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Goal-driven deep learning increasingly supplements classical modeling

approaches in computational neuroscience. The strength of deep neural

networks as models of the brain lies in their ability to autonomously learn

the connectivity required to solve complex and ecologically valid tasks,

obviating the need for hand-engineered or hypothesis-driven connectivity

patterns. Consequently, goal-driven models can generate hypotheses about

the neurocomputations underlying cortical processing that are grounded in

macro- and mesoscopic anatomical properties of the network’s biological

counterpart. Whereas, goal-driven modeling is already becoming prevalent in

the neuroscience of perception, its application to the sensorimotor domain is

currently hampered by the complexity of the methods required to train models

comprising the closed sensation-action loop. This paper describes AngoraPy, a

Python library that mitigates this obstacle by providing researchers with the tools

necessary to train complex recurrent convolutional neural networks that model

the human sensorimotor system. To make the technical details of this toolkit

more approachable, an illustrative example that trains a recurrent toy model on

in-hand object manipulation accompanies the theoretical remarks. An extensive

benchmark on various classical, 3D robotic, and anthropomorphic control tasks

demonstrates AngoraPy’s general applicability to a wide range of tasks. Together

with its ability to adaptively handle custom architectures, the flexibility of this

toolkit demonstrates its power for goal-driven sensorimotor modeling.

KEYWORDS

goal-driven modeling, computational modeling, deep learning, reinforcement learning,
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1 Introduction

Goal-driven modeling is a novel approach in computational neuroscience that utilizes

deep learning to construct highly performantmodels of brain function (Yamins andDiCarlo,

2016). By relying on computational optimization, this approach obviates the need for

hypothesis-driven construction and hand engineering of brain models. Instead, such models

emerge when deep neural networks with an appropriate architecture (e.g., layers resembling

interareal pathways and topography), appropriate activation functions, and biologically

meaningful input modalities are trained on natural stimuli and ecologically valid tasks.

The resulting models can be probed in silico to yield hypotheses about yet-undiscovered

computational mechanisms in the targeted structures. These, in turn, can then be tested in

vivo. The enormous potential of this approach has been attested by recent successes within

the neuroscience of perception (Yamins and DiCarlo, 2016). In particular, convolutional
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neural networks (CNN) have been shown to be effective models of

the visual (e.g., Yamins et al., 2014; Kubilius et al., 2018; Schrimpf

et al., 2020) and auditory (e.g., Kell et al., 2018; Li et al., 2022)

cortex. Linear neural response prediction (Carandini et al., 2005;

Cadieu et al., 2007; Yamins et al., 2014; Yamins and DiCarlo, 2016),

representational similarity analysis (Kriegeskorte and Douglas,

2018), or composite metrics like brain-score (Schrimpf et al.,

2020) have repeatedly validated learned representations and

their hierarchy as at least reminiscent of representations in the

brain.

However, at present, the advantages of goal-driven deep

learning are limited to the study of perception and do not

translate well to the study of the sensorimotor system. At the

same time, this domain would have much to gain from the goal-

driven approach. The limitations of hand-engineering already

apparent when modeling open-loop systems such as sensory

cortices become even more prominent for the closed perception-

action loop: The complexity of the sensorimotor system renders

the construction of a complete computational account by hand

untenable (Loeb and Tsianos, 2015). Moreover, reductionist models

limiting themselves to an isolated phenomenon neglect the idea of

emergence (Ellis, 2008) which postulates that unique properties or

behaviors of a system also arise from the interactions between its

components. Yet, hardly any research has so far been conducted

in the direction of goal-driven sensorimotor models. This is

because goal-driven deep learning is typically based on data-

intensive supervised learning. While datasets required to optimize

models to perform perceptual tasks are widely available, those

necessary to optimize models on sensorimotor tasks are sparse.

