boxes correspond to the various steps comprising

the workflow, from pre-processing to analysis and visualization of the data, and arrows represent the directionality of performed actions.

resolution, with a small fraction having 25 µm resolution. We thus
re-scaled the anatomical coordinates of these two Braintell groups
by a factor of 10 and 0.4, respectively. Second,MouseLight neurons
are oriented at LIP (right-left, superior-inferior, anterior-posterior,
corner origin) at 1 µm resolution. For the anatomical coordinates
of each neuron, we switched the first and the third coordinate,
reflected the third coordinate and re-scaled all coordinates by a
factor of 10.

Following the transformation of all neurons to the same
reference space, we could now represent each reference
neuron as a 3D point cloud. In addition, the parent-child
relationship between points allowed us to treat the point-
cloud as a morphological tree and hence perform a number
of morphometric analyses to it, such as estimating for each
axonal segment its path length, radial distance from the
soma, branching order, angles, width and height, as well
as the number of terminals, thickness and total volume or
surface covered.

To alleviate the cost of morphological analysis, we reduced
each morphology to its topological minor, which means that it
was only represented by its soma, axonal branches and terminals.
To identify the axonal terminals, we found axonal points that
had no children points. We then extracted the branch of a

given terminal by backtracking from the terminal point its
ancestor points until a branching point was reached. Therefore,
we comprised a list of the axonal terminal branches of each
neuron and we integrated them with their branching nodes to
preserve the morphological tree structure. The topological minor
form allowed us to significantly reduce the computation time
of morphological analyses, since it had an on average 30-fold
(15,872–411) decrease in number of points used to represent
each morphology.

While the above pre-processing steps treated the neurons
as morphological trees, we had to create a representation that
allowed us to quantify the projection patterns of neurons
at the meso-scale level of anatomically distinct subdivisions
of the somatosensory cortices, in order to distinguish types
of neurons with distinct projection patterns. We therefore
defined for each neuron its somatosensory projection targets
by estimating the total axonal terminal branch length
in µm for each sub-region in the somatosensory cortex:
primary somatosensory cortex whiskers/barrel-cortex (SSp-
bfd), nose (SSp-n), mouth (SSp-m), upper limb (SSp-ul),
lower limb (SSp-ll) and supplemental somatosensory area
(SSs). That allowed us to translate morphologies into a
connectivity matrix that could be used to define neuronal
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FIGURE 3

A visualization of the point-to-point correspondence and rigid registration procedure using the Coherent Point Drift (CPD) algorithm, with a

use-case involving two example neuronal morphologies a and b that originate in the posterior nucleus of the thalamus (PO). In this use-case, the

CPD algorithm is used to find the corresponding points between a and b and subsequently register b to a using rotation and translation. The error for

registering b to a is quantified by the mean square error (MSE), which is estimated between each point in b and its corresponding point in a. After 0

and 60 iterations, the MSE is 4.4e+04 and 1.66e+04, respectively. (A–C) Sagittal, coronal and horizontal views of an anatomical mouse brain template

based on CCF, to which both neurons have been registered and are spatially overlaid. Green and black colors: axonal branches of neuron b after 0

and 60 rounds of iteration. Blue color: axonal branches of neuron a. Red color: soma locations of both neurons. (D) Description of the CPD

algorithm. The high throughput axonal reconstructions have been retrieved from the Braintell repository (Peng et al., 2021). The visualizations were

made using the SBA Composer 3D visualization tool (Bakker et al., 2015).

projection types (see Supplementary Section 1.4 for more
details).

2.3 Searching for similar neurons using the
Coherent Point Drift

We then applied the Coherent Point Drift (CPD) method
(Myronenko and Song, 2010) to compare all neuronal pairs
through a two-step registration process. Given a source and target
neuron, CPD finds the missing correspondences between points of
the two neurons by minimizing the negative log-likelihood that the
point cloud of the source neuron was sampled from the distribution
of the target neuron, as modeled by a Gaussian Mixture Model.
Subsequently, CPD applies a rigid transformation of the target
point-cloud to the source one (Figure 3). The algorithm converges
when one of two criteria is met: the algorithm reaches an upper

bound of 60 iterations, or the difference between consecutive log-
likelihood values falls below the tolerance of 0.001. The values
for both criteria were selected to be as strict as possible while
achieving convergence under 20 s given an average size of 400
points comprising of the point-clouds used as pairs for the CPD
registration. Following convergence, we selected as a neuronal
match to each source neuron the target neuron that minimized
across all pairs the mean square error (MSE) of registration to the
source.

2.4 General methodology for identifying
sub-types of neurons

We have produced a statistical description of the projection
motifs of a sensory first-order thalamic nucleus, namely the ventral
posteromedial nucleus (VPM) of the thalamus. We characterized
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neurons in terms of their dominant projection target (Section
2.4.1), and subdivided these groups based on their pattern of
projections to secondary areas (Section 2.4.2) as well as on the
similarity of the morphology (Section 2.4.3).

2.4.1 Distinguishing projection types
Prior to delineating neurons based on their projection or

morphological properties, we applied the t-SNE dimensionality
reduction technique (van der Maaten and Hinton, 2008) to
create a 2D embedding of the VPM neurons based on their
projection patterns across the six somatosensory areas. We thus
visualized the data in two dimensions and identified the main
sources in axonal variation across the cortex (Figure 4A). Each
neuron in its embedded representation was assigned a color that
corresponded to the brain area that was its dominant projection
target (Figures 4B–E). The dominant projection target of a neuron
was defined as the somatosensory area that receives the majority
of axonal terminal branches of the neuron compared to the other
somatosensory areas. This resulted in a fast, greedy and parameter-
free clustering approach which can be applied to quickly pinpoint
the dominant projection patterns of the available thalamocortical
(TC) morphologies.

To quantify the topographical correlation between the soma
positions of VPM neurons and their axonal terminals in the
somatosensory cortices, we performed a least-squares regression
to fit the soma position of these neurons to the medoids of
their axonal terminals. We selected the medoids instead of the
centroids to represent the multiple targets that a soma can
have, because the medoid measure provides an actual target
location that is in the data rather than a location between
two or more separated termination domains. By treating the
regression coefficient between the two coordinate systems as
a rigid transformation matrix, we extracted the corresponding
rotation by decomposing the transformation matrix using polar
decomposition. We then computed the Euler angles in the x, y,
and z axes from the rotation matrix to numerically assess the
3D rotation describing the topographical relationship between the
VPM soma positions and their cortical targets (Figure 4F).

Lastly, we assessed the distribution of axonal terminal branch
length per layer expressed inµm for each of the four somatosensory
areas receiving the highest projection length (barrel field, mouth,
nose and supplemental somatosensory area, see Figures 5A–E and
Supplementary Figure 1), in order to understand the lamination
patterns of each projection type.

2.4.2 Distinguishing projection motifs
The subsequent analysis involved finding projection motifs.

A motif was defined by the unique combination of brain areas
targeted by the axonal terminals of a given neuron. We identified
sub-types based on distinct projection motifs: monofocal neurons
projecting to only one area, bifurcating ones projecting to two areas
and smaller fractions projecting to more than two areas. For each of
the above TC neurons, we obtained the anatomical distribution of
their axonal terminals. To filter out weak connections, we estimated
which cortical areas received at least five terminal branches for
a given neuron. This provided for each neuron the list of areas

that it substantially targeted. By grouping neurons based on their
common projection lists, we could then highlight the total range of
projection motifs that this particular subset of neurons exhibited.
From these patterns, we counted the numbers of dedicated inputs
to a single-area, as well as bifurcations (i.e., targeting two areas)
and trifurcations or higher order motifs (Figure 5F). We found
motifs that exhibited first and higher order connectivity reaching
up to four jointly targeted somatosensory areas. A preliminary
assessment of the statistical significance of VPM projection motifs,
which uses the binomial test with Bonferroni correction similarly
to how it was achieved in Han et al. (2018), can be seen in
Supplementary Figure 1.

We then proceeded to quantifying the distribution of projection
motifs in relation to their respective dominant projection types.
The areas characterizing each motif were ordered in descending
order by the number of received axonal terminals from a single
neuron. For instance, motif SSp-bfd - SSs revealed a pattern
in which a given neuron most dominantly projected to the
somatosensory barrel cortex, while its second most dominant
target was the supplemental somatosensory area. We sorted
the motifs in descending order by the number of participating
neurons to assess the most predominantly targeted areas and
we subdivided the motifs in monofocal and multifocal ones to
better understand the combinations with which VPM neurons
targeted these predominant areas (Figure 5G). A potential issue for
multifocal neurons is that their secondary arborizations could be
located in the border between the dominant projection area and
the secondary one, thus raising concerns about the true nature of
such motifs which could be monofocal according to a different
anatomical delineation. To address this issue, we further subdivided
neurons participating in multifocal motifs in “center" and “border"
groups, based on whether they had at least four axonal terminals
in the secondary area with a distance >200 µm from the nearest
border with the dominant projection area.

2.4.3 Distinguishing morphological gradients and
types

We subsequently applied the Coherent Point Drift method to
delineate morphological clusters using the dissimilarity of their
axonal trees as a proximitymeasure (see Section 2.3 formore details
and Figure 6A, left for an example). Prior to CPD registration,
both neurons were re-centered such that their soma location is
located at coordinates 0,0,0. Given two neurons, we computed
their dissimilarity by first finding correspondences between the
axonal points of both neurons, followed by applying a rigid
registration of the former to the latter neuron. We did not
allow the registration algorithm to scale the axonal points, which
restricted the transformation to only rotating the target neuron. By
eliminating the operations of translation and scaling, we focused
on finding the optimal rotation required for one morphology to be
registered to another. By determining the mean squared distance
after convergence of the registration, we ensured the maximum
physical proximity between neurons and focused attention solely
to the difference in their axonal branching patterns. That allowed
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FIGURE 4

Two hundred and fifty-seven VPM neurons exhibit topographical organization in both their soma and axonal terminal location. (A) Scatter plot

illustrating a 2D embedding of the VPM neurons based on their projection patterns across six somatosensory areas (Section 2.4). The projection of

each neuron to a given area is defined as the total length of axonal branches that terminate in that area. Each acronym denotes a somatosensory

area and the respective color is used to label neurons that have that area as their dominant projection target. The colors are consistent throughout

the figure. The x- and y-axes correspond to the projection values of each neuron in the first and second dimension of the embedded space. (B)

Dorsal cortical flatmap overlaid with anatomical borders illustrating the axonal termination patterns of the VPM neurons (13.6 × 13.6 mm along the

anterior posterior and left-right axes). (C–E) Visualization of neuronal cell bodies in VPM across coronal (C), sagittal (D) and horizontal (E) planes (1.37

× 1.54 × 1.62 mm along the anterior-posterior, superior-inferior and left-right axes, respectively). The letters at the side of each panel denote the

plot orientation. (F) 3D scatter plot demonstrating the topographical correlation between the soma position of VPM neurons and their corresponding

axonal termination location. Blue color: VPM soma position, with the light-to-dark contrast reflecting the soma position along the ventral-dorsal and

medial-lateral axes. Green color: measured axonal terminals, with the light-to-dark contrast reflecting the terminal position along the

anterior-posterior and lateral-medial axis. Red color: predicted axonal terminals calculated based on VPM soma position using a least-squares model

(see Section 3), with light-to-dark contrast being the same as for the green points. The MSE for reconstructing the measured terminals with this

model was 931. The orientation of each axis is shown on its side and follows the RAS orientation: x-axis corresponds to the left-right, y-axis

corresponds to the posterior-anterior axis, and z-axis corresponds to the inferior-superior axis of CCF.
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FIGURE 5

VPM neurons exhibit distinct laminar projection patterns and can be further subdivided by higher order projection motifs. (A–D) Four plots

highlighting the cortical layer distribution of the first and second most dominantly targeted area for each VPM neuron, with the first area being either

the barrel field (A), mouth (B), nose (C), or supplemental (D) somatosensory area. x-axis: cortical layers. y-axis: number of neurons projecting to a

given layer with the highest fraction of terminal length in their first (blue color) and second (orange color) most dominantly targeted area. (E)

Schematic illustration that summarizes panels (A–D). The vertical boxes represent cortical layers 1–6 and the nested horizontal boxes represent VPM

with its subdivisions based on the projection types that we have delineated in this work. The arrows represent projections to a cortical layer and the

arrow thickness represents the relative number of neurons projecting to that layer. The color-coding is the same as in panels (A–D) and it

distinguishes primary from secondary projections. The sub-nesting of projection types indicates common projection patterns; SSp-bfd and SSp-n

projecting neurons have common laminar projection patterns in both their primary and secondary targets, while SSp-m and SSs projecting neurons

share only common primary laminar projection targets. (F) Distribution of neurons based on the total number of jointly targeted brain areas. The

motifs exhibit first and higher order connectivity reaching up to three jointly targeted somatosensory areas. x-axis: categories of the di�erent orders

of connectivity: monofocal, bifurcating, trifurcating and quadrifurcating correspond to the targeting of one, two, three and four areas, respectively.

y-axis: number of neurons belonging to each category. The color-coding is used to distinguish the di�erent projection types and is consistent with

Figure 4A, in which the projection types are first introduced. (G) Distribution of the unique projection motifs identified in this work that have been

sorted in descending order by the number of neurons participating in each motif and color-coded by the dominant projection target area, with the

color-coding as in Figure 4. The areas characterizing each motif are ordered in descending order by the number of axonal terminals received from a

single-neuron. The red, blue and orange colors are used to distinguish neurons based on the topography of their projections. Red: monofocal

neurons. Blue: multifocal neurons which project in the border between the dominant and the secondary target areas. Orange: multifocal neurons

having at least four axonal terminals in the secondary target areas with at least 200 µm distance from the border between these areas and the

dominant target area.

us to decouple morphological difference from the neuronal soma
locations or their rotation along the inferior-superior axis.