Michaels et al. (2020) collected recordings from tracking gloves

worn by monkeys during a grasping task and trained a recurrent

neural network (RNN) on latent representations of simulated

visual input to predict recorded muscle velocities. The goal-

driven model reproduced the neural dynamics recorded in a

neural interface in the monkeys’ AIP, F5, and M1. However,

reproducing muscle velocities is a much narrower task than

generating overt behavior. Accordingly, mapping specific input

stimuli to specific muscle (or joint) activations limited to an

individual’s grasping strategies might not actually represent

an ecologically valid task setting. Additionally, gathering such

recordings in vivo is costly and time-consuming. A better

solution would avoid the need for labeled data. Reinforcement

learning (RL) presents the (currently) most potent solution of

that sort. Here, an artificial agent (e.g., a brain model) learns

to adopt some behavior by autonomously exploring a task

environment and adapting its decision making to maximize

an external reward that indicates the task objective. Recent

advances in deep learning-based robotic control (OpenAI et al.,

2019, 2020; Huang et al., 2021) demonstrate the ability of

this approach to teach RNNs complex, ecologically-valid tasks

such as in-hand object manipulation in silico. Unfortunately,

training such systems requires substantially more computation

and tuning than classification tasks, and applying RL algorithms

to recurrent convolutional neural networks (RCNN, where

convolutional usually describes the network’s ability to process

visual information) is a nontrivial engineering effort. Therefore,

we believe that goal-driven sensorimotor control research would

dramatically benefit from a flexible but easy-to-use toolkit for

training complex biologically constrained neural networks in an

efficient RL setup.

To address this, we introduce AngoraPy (Anthropomorphic

Goal-directed Responsive Agents in Python), a Python library

for the efficient, distributed training of large-scale RCNNs

on anthropomorphic robotic tasks with human sensory input

modalities. AngoraPy is explicitly tailored toward the use of

goal-driven deep learning within computational neuroscience. It

bridges the technical gap between modeling deep neural network

representations of the brain and training them on complex tasks at

scale. It thereby facilitates the use of goal-driven deep learning for

sensorimotor research by requiring no profound knowledge about

the underlying machine learning techniques from its user. Every

aspect of the modeling process is highly customizable. AngoraPy

can train any Keras (Chollet, 2015) model adhering to domain-

specific constraints on inputs (humanoid sensation) and outputs

(motor commands). Tasks, including their objectives and reward

function, as well as anthropomorphic body models, are entirely

customizable in a native API built on a strong backbone of state-

of-the-art physical simulation software (Todorov et al., 2012) and

community-favored standards for task interfaces (Brockman et al.,

2016; Towers et al., 2023).

In the following, we first give a brief overview of modeling

the sensorimotor system and reinforcement learning (Section 2).

Subsequently, Section 3 describes the framework in detail along

with a practical example. AngoraPy aims to provide a flexible tool

that is agnostic to task and model definitions. To showcase this

flexibility, we present both the results of the practical example

and a battery of benchmarks that demonstrate out-of-the-box

performance on diverse task sets and networks (Section 4).We then

conclude by summarizing our work and discussing prospects for

future applications (Section 5).

2 Background

Research on sensorimotor control investigates the mapping of

sensory stimuli to motor commands constituted by the coupling

between sensory cortices and motor cortex. Taking into account

the effect of motor action on sensory stimuli (both directly and

indirectly), this coupling establishes a closed-loop feedback control

system. The study of its controller, the nervous system, often starts

with a hypothesis embedded in or abstracted from a model. For

instance, trajectory control was an influential model of movements

under perturbation but was later shown to be incomplete when

the goal is not the trajectory itself, but a static target (Cluff and

Scott, 2015). Models of metabolic muscular energy consumption

often base their cost functions on the heat and power observed

in individual or groups of muscles (Tsianos et al., 2012). Other

work uses kinematic measurements and electromyography data to

select the most suitable among various candidate minimization

criteria (Pedotti et al., 1978). All these models begin with a

hypothesis about a mechanism sourced inductively from behavioral

or physiological data.

Another line of research is concerned with the functional roles

of the different cortical areas involved in sensorimotor control.

To this end, decoding studies using, e.g., functional magnetic

resonance imaging (fMRI) have successfully identified neural
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representations related to movement parameters. For example,

Mizuguchi et al. (2014) have shown that right frontoparietal

activity reflects the intended force level in grasping. Using multi-

voxel pattern analysis in fMRI data, Gallivan et al. (2013) found

activity in frontoparietal regions that predicts themovements of the

participating limbs and the actions of the hand during grasping.

Similarly, Filimon et al. (2015) discovered that the voxels that

encode action-related information during reaching movements

spread over vast portions of both the premotor and posterior

parietal regions. These lines of work started with a hypothesis

(or several) about a candidate role for some region, pathway,

or network. However, research that simultaneously elucidates the

operation of large sensorimotor networks and the contribution of

individual regions remains scarce (Gallivan et al., 2018).