When CPD was performed over all available morphology
pairs, we obtained a dissimilarity matrix between all neurons.
This matrix could now be used to characterize the morphological
diversity between neurons, which was not possible in the space
of complete axonal trees containing a variable number of points
across different morphologies. The first step was to reduce the
dimensionality of the dissimilarity matrix to its two most dominant
dimensions in terms of explaining data variance. As described
in Supplementary Section 1.4, we used the t-SNE dimensionality
reduction technique to the dissimilarity matrix, which estimates
a non-linear embedding of the data that respects the topological

distance between data points (van der Maaten and Hinton, 2008).
This enabled us to visually inspect the morphological diversity in
two dimensions with the use of a scatter-plot. We observed that
the highest density of the data was along a 1D ridge, hence the
second step was to quantify the observed diversity by defining a
morphological gradient that can characterize the data, followed by
partitioning the gradient into clusters for a simpler morphological
characterization.

To define a morphological gradient implied that we could
represent each data point on the two dimensional t-SNE embedding
using a single number instead of two coordinates, which was
inspired by the representation of the data as a curved line in the
scatter plot of Figure 6A. Each neuron was assigned a gradient
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FIGURE 6

The unbiased characterization of VPM neurons based on their morphological diversity suggests the presence of a gradient that is aligned with their

topographical and higher order projection properties, as well as correlated with distinct morphometrical measures. (A) Scatter plot illustrating a 2D

embedding of the neuronal morphological diversity (see Section 2.4). The plot has been color-coded three times to highlight the similarity between

the three predominant approaches used to distinguish cells in this work, namely by: morphological gradient (A, left), morphologically-defined type

(A, middle) and the projection type (A, right) of each neuron. The two red dots at the top and bottom right parts of the gradient in (A, left) indicate the

dorsal-most root point and a ventral anchor point, which we used to normalize the gradient scores in the range 0–1. The legend in (A, middle)

denotes the color-code of the morphological types, while the legend in (A, right) denotes the color-codes of the projection types, which is described

in Figure 4. The x- and y-axes correspond to the morphological values in the first and second dimension of the 2D embedding space. (B) Distribution

of the unique projection motifs sorted by the average gradient index of all neurons characterized by each motif (see Section 2.4.2). x-axis

corresponds to unique projection motifs and y-axis corresponds to the average gradient index of neurons that are part of a motif. The labels below

the x-axis indicate the respective morphological types that characterize the above motifs. The color of each motif corresponds to the color of its

respective gradient index as shown in (A). Above the gradient are plotted a number of example neuronal morphologies. Each morphology has the

same color as the respective gradient index that sits below its soma position, which highlights the order of the morphology the along the gradient.

The arrow next to the second to the right-most morphology and the bar on top of the same morphology are used to exemplify two morphometrics

used in this work, the “branching width” and the “radial distance”. The single and double asterisks are used to distinguish the two examples. (C–E)

Comparison of the gradient indices of VPM neurons with three significantly correlated morphometrical measures (p < 0.001), namely number of

branching points (C), average branching width (D) and average radial distance (E). x-axis corresponds to the gradient indices, y-axis corresponds to

values of the respective measure and the r value next to the title of each plot corresponds to the Spearman’s r correlation coe�cient between

gradient and morphometric value: 0.61 for branch points, 0.87 for width and 0.97 for radial distance. The color-coding of all scatter plots is

consistent with (A, middle) and indicates the morphological type that each point (neuron) belongs to.

index based on the geodesic distance between its coordinates and
the root point coordinates in the 2D embedding space: the root
point was assigned to be the point in the upper right end of the

t-SNE embedding, which belonged to a barrel-cortex projecting
neuron (Figure 6B). The reason for this selection was that barrel
cortex projecting neurons were located in the dorsal part of
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VPM, hence the higher the gradient index the more ventral the
neuron was. This provided a positive correlation in Figures 6C–E
(see Section 4 for discussion on the topographical analysis). The
gradient indices were normalized by the highest index such that
they can be represented in the range 0–1.

We then proceeded to check whether there was an alignment
between the morphological gradients and the previously identified
projection types or motifs. We overlaid the morphological types
with the projection types and assessed their overlap (Figure 6A,
right). Therefore, we could now pinpoint potential topographical
correlations between the soma locations of each cluster and their
respective axonal terminals.

We distributed the unique projection motifs identified in this
work by sorting them by the average morphological gradient of
the neurons belonging to each motif. Hence, we ordered the
motifs along their position in the lower embedding morphological
space (Figure 6B) and then assessed whether we could place them
within a continuum of morphologies defined by the gradient.
We then searched for statistically significant correlations between
the gradient indices and a number of morphometrical measures,
in order to understand whether the morphological differences
assessed using our approach were in agreement with pre-computed
morphometrics.

To better understand the morphological diversity, we applied
hierarchical clustering to the two dimensional embedding to define
three clusters or morphological types (Figure 6A, middle). We
thus partitioned the gradient into three topographically organized
segments that reflect the dorsal, middle and ventral parts in the
coronal plane of VPM that most strongly target the barrel, nose and
mouth somatosensory cortices, respectively (Peng et al., 2021) (see
Section 3.1 for a discussion on VPM topography). We assessed the
distribution of the three morphological types across a number of
morphometric measures and we computed which morphometrics
exhibit significant differences in their distributions across the
three types. The motivation was to understand whether the three
morphological types exhibited distinct morphological properties
and to highlight such properties, which could help us further
interpret the morphological types.

2.5 Data visualization

To proceed in visualizing the results, an appropriate data
representation was necessary. Initially we represented the
projection or morphological types as two binary 4-dimensional
arrays in which the first three dimensions corresponded to the
three axes of the 10 µm Allen Reference Atlas: 1,320 voxels in the
x-axis representing the anterior-posterior direction, 800 voxels in
the y-axis representing the superior-inferior direction and 1,140
voxels in the z-axis representing the left-right directions, with the
origin being the anterior-superior-left corner of CCF. The fourth
dimension corresponded to the number of neuronal types under
analysis. The first 4D array was the source array and encoded the
soma positions of all neurons and the second 4D array was the
target array and encoded the respective axonal terminal positions.
For instance, if the target voxel 0,0,0,0 had the value 1, this means
that there existed an axonal terminal from the first neuronal type

at the point (0,0,0) in the 10 µm PIR orientation. A value of 1 at
the corresponding source voxel would likewise reflect the presence
of a soma of the first type at this given coordinate.

Moreover, we implemented a color-coding strategy to
simultaneously visualize the different neuronal types. Each
type received a unique RGB color as its identification color for
any subsequent form of visualization. We could now visually
distinguish potential topographically organized patterns found
across the different neuronal types, by looking at their color
distribution in plots of their source and target regions, prior to
proceeding to more numerically rigorous analyses.

Since we characterized each morphological or projection
cluster using different colors, we produced dorsal cortical flatmaps
(see Figure 7A) overlaid with anatomical boundaries, as well as 2D
projections of VPM (Figures 7B–D, see Supplementary Section 1.2
for the technical implementation details), in order to visually
inspect the various clusters. The flatmaps were produced by
adapting code from Knox et al. (2018), but we made a number
of modifications to improve the anatomical distinction of the
projection patterns. In summary, we delineated the anatomical
boundaries of ARA using thick black lines, plotted the acronym
of each area on its respective center and estimated the flatmap of
the STP-based gray matter volumes by taking their average value
only across layers 2/3 and 4, such that individual barrels of the
barrel cortex become visible. Since the flatmaps are symmetrical
and VPMneurons do not have contralateral projections, we created
two dorsal flatmaps of only the left hemisphere to reduce memory
usage. We therefore mirror the axonal termination patterns of the
right hemisphere to the left flatmap one.

To represent the VPM soma position distribution in 2D, three
maximum projection plots were created for the coronal, sagittal
and horizontal planes, respectively. For each plane, we overlaid
the maximum projection of three different components along the
plane’s axis: first, the color-coded locations of the somata, second,
the background gray-matter volume from the STP-images of the
CCF v3.0 template (Wang et al., 2020) and third, contour lines that
delineated the anatomical borders of VPM according to the ARA
parcellation (Figure 7C). Lastly, we imported all the morphologies
that were of interest directly to the Scalable Brain Atlas (SBA)
composer (Bakker et al., 2015) tool, which enabled an easy-to-use
3D rendering of the data within the CCF template. In SBA, we
color-coded the morphologies using the same strategy as described
above (see Supplementary Section 1.5).

3 Results

Based on the collection of reconstructed neurons collected here
we have identified a topographical correlation between the location
of source somata in VPM and their arborization patterns in the
somatosensory cortices.We analyzed this topographical correlation
and identified different neuronal populations inside VPM that
preferentially targeted different combinations of somatosensory
areas. In the paragraphs below, we will describe these findings in
more detail.
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FIGURE 7

Dorsal cortical flatmap and maximum projection plots of VPM verify the topographical distribution of the morphological gradient that characterizes

VPM neurons. (A) Dorsal cortical flatmap illustrating the axonal termination patterns of the VPM neurons (13.6 × 13.6 mm along the anterior posterior

and left-right axes). The color-coding shown in the top left legend is consistent across panels and is the same used for the morphological gradient

index in Figure 6. The correlation between the morphological gradient and the gradient of axonal terminals along the anterior-posterior,

lateral-medial axes, as defined by Spearman’s r, is −0.8, while the equivalent correlation with the gradient of soma positions along the ventral-dorsal,

medial-lateral axes is −0.83 (p < 1e-05). The color-coding strategy used consistently throughout figures (A–D) is explained in the inset of panel (A).

(B–D) Visualization of neuronal cell bodies in VPM across coronal (B), sagittal (C), and horizontal (D) planes (1.37 × 1.54 × 1.62 mm along the

anterior-posterior, superior-inferior and left-right axes, respectively). The letters at the side of each panel denote the plot orientation.

3.1 VPM neurons can be characterized by
their topographical organization, layer
target specificity and higher order
projections

When embedding in two dimensions the total terminal length

per neuron across the somatosensory areas, four of the six areas

appeared to be dominantly targeted, namely SSp-m, SSp-n, SSp-
bfd and SSs (see Section 2.2 for notations). The data created

four sharp clusters, with each cluster being almost completely
homogeneous in terms of the dominant projection target of its

neuron members; the only exceptions are a few neurons located

in the middle of Figure 4A having the SSp-ll and SSp-ul as their

dominant projection targets. Therefore, we concluded that neurons
could be characterized as dominantly projecting to the primary

somatosensory areas representing mouth, nose, whiskers or the
supplemental somatosensory area.

When overlaying the projection types onto a dorsal cortical
flatmap (Figure 4B), they appeared to be topographically organized.
This was evident by the minimal presence of projections outside
the dominant projection target, which occurred mostly in the
borders between areas, with the exception of the SSp-m neurons
targeting the lateral part of SSs. The various somatosensory targets
(barrel field, mouth, nose, supplemental) were seen to originate in
spatially distinct subareas of VPM. Along the dorsal-ventral and
lateral-medial planes inside VPM, neurons appeared to target the
barrels, nose and mouth, respectively, which indicated a similar
topographical organization of the soma distribution (Figures 4C–
E). This finding has been extensively described in the rat VPM
(Waite, 1973; Saporta and Kruger, 1977; Ito, 1988; Sugitani et al.,
1990) and more recently in the mouse VPM (Peng et al., 2021).
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To validate this observation numerically, we fitted for all
neurons their soma position to themedoids of their axonal terminal
points and extracted the Euler angles describing the rotation
required for the former to match the latter, as described in Section
2.4.2. The MSE of transforming the soma coordinates to their
target medoids at 10 µm resolution was 931, which we considered
adequate (see Figure 4F). The corresponding Euler angles in the
x, y, and z axes, respectively, were −62.8, −1.5, −126.8. We thus
deduced that for the VPM somata tomatch their target centers, they
have to perform a negative rotation around the anterior-posterior
and lateral-medial axis, with an almost zero rotation around the
dorsal-ventral axis. This finding quantitatively validates the above
observation that dorsal-ventral and lateral-medial soma positions
in VPM correspond to posterior-anterior and lateral-medial axonal
terminal locations in the somatosensory cortex.

Regarding preferential laminar targets, a clear majority of
VPM neurons projected to layers 2/3 and 4. In SSp-bfd, SSp-
n and SSs, layer 4 was the most dominantly targeted layer with
5,546, 5,022 and 3,487 µm of axonal terminal length, respectively,
with layer 2/3 being the second most targeted cortical layer
(Supplementary Figures 2A, C, D). In SSp-m, layer 2/3 was the
most dominantly targeted layer with 3319 µm of axonal terminal
length, with layer 4 being the second most targeted cortical layer
(Supplementary Figure 2B). When taking into account the layer to
which neurons project their highest fraction of axonal terminals
length, we identified layer 4 as the selected layer for the SSp-
bfd and SSp-n projection-types (53 and 25 neurons, respectively)
and layer 2/3 for the SSp-m and SSs projection-types (35 and
23 neurons, see Figures 5A–D). In addition, when assessing the
layer with the highest terminal length for the secondary target of
multifocal neurons, we identified layer 6b for SSp-bfd and SSp-m
(39 and 20 neurons), layer 6a for SSp-n (15 neurons) and layers 4
and 5 for SSs (11 neurons each, Figure 5E).