Although valuable in their own right, none of the current

approaches can provide a comprehensive perspective on the

sensorimotor system. First, hand-engineered models scale poorly

to more intricate processes involving larger cortical networks.

Second, from the perspective of Marr’s three levels of analysis

(Marr, 1982), these models only touch on the first two levels of

explanation. The implementation of the mechanisms (i.e., the third

level) in terms of neural circuits and biological constraints still

requires substantial work (Franklin and Wolpert, 2011). This is

also and maybe particularly true regarding the study of neural

transformations, rendering even the second level only partially

covered. While decoding studies provide valuable information

about the information encoded in various regions, they cannot

provide insights into the neurocomputational strategies by which

these representations are transformed within and across brain

regions. Due to the complexity of these transformations, it is also

nearly impossible to hand-engineer them. Similarly, it is unlikely

that fitting deep models to reproduce recorded neural responses in

multiple areas would yield great success given that data for such an

approach are lacking (Yamins and DiCarlo, 2016).

2.1 Reinforcement learning-based
goal-driven modeling

Reinforcement learning-based goal-driven modeling

overcomes these issues. Navigating the complexity of the

neurocomputations to be modeled is handled by optimization, and

training data is generated autonomously on-the-fly. Reinforcement

learning (RL) optimizes models to approximate a mapping

π(st) → at from state descriptions st ∈ S to actions at ∈ A that

maximizes the sum of rewards rt allocated to a trajectory (episode)

of state-action pairs. In contrast to supervised and unsupervised

learning, RL does not rely on pre-collected data but on self-

generated samples gathered by acting in the environment. The

mapping π(st) constitutes a (behavioral) policy parameterizable by

any function approximator, but in the setting described here, the

policy is implemented by a deep neural network that models (parts

of) the brain. Physically (albeit in simulation), the agent is situated

in its environment such that its actions affect the environment’s

progression through time.

Figure 1 depicts the relation between agent and simulation, and

the interaction of body, brain, and the environment. Generally, this

interaction follows the following schema. The environment triggers

sensory stimulation in the agent’s body, which then feedbacks

the vectorized perception of that stimulation to the agent’s brain.

The brain maps the sensory information to a desired motor

command and projects it to the body. The body executes the motor

command and thereby affects the environment. The new state of the

environment produces the next sensory stimulation of the body, so

the circle closes. Alongside describing the state, the environment

also rewards the action performed in the previous state. On the

basis of this information, the brain’s parameters can be optimized.

2.2 Plausibility, validation, and hypothesis
generation

Notably, the process by which learning occurs in this setup

need not be biologically plausible. It suffices that biological and

artificial agents have approximately the same objective, defined

by some reward-based reinforcement signal. This is an innate

characteristic of any RL algorithm. Freeing the training procedure

from biological constraints allows highly complex tasks to be

learned in a feasible time using state-of-the-art machine learning

techniques. We describe AngoraPy’s implementation of these

techniques in Section 3.

Trained models can be validated with the help of, e.g., decoding

studies or representational similarity analysis (Kriegeskorte

et al., 2008). From validated models reproducing real cortical

representations, hypotheses about, e.g., transformations can be

extracted. These can then be tested by making predictions for

new data on how some signal develops throughout the cortex.

Therefore, goal-driven deep reinforcement learning complements

hypothesis-driven research on the sensorimotor system as a

method of hypothesis generation.

Interestingly, hypotheses can also be generated when the

computational model and experimental data do not fit (Loeb and

Tsianos, 2015). Conditions under which such errors occur can

inspire empirical research to identify relevant biological or physical

constraints whose inclusion may refine the goal-driven model. In

silico ablation studies on these constraints then shed light on their

potential functional roles.

3 Method

In this section, we will provide an overview of the design of

AngoraPy, which trains models that combine an anthropomorphic

motor plant with a deep neural network. We begin by

outlining our core design principles, followed by an introduction

to the framework’s main dependencies. Next, we provide a

technical overview of AngoraPy’s key components, including a

prototypical workflow that illustrates the process of building

a model of in-hand object manipulation. It is not our aim

to hereby present a definitive model, but to demonstrate how

researchers can utilize AngoraPy to define and train their

own models.