Regarding interpretation of these findings, projections to layer
4 are well established as the “core” projections that carry feed-
forward input from the lemniscal system to the cortex and have
been shown to display driver-like characteristics (Sherman, 2016;
Harris et al., 2019; Clascá, 2022). Inputs to layer 2/3, although
predominantly modulatory, can also evoke the firing of action
potentials in some cells, suggesting that both layers participle in the
encoding of active touch through direct signals from the thalamus
(Crochet et al., 2011; Viaene et al., 2011). Moreover, neurons
projecting to layer 2/3 have a shorter length of arbors than the
layer 4 projecting ones, as well as shorter projections to the deeper
layers, as has been previously reported in Peng et al. (2021). The
functional relevance of these secondary projections to the deeper
layers is something that has not been experimentally explored in
VPM, which has been traditionally considered to be a sensory
relay nucleus with point-to-point connections. However, this will
be further elaborated in Section 4. Lastly, the secondary projections
to layers 2/3 and 4 by multifocal SSs-projecting neurons can be
explained by most of these neurons having SSp-m or SSp-bfd as
their second most dominantly targeted area, which predominantly
receive input in layer 2/3 or 4, respectively, as described above.

Regarding the broadcasting properties of VPM neurons, 26%
of VPM neurons were found to be monofocal, with 53% being
bifurcating, while smaller fractions of neurons were tri- or

quadrifurcating (17 and 1.5%, respectively, see Figure 5F). SSp-m,
SSp-n, SSs receive markedly more multifocal projections relative to
their monofocal ones (49 multifocal over 20 monofocal projections
for SSp-m, 42 over 6 for SSp-n and 34 over 4 for SSs), while
SSp-bfd has a more balanced ratio of multifocal to monofocal
projections (55 over 38). The presence of monofocal VPM neurons
sending dedicated projections to specific somatosensory areas, with
individual barrels being themost predominant target, is well known
in literature. For instance, in rats it has been reported that 70%
of barrel-cortex projecting VPM neurons target individual barrels
and 30% targets multiple barrels, with the latter located in the
marginal regions of VPM (Sugitani et al., 1990). This raises the
question about the presence and function of neurons from first-
order nuclei targeting multiple somatosensory areas instead of
exclusively targeting a single area (Clascá et al., 2012). To better
understand these bifurcated projections, we put the projection
motifs within the context of their dominant projection targets
and we overlaid them with the morphological gradients, which we
discuss in the following paragraphs.

When observing the entire spectrum of VPM projectionmotifs,
17 out of 40 motifs in total were substantially represented by at
least four neurons (Figure 5G).We noticed that monofocal neurons
targeted mostly the whisker and the mouth somatosensory areas,
while the nose and supplemental areas were represented by only
six and four monofocal neurons, respectively. The remaining areas
were targeted by multifocal neurons. For each projection type in
the barrel cortex and mouth part, the biggest fraction of neurons
were monofocal (32 out of 79 and 20 out of 49, respectively),
the second largest fraction also targeted SSs (30 and 16 neurons,
respectively) and the third largest fraction also targeted SSp-n (12
and 13 neurons, respectively).

To better understand the topographical organization of
multifocal projection motifs we assessed the distribution of
projections across the primary and secondary projection target
areas. For each multifocal neuron, we counted howmany terminals
were at least 200 µm away from the border between the primary
and secondary targets. We used this as a criterion to better
understand whether secondary projections were mostly distributed
toward the center of the secondary area or more toward the border.
Therefore, we classified a multifocal neuron as “center” if it had
at least four axonal terminals away from the border between its
primary and secondary target areas, or as “border” otherwise. For
the majority of multifocal motifs, the number of neurons projecting
proximal to the borders of the secondary target was substantially
higher than the ones projecting further away from the border (see
Figure 5G). The only exception was for joint projections to SSp-m
and SSs, for whichmotif SSs - SSp-m had two border and five center
neurons, while motif SSp-m - SSs had eight border and eight center
neurons. This suggests that these border-projecting neurons could
actually be monofocal ones with broad projections reaching the
borders to neighboring areas which could be parts of the dominant
projection target in different delineation schemes. This finding will
necessitate additional analysis to be carried out in future studies.

Regarding dominant projections to nose and supplemental
somatosensory areas, the fraction of secondary projections to the
barrel cortex and mouth was almost equal and which shows that
the secondary projections are also affected by the topographical
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organization of VPM neurons across the dorsal-ventral axis
(Figure 4B). Within these two projection types there existed two
identical trifurcating motifs to the barrel cortex, supplemental and
nose, and nose, supplemental and mouth, respectively. However,
these motifs never targeted the barrel cortex and mouth together.
We thus assume that the barrel cortex and mouth act as two
opposite poles in the topographic spectrum of projections and all
other projection types exist in between those extremes. This leads to
the question of whether there is amorphological difference between
neurons participating in these motifs, and between neurons that are
monofocal or multifocal.

3.2 Morphological diversity of VPM
neurons is aligned with their projection and
topographical properties

We created a distance matrix over all VPM neurons to
better understand their morphological diversity, by deriving the
CPD-based morphological distance between all possible pairs (see
Supplementary Section 1.4). We represented the morphological
diversity by embedding the distance matrix in two dimensions (see
Section 2.4), which resulted in a curved-line representation of the
data. By aligning this curved line with the dorsal-ventral axis of
the VPM soma location, we could now represent the data as a
morphological gradient that is further aligned with the other two
characterizations of VPM neurons discussed in this work, namely
their topography and projection types (Figure 6A, left).

We thus highlighted the relationship between projection and
morphological diversity, by overlaying the projection types on top
of the gradients (Figure 6A, right), which became more apparent
when partitioning of the gradient into three clusters. The clusters
could now be interpreted as three zones of projection targets
(Figure 6A, middle). Neurons in clusters 1, 2, and 3 primarily
targeted either SSp-m, SSp-n and SSp-bfd, respectively, or a fraction
of SSs. In each cluster, secondary arborizations were found in either
SSs or another primary somatosensory area, with the exception
of SSp-bfd and SSp-m never receiving projections from the same
neuron.

By ordering all projection motifs in descending order based
on their average gradient index of the neurons that belong to
them, we put the motifs within the context of the morphological
gradient that had a decreasing index along the ventral-dorsal
axis (Figure 6B). Cluster 1 involved the ventral-most part of the
gradient, in which neurons targeted SSp-m either monofocally or
multifocally together with SSp-n and SSs. The transition to cluster
2 involved neurons that targeted SSs and SSp-n, either monofocally
or both together and SSp-m or SSp-bfd but never with SSp-bfd and
SSp-m being part of the same motif. The transition to cluster 3
involved the dorsal-most part of the gradient, in which neurons
targeted SSp-bfd either monofocally or multifocally with SSp-n
and SSs. This alignment thus established a straight line of possible
somatosensory projections that begins at SSp-m and ends at SSp-
bfd and can be seen as a blueprint for rules dictating the projection
properties of a random VPM neuron based on the placement of its
soma position.

To understand differences in morphologies along the gradient,
we correlated the gradient with a number of morphometrical
measures and found a statistically significant correlation for three
measures, namely mean radial distance from the soma (r = 0.97,
p < 0.001), number of branching points (r = 0.61, p < 0.001)
and branching width (r = 0.87, p < 0.001, see Figure 6B for an
example illustration of thesemorphometrical measures). Therefore,
the gradient could be interpreted as a gradual increase in the length,
number and width of axonal branches (Figures 6C–E).

We further analyzed the relationship between topography
and morphological diversity by overlaying the morphological
gradient onto a dorsal cortical flatmap (see Figure 7A). The results
were largely in agreement with the topographical organization of
projection types described above. However, since the gradient index
had a continuous value instead of a discrete category, we could
now assess the distribution of the gradient along anatomical space.
On the cortical surface, the gradient index was inversely correlated
with the axonal terminal positions along the anterior-posterior axis.
Within VPM, the gradient index was inversely correlated with the
position of the somata along the ventral-dorsal and medial-lateral
axes (Figures 7B–D). The reason for inverse correlation was that
we selected a neuron with a highly dorsal soma location having the
lowest index of the gradient, such that the gradient could exhibit
a positive correlation with a number of morphometrics, which
we describe in the paragraphs below. The relationship between
gradient and topography was further demonstrated when fitting
the inferior-superior and right-left coordinate of all VPM soma
locations to their respective morphological gradient, which yielded
a low MSE of 0.061.

3.3 Delineating individual barrels expands
the scope of the analysis in the CCF to
whisker-specific connectomics

We proceeded by applying the same statistical analysis as the
one performed in Section 3.1, but now taking into account the
individual barrels (Figures 8A, C). See Supplementary Section 1.3
for a detailed description on how the individual barrels were
delineated. By assessing the barrel-specific projection motifs, we
observe a small number of neurons targeting individual barrels
either monofocally or jointly with other barrels or somatosensory
areas. From all neurons, only 41 monofocally targeted individual
barrels, 30 targeted multiple barrels but no other somatosensory
area and 76 targeted a combination of barrels and another
somatosensory area. Regarding enriched motifs, we identified only
four motifs involving individual barrels that were targeted by more
than one neuron. Particularly, three neurons jointly targeted barrels
b3, c3, c4, c5, two neurons jointly targeted barrels d8 and e8 and
area SSp-n, two neurons jointly targeted barrels γ and β , two
neurons jointly targeted barrel c7 and area SSs and two neurons
jointly targeted barrels b1, b2, c1, c2, and β (see Figure 8B).

Likewise, when estimating the number of neurons that target
each barrel with at least four terminals, we observed that a barrel
was targeted on average by 16 neurons, with barrels c4, d5, and c3
being targeted by the highest number of neurons (26, 25, and 25,
respectively). When further expanding this analysis by computing
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the fraction of neurons that are monofocal or multifocal and
target single or multiple barrels, we found an overrepresentation
of multi-barrel targeting neurons that were either monofocal
or multifocal. In particular, only barrel α was targeted by one
monofocal neuron in a single-barrel fashion. Barrels a2, a3, c7, d8,
e4, e6, e8 were targeted by two multi-focal neurons on average in a
single-barrel fashion. The majority of the projections that barrels
received originated from multi-focal and multi-barrel neurons
(311 projections), followed by multi-barrel and monofocal neurons
(201 projections). Taken together, the data suggests that there
is additional structure beyond the one barreloid to one barrel
projection (see Figure 8D), but the sample size is insufficient to
statistically characterize this structure.

4 Discussion

In this work, we have developed a workflow for translating
∼300 morphological reconstructions of VPM neurons into meso-
scale projection statistics. We obtained data from the publicly
available repositories of the MouseLight (Winnubst et al., 2019)
and Braintell projects (Peng et al., 2021), which we combined in
the analysis to deal with limited sample size. Additionally, we have
created a portal for unified access to these morphologies, as well
as morphologies from other public databases, called the Neurons

Reunited Portal, to improve the reusability of morphological
data. The statistical analyses were focused on two goals: firstly,
analyzing the topographical organization of these neurons in
terms of their soma distribution inside VPM and their axonal
termination patterns across the different somatosensory areas.
Secondly, characterizing the neuronal diversity in terms of their
morphological and projection patterns and identifying distinct
subpopulations of neurons.

We first used the distribution of terminal branch length of
axonal projections across the somatosensory areas as a measure
for characterizing neurons by their dominant projection targets.
We thus identified different projection motifs, with a fraction of
neurons targeting only one area and subsets of neurons targeting
two or more areas. For characterizing morphological diversity, we
adapted the Coherent Point Drift (CPD) technique (Myronenko
and Song, 2010), which uses an Expectation-Maximization strategy
to align two point clouds, in this case two morphologies, and
then register one cloud to another. We modified CPD to work
with axonal trees and used rigid registration to compute the
registration error as a distance between all possible morphological
pairs. This resulted in a distance matrix which was used to define a
morphological gradient characterizing the diversity of all available
data, and which we further parcellated into three clusters. We
assessed the covariation of the morphological gradient of VPM
neurons with their topographical organization and projection
motifs by overlaying the motifs on the gradient and aligning the
gradient with the dorsal-ventral axis. Regarding their topographical
orientation, we aimed to uncover rules to predict where a neuron
will terminate its projections in relation to where its soma is
located. To accomplish that, we developed 2D visualization tools
in the form of dorsal cortical flatmaps and VPM maximum
projection plots. This allowed us to place the newly characterized

morphologies within the spatial context of the cortical surface and
the VPM nucleus while maintaining their diversity in terms of their
projection or morphological patterns.

We thus identified a gradient ordering the morphological
characterizations of VPM neurons, which was aligned with
their topographical organization and with their projection-
based characterizations. This suggests non-random morphological
differences along the dorsal-ventral axis in VPM, which is in
agreement with (Peng et al., 2021), as well as with previous works
on the VPM somatotopy of the rat brain (Waite, 1973; Saporta
and Kruger, 1977; Ito, 1988; Sugitani et al., 1990). These works
have illustrated that VPM soma positions along the ventral—dorsal
and medial—lateral axes correspond to axonal arbor positions
along the anterior—posterior and lateral—medial axes, which is
indicative of a 3D rotation of soma positions relative to their
axonal projections. By incorporating neurons from theMouseLight

repository in addition to the Braintell ones, this work has validated
this topographical finding of VPM neurons and has extended it
with respect to its morphological diversity: neurons can be sorted
by a morphological gradient, which is aligned with the dorsal-
ventral and lateral-medial axes of their soma positions, and which
is characterized by an increase in number of branching points,
radial distance from the soma and width of terminal projections.
This has implications for spatially resolved models of the thalamus;
for a realistic model of VPM, it is not enough to use the above
topographical rules for placing an average axonal morphology from
the available sample set, but one has to adapt its morphological
properties based on where the morphology will be placed.