Table 1 summarizes deployment options for AngoraPy and

their intended usage. AngoraPy is open source and available on
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FIGURE 1

Schematic interaction between agent and physics simulation. The agent consists of a brain and a body, whereas the physics simulation covers the

environment and body. As such, the agent’s body constitutes the interface between the brain and the environment. At every time step in the

simulation, the environment causes an e�ect on the body which generates sensory stimulation. The body’s sensors read this stimulation and

communicate the information to the agent’s brain. The brain then maps the description of the perceived state to a motor command which it sends

back to the body. The body executes the action and thereby a�ects the environment as well as itself. With readings of the new sensory state, this

cycle recurs until the environment ends the episode, a trajectory of state transitions.

TABLE 1 Deployment options available for AngoraPy.

Description Intended usage

Source The open-source code is available

on GitHub. On the repository, a

master branch corresponds to the

latest release version and the

development branch features more

recent changes and additions.

Contribution,

Development versions

PyPI All release versions are available on

the Python Packaging Index (PyPI)

and can thus be easily installed via

pip.

Local installation

Docker A Dockerfile is available on GitHub

and can serve as is for a clean

installation of AngoraPy with all its

dependencies, GPU support, and

MPI support. This also allows for

easy deployment on HPC clusters.

Local installation, HPC

installation

Additional details and installation instructions are available on GitHub.1

GitHub1 and licensed under GNU GPL-3.0. The repository also

gives installation instructions for the different deployment options.

In addition to the Python API, command-line scripts are available

as entry points with extensive customization options. The software

is tested and maintained under Linux, but the Python API is not

specific to an operating system by design. We also maintain a

growing collection of hands-on tutorials2 and documentation.

3.1 Principles and goals of design

We have built AngoraPy with appropriate design principles in

mind:Neuroscience First,Modularity, and Pragmatism. These guide

1 https://github.com/ccnmaastricht/angorapy

2 https://github.com/weidler/angorapy-tutorials

the implementation toward the overall goal of providing a flexible

but effective tool to neuroscientists, and draw inspiration from the

principles used to build PyTorch (Paszke et al., 2019).

As we put neuroscience first, AngoraPy by design addresses

the needs of neuroscientists who want to build goal-driven models

with ease. It is our main objective to provide an intuitive API

that interfaces background processes without requiring elaborate

knowledge about them. This entails limiting options to only those

that truly benefit neuroscientific research. AngoraPy does not aim

to be a comprehensive reinforcement learning or deep learning

library. In the remainder of this section, we will motivate these

choices and options.

AngoraPy is built for modularity, where options matter. The

API is general enough to support a wide range of applications. In

particular, AngoraPy is not specific to tasks or models. However,

to guarantee easy interaction with the framework, both need to

follow requirements (we lay them out in Sections 3.3 and 3.6).

As development continues, these requirements are monitored and

adjusted when needed.

Lastly, the framework is built with pragmatism.

Computational efficiency is a matter of high importance in

AngoraPy. At the same time, performance matters, and we aim to

provide tools that achieve state-of-the-art results. However, neither

efficiency nor performance should substantially hinder the other,

nor should the simplicity of the API suffer from either. As such, we

try to maintain a somewhat Pareto-optimal balance between the

three objectives.

3.2 Main dependencies

Before detailing the framework itself, it is useful to discuss

the choice of underlying libraries that provide its backbone. This

choice is not arbitrary, as it has implications for the modeling

conducted by users of AngoraPy. The rise of deep learning as a

toolbox of algorithms in many fields was greatly accelerated by
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the increasing availability of well-designed, easy-to-use, and flexible

autodifferentiation packages. Since the library introduced here

trains deep neural networks as models of the brain, it also builds

on such software. The two most prominent packages currently

available are PyTorch (Paszke et al., 2019) and TensorFlow/Keras

(Chollet, 2015; Abadi et al., 2016). However, JAX (Bradbury et al.,

2018) is also becoming popular among fundamental researchers

in deep learning due to its low-level flexibility. Choosing among

these options is not always obvious since each of them has sufficient

functionality to support any research. In AngoraPy, our aim was

to cater not only to the contributors’ needs and expertise, but,

of course, also to that of the end user. This is relevant since we

neither aim nor consider it useful to hide the implementation

of model architectures behind a native API. Instead, models are

built using the API provided by the autodifferentiation library.

AngoraPy targets neuroscientists at an arbitrary level of deep

learning experience, not researchers in machine learning. Selecting

the API AngoraPy relies on for model design thus focuses on

popularity, accessibility, and robustness, and not particularly on the

needs of machine learning researchers.

By choosing Keras as the modeling API supported by

AngoraPy, we decided on a long-established option that matches

the experience of many researchers and provides an easy modeling

interface with high flexibility. The persistent popularity of Keras

on StackOverflow, Kaggle, PyPi, and Google Colab (Team Keras,

2021) is a testament to its popularity with a general audience.

Furthermore, Keras and Tensorflow are consideredmore accessible

to beginners who are not yet familiar with any such library, making

them a good fit for neuroscientists newly exploring goal-driven

deep learning. Lastly, Keras is currently under intense redesign to

remove its exclusive dependence on TensorFlow and reimagine it as

a backend-agnostic, top-level API that interfaces TensorFlow, JAX,

and PyTorch. In conclusion, Keras as a model design backend in

AngoraPy not only adequately reflects current end-user demands

but also presents a safe choice for future shifts within the deep

learning community.

With Keras, AngoraPy covers the brain component of

the agent. To cover body and environment, we use a native

MuJoCo+Gym(nasium) stack. MuJoCo (Todorov et al., 2012)

is a recently open-sourced physics simulator offering high

computational accuracy and speed. Gym (Brockman et al.,

2016) and its successor, Gymnasium (Towers et al., 2023), offer

an interface for easy communication with an environment in

reinforcement learning applications. For AngoraPy, we have built

a native wrapper for Gym(nasium) environments, extending their

functionality to suit the needs in an anthropomorphic setting better

and to simulate body parts and their interaction with the world

in MuJoCo.

3.3 Tasks and simulation

In goal-driven modeling, the task definition is crucial to

the methodology’s premises. It sets the goal and thereby drives

learning to generate the neurocomputations one seeks to discover.

However, prescribing appropriate task and simulation constraints

is not trivial.

AngoraPy ships an API specifically designed for

anthropomorphic tasks. It extends the Gym(nasium) library

(Brockman et al., 2016; Towers et al., 2023) by interfaces and

wrappers that inject additional features and standards tailored

toward sensorimotor applications. This comprises adapted

interfaces to the official Python bindings of MuJoCo (Todorov

et al., 2012) and for implementing anthropomorphic task

environments. Several built-in dexterity tasks employing a

simulation of an anthropomorphic robotic hand (the Shadow

Dexterous Hand3) exemplify such implementations and can serve

as a foundation for dexterity research. They are implemented on

top of a hand model and task implementation originally included

but discontinued in Gym. Beyond these built-in tasks, the task

API can be used to define custom tasks and reward functions that

concern either existing or new, custom body parts.

Example. In the current and the following example segments,

we will illustrate the construction of a goal-driven in-hand object

manipulation model in AngoraPy using a toy architecture. To this

end, example segments annotate the upcoming technical descriptions

with practical illustrations. In-hand object manipulation (IHOM)

is a manual dexterity task. To simulate it, we use the hand model

shipped with AngoraPy. It consists of 24 joints and has its palm

connected to a fixed socket via a joint with two degrees of freedom.

Actuators are directly attached to the joints and apply control in

terms of the absolute desired joint angles. Of the 24 joints, four are

coupled. Thus, they cannot be controlled directly but move dependent

on other joints. Accordingly, the motor plant has a total of 20 degrees

of freedom. In-hand object manipulation covers a broad category of

tasks, but teaching it to an artificial agent requires a prototypical

specification. Consistent with OpenAI et al. (2020), we prototype the

manipulation task as the in-hand reorientation of a cube whose faces

are uniquely colored and labeled. A target reorientation is specified

as an angle of rotation around a fixed point (the object’s center)

and is achieved if the cube’s rotation angle lies within η units of

the target angle; that is, their distance dg(t) ≤ η. To encourage

stable behavior toward the end of a reorientation, we define a single

episode as a chain of reorientations. Thus, the agent needs to learn

manipulation in a manner that maintains sufficient control to enable

it to perform the next reorientation from the endpoint of the previous.

Per reorientation (i.e., goal), the agent is given 8 seconds and the total

number of possible reorientations is capped at 50. The 8s-timer resets

for every goal reached. The episode ends immediately when the cube

is dropped, indicated by the cube center’s z position coming below that

of the palm.