Before discussing the projection properties of the various
morphological characterizations, we first have to acknowledge the
importance of previous works in opening up the investigation of
the heterogeneity of axonal projections at the individual neuron
level. The work of Han and coworkers was instrumental for
uncovering the communication patterns between different cortical
areas which involve different projection-types of neurons with
distinct functional roles in neural circuits (Han et al., 2018). Using
neurons from the MouseLight database, Morita and coworkers
compared the spatial extent of the axonal projection patterns
to striatum of intratelencephalic (IT) neurons with pyramidal-
tract (PT) neurons and found, despite the intrinsic variability,
quantitative differences between those groups (Morita et al.,
2019). We extended this line of work to the thalamus and
uncovered similar principles as the ones described for the mouse
visual neurons: dedicated neurons projecting to one area and
broadcasting neurons projecting to multiple brain areas. Hence,
information in the thalamus is distributed through ensembles
of dedicated or broadcasting pathways with distinct functional
implications which is open for investigation in future studies.

These pathways are not homogeneous in space, but as shown
above, they can be sorted along the dorsal-ventral axis in VPM in
three coarse groups, which are: projections that primarily target
the barrel cortex but can also target the nose and supplemental
areas, projections that primarily target the nose but can also target
the barrel cortex, mouth and supplemental area, and projections
that primarily target the mouth but can also target the nose and
supplemental area. However, these unique sets of motifs are never
targeting the mouth and whiskers together, due to their distance
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FIGURE 8

The delineation of individual barrels in mouse barrel cortex enables the systematic analysis of the projection patterns of VPM neurons on a

finer-grained level of parcellation than previously possible using the Allen Reference Atlas. (A) Inset of a top view cortical flatmap centered around the

barrel cortex, in which the distinct individual barrels have been delineated. The name of each barrel is plotted in yellow at the upper right corner of its

respective area in the flatmap, while the lower left part of the X character next to each name is used for marking the barrel center. (B) Distribution of

projection motifs that take individual barrels into account. Motifs are presented in descending order by their distribution of participating neurons.

x-axis: motif that is color-coded as shown in the legend. y-axis: number of neurons participating in a given motif. Name of each motif with each

corresponding color in the plot. Motifs with only one participating neuron were not included. (C) Snapshot of a 3D rendering of the individual barrels

within a whole-brain context. The barrels are rendered as small 3D ellipsoid meshes, with each barrel being visualized with a distinct color. Additional

rendered structures include the VPM nucleus as a pink mesh and two consecutive coronal sections in gray-scale marking the boundaries of the

barrel cortex along the anterior-posterior axis. (D) Distribution of the di�erent projection motifs based on the number of neurons sending at least

four axonal terminal projections. x-axis: individual barrels. y-axis: number of neurons targeting a barrel, which is partitioned in four groups based on

the type of their projections. The blue, orange, green, and red colors highlighted in the legend indicate the four di�erent possible projections that a

given barrel can receive from VPM neurons, namely projections from monofocal neurons targeting a single barrel (blue), monofocal neurons

targeting multiple barrels (orange), multifocal neurons targeting a single barrel (green) and multifocal neurons targeting multiple barrels (red).

along the dorsal-ventral axis. Therefore, the mouth and whisker
representations of the somatosensory cortex act as two opposite
poles in the range of VPM projections patterns, between which all
above described motifs exist, with the nose representation existing
in the middle between the whiskers and the mouth, while the
supplemental area is mostly receiving secondary projections. We
have thus illustrated how two sources of information, the soma
position and the morphological properties of neurons, are spatially
correlated with the projection motifs that have been identified in
this work.

An interpretation for the function of broadcasting neurons
is the encoding of shared information in a form suitable for
multimodal associations across subsets of areas (Han et al., 2018).
While projections from monofocal neurons are considered to be

functionally tailored to their respective target area, projections
from multifocal neurons could potentially be related to different
functional circuits involving a primary target in layer 2/3 or 4,
which in most cases is located in SSp, and secondary targets
in the infragranular layers, which in most cases is located in
SSs.

One may wonder how these different projection motifs are
shaped during brain development. By assessing the morphological
properties of the different projection motifs in relation to their
topography, we observed a gradual decrease in the length and
dispersion of axonal branches and terminals when traversing across
the ventral-dorsal axis in VPM. Deriving a causal explanation
of this finding is difficult due to the lack of morphological
reconstructions across different developmental time-points. We
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speculate that the reason is related to the anatomical position
and the genetic programming of these neurons (Clascá et al.,
2012; Clascá et al., 2016; Molnár et al., 2020). An advantage
of our CPD-based approach is that it represents a significant
extension of existing tools; it does not require anatomical
labels to characterize neurons. It is unbiased and takes into
account only the axonal tree, but it does so to the fullest.
Moreover, the registration of neurons to CCF allows them to be
integrated with other similarly registered datasets and to be cross-
validated by other characterizations of neurons based on their
electrophysiological (Gouwens et al., 2020), transcriptomic (Lein
et al., 2007), or cell density (Kim et al., 2017) properties, for
instance.

Despite VPM being selected as a suitable use-case, the
workflow can be extended to any thalamocortical circuit of interest
provided that an adequate number of reconstructed morphologies
is available. While there is no clear definition of an adequate sample
size, the coverage of all topographical subdivisions of a thalamic
nucleus using LRPN morphologies necessitates the reconstruction
of hundreds of individual neurons. This is currently only the case
for VPM; the second, third and fourth most densely sampled nuclei
are the ventral anterior-lateral complex of the thalamus (VAL)
with 41 neurons, the ventral posterolateral nucleus of the thalamus
(VPL) with 36 neurons, and the posterior complex of the thalamus
(PO) and the mediodorsal nucleus of thalamus (MD) with 17
neurons each.

Previous works have registered thalamocortical neurons of
the rat in local volumetric structures representing the barrel
cortex (Egger et al., 2014; Udvary et al., 2022). A major
advantage of our approach compared to these works is that
our analysis can be applied to morphologies that have been
registered to the whole-brain template of CCF and is thus
not restricted to well-defined but localized models of individual
barrels. While one can obtain insights regarding intra-barrel
connectivity with such localized approaches, directly connected
functionally relevant structures such as other somatosensory
areas and thalamic nuclei are not being explicitly modeled.
As a consequence, the topographical organization and higher
order connectivity of these neurons is lacking. By modeling
these interactions on a whole-brain scale, one can directly
use this information from the morphological reconstructions
without approximation.

We would like to discuss a number of issues that we
encountered when implementing this analysis workflow. Primarily,
aligning thalamic neurons with each other or with the pial
surface is a tough problem given their curvature at the sub-
cortical level and the overdispersion of terminal trees at the
cortical level. This makes it challenging to create consensus
neurons that can be considered examples of each projection or
morphological type, similarly to how it was done in Gao et al.
(2022). Another challenging issue is finding accurate point-to-point
correspondences between two axonal trees similarly to what has
been done successfully in dendrites (Batabyal et al., 2020). This
is due to the presence of hundreds of terminals and hundreds of
branches, which results in a computationally demanding task for
dynamic programming algorithms that could potentially be more
accurate than CPD.