When AngoraPy instantiates a task environment, it

encapsulates it with a wrapper that connects external (e.g.

native Gym) environments with its own API. Specifically, state

descriptions are converted to Sensations, the canonical input type

for AngoraPy, which we will introduce in Section 3.4. Optionally,

the wrapper accepts preprocessor modules that transform observed

states and rewards. AngoraPy offers two built-in preprocessors

that normalize rewards and states, respectively, via running mean

estimators. Such transformations can be crucial in many tasks

(Ilyas et al., 2020) but hamper progress in others. For instance,

3 https://www.shadowrobot.com/dexterous-hand-series/
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reward normalization is not useful with environments that assign

constant rewards for nonterminal states. As the number of steps

per episode approaches infinity, the reward for nonterminal

states approaches zero, while that for terminal states approaches

(negative) infinity. As episodes last longer, the relative importance

of the terminal state thus increases, potentially destabilizing

learning.

A key component of an RL environment is, furthermore, the

reward function. In AngoraPy, reward functions are integrated

into environments as the union of a reward prototype function

and a reward configuration. This setup enables parametrization

and inheritance, and thereby facilitates objective-related ablation

experiments. Additionally, nonstatic reward functions allow for

shifts in the balance between different terms in the reward function.

These shifts can create training schedules that facilitate learning.

Example. To model the IHOM objective through a reward function,

we provide the same feedback as OpenAI et al. (2020) on success (rs),

failure (rf), and progress (rp),

rtask(t) = rp(t)+ 5Is(t)− 20If(t)− 0.1 (1)

The indicator variables Is and If are equal to 1 in success and

failure (dropping), respectively (and 0 otherwise). Progress rp(t) at

time t is defined as

rp(t) = dg(t − 1)− dg(t), (2)

where dg(t) is the distance between the current rotation of the cube

and the orientation of the goal at time t. The progress term rp(t) also

captures regression away from the goal. During training, a reward

preprocessor estimates the running mean and variance of the reward

function to normalize its output.

3.4 Sensation

To learn the task, the agent must find a favorable mapping

between states and actions. AngoraPy trains custom biologically

inspired networks to control anthropomorphic, simulated

bodies. Accordingly, the state st on which the policy π(st)

conditions its action distribution needs to emulate human sensory

modalities. At present, these modalities comprise vision, touch, and

proprioception, as they are key components of human sensorimotor

processing (Wolpert et al., 2011). Although the task goal could also

be implicitly encoded in either of these, states additionally feature

an explicit goal description. One may consider these explicit goal

representations internal representations, as encoded in, e.g., areas

of the prefrontal cortex (Miller and Cohen, 2001; Braver, 2012).

Together, this 4-tuple constitutes the (vectorized) input to the

model, contained within the Sensation type. Keeping the tuple’s

elements separate allows for multiinput architectures, as required

when modeling sensory modalities that exclusively target their

respective sensory cortices.

Example. For manipulation, all three sensory modalities are relevant

feedback. However, to simplify the problem for the purpose of this

example, we omit vision and replace it with immediate information

on the object’s pose. Additionally, the model requires a goal

description. The environment returns this as a vector representation

of the target quaternion. A preprocessor (as described in Section 3.3)

records the means and variances across all modalities and uses these

to normalize the states.

3.4.1 Auxiliary data for asymmetric value
functions

Importantly, goal-directed modeling aims at plausible

inference. As discussed in Section 2, the learning procedure itself,

however, need not be biologically plausible for its premises to

hold. During training, this distinction can be leveraged. First,

this concerns the learning algorithm that can be applied. Second,

we can enrich the state with auxiliary information only used

during training (Pinto et al., 2018). The training algorithm used

by AngoraPy requires a value network Vπ (st) that estimates

the expected value of being in state st given the current policy

π . Since Vπ is discarded at inference time, it can rely on any

biologically implausible, auxiliary input without harming the

model’s plausibility.

Example. We provide auxiliary information to the value network

during training. These include fingertip positions, the relative

orientation between the target and the current object orientation,

the object’s positional velocity, and the object’s rotational velocity.

Together with sensory and goal inputs, these constitute the Sensation

instances produced by the manipulation environment. AngoraPy

automatically feeds these to the relevant parts of the model.

3.5 Motor commands

An agent’s brain maps its sensations to motor commands.

AngoraPy trains stochastic policies, and thus maps to the

parameters of probability distributions