Additionally, 26 out of 256 Braintell neurons have serious
registration issues (see Section 2.2 for more details), which
renders them inappropriate for being incorporated in this analysis.
Furthermore, we currently do not have densely enough sampled
morphologies to estimate statistically significant axo-dendritic
appositions and we do not have registered interneurons in order
to derive a proper inhibitory to excitatory ratio of projections (Liu
et al., 2023). Lastly, information about pre-synaptic boutons is
currently not available in both theMouseLight andBraintell datasets
and as such the workflow cannot incorporate more elaborate
analyses involving the VPM bouton distribution as the ones shown
in Casas-Torremocha et al. (2019), Rodriguez-Moreno et al. (2020),
and Casas-Torremocha et al. (2022). We here highlight these issues
by emphasizing them as worthy problems to tackle.

As a consequence, we suggest to turn these issues into an
open call to the neuroscience community to work synergetically
together using portals such as the one presented here to create
unifying scaffolding models underlying the network connectivity
of the mouse brain and potentially extending to other species.
We thus release this pilot study, which for the points addressed
above could serve as a valuable resource to the community, whose
feedback and experiences we would like to use to improve our
efforts. This work does not develop new anatomical techniques,
data analysis algorithms, or simulation approaches. The existing
ones are adequate, but nevertheless have failed to fulfill expectations
because they were used in isolation. Single-cell labeling methods,
combined with cutting edge neuroinformatics tools are utilized
here together within a collaborative infrastructure. The innovation
is thus to link together the different approaches using model-based
analysis. In the following paragraphs we propose a number of future
extensions to this work that could be beneficial to the community.

The current analytic workflow will be updated to incorporate
reconstructed neurons from a small repository of in-house
manually traced and precisely placed neurons from a recently
developed pipeline whose description is in a work currently
under preparation. Besides incorporating more data into the
analysis, the reason for including this repository is to use CPD
for estimating one-to-one matches between the in-house neurons
and the current MouseLight and Braintell morphologies. Thus, we
intend to reformulate our approach as a curation tool for validating
the registration quality of neuronal morphologies. This matching
can then lead to a thorough assessment of registration accuracy
in terms of coverage of cortical layers and subcortical nuclei, in
which the in-house neurons will act as the ground truth given their
curation by neuroanatomical experts. By creating a 2D embedding
of the in-house morphological diversity in comparison to the
publicly available large datasets, one can interpret the presence of
any identified deviations in diversity. Failure to properly account
for such deviations could be considered to be the consequence of
a misregistration. Potential divergences between the two datasets
can be mitigated by registering neurons to the in-house ones.
Hence, this approach canmake our workflow applicable to neurons
reconstructed in smaller laboratories.

As an additional step, we intend to characterize the overlap
between axonal and dendritic arbors for cell-type-specific
connectivity motif characterization, which can be achieved by
registering interneurons from the Neuromorpho database (Ascoli
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et al., 2007) and incorporating them in our analysis. This is a
necessary step for cell-type-specific connectivity estimation since
the current analysis takes only LRPN neurons into account and
omits other cell-types such as PV, VIP or SST inhibitory cells. The
connection between two cells would be inferred by applying touch
detection algorithms between the axonal arbors and dendritic
spines of distinct cells, in a similar fashion to Egger et al. (2014) and
Udvary et al. (2022). However, this approach requires sufficient
data to form a dense representation of cells within a particular
brain area. That said, there are too few single-neuron morphologies
for densely filling the volumetric space in the same way that was
achieved by tract-tracing experiments (Oh et al., 2014; Harris et al.,
2019); hundreds of more reconstructions would be required for
such an ambitious task. We thus intend to replicate the axonal trees
of current LRPN neurons based on rules derived by observing the
much denser tract-tracing experiments of the Allen Mouse Brain
Connectivity Atlas (van Albada et al., 2022).

While we focus on single-neuron axonal reconstructions in
mice, we also acknowledge the development of promising new
directions in single-cell connectomics. Recent advances, referred
to as the semi-automated reconstruction and tracing (SMART)
technique havemade it possible to image axonal branching patterns
from a few simultaneously labeled long-range projection cells in the
mediodorsal nucleus of the thalamus in the non-human primate
(Xu et al., 2021). Interestingly, also more diverse, non monofocal
projections were observed in this dataset. Moreover, the axonal
morphologies contain details at resolutions below 100 nm that are
often not visible in the Braintell and MouseLight databases. The
newly developed ExA-SPIM technology (Glaser et al., 2023) can
by expanding brains reach this limit at the whole brain scale, and
furthermore, scan axonal morphologies without having to resort
to sectioning, which would have made segmentation and tracing
approaches challenging. This technology promises a vastly larger
yield of fully reconstructed neurons.

Taken together, we have developed a novel paradigm for
addressing three challenging questions in single-cell connectomics.
First, translating axonal morphologies into meso-scale projection
statistics that are capturing previously not accessible higher order
connectivity patterns. Second, characterizing their morphological
diversity by first computing the morphological distance between
neurons with a probabilistic approach, followed by a lower
dimensional embedding which takes the distance into account
and is not dependent on pre-computed morphometrics. Third,
assessing the topographical correlation between the distribution
of their somata and respective axonal terminals. By using VPM
as an ideal use-case, we have identified a gradient in the
lower dimensional embedding which aligned their topographical
organization along the dorsal-ventral and lateral-medial axes with
an increase in their number of terminals, length and width of
branches, and a number of projection motifs along the anterior-
posterior axis that involved a spectrum of outputs from the primary
somatosensory mouth to the supplemental area, nose, and then
to the barrel cortex, with different combinations of monofocal
dedicated output to a single area and multifocal output to two-
to-three combinations of the above areas. Lastly, we have served
the community with a unified access portal for visualizing in 3D
fully reconstructed neurons on the order of 10,000. The portal
is connected with scripts written in the Python programming

language. for the above mentioned analysis, as well as with 2D
visualization tools in the form of cortical flatmaps and subcortical
maximum projection plots. To support open science, the workflow
will be uploaded on Github and become part of the EBRAINS
infrastructure. This work opens the way for a collaborative
analysis framework in single-cell connectomics, which can unify
the data-driven topographical, morphological and projectome
analysis derived from long-range projection neurons. By turning
the framework into predicting properties of previously unseen
neurons, the community can generate new hypotheses on structural
neuronal networks to be validated with electrophysiological,
tracing or optogenetics experiments.

5 Information sharing statement

The analysis workflow described in this work has been
designed and tested in the form of a Jupyter Notebook together
with a number of supporting libraries in Python, which have
been published online with their description at the EBRAINS
Collaboratory and at Github. In addition, this work inspired the
creation of two neuroinformatics-related tools, namely mesoscale-

extractor and neuron-aligner. From the two tools, mesoscale-

extractor extracts mesoscale connectivity statistics from a subset
of user-selected morphologies of single-neurons, and neuron-

aligner uses the CPD tool to search for morphologies similar to a
morphology selected by the user. See Table 1 for links to the public
repositories of the tools and modules mentioned here, as well as for
the Neurons Reunited Portal database viewer.
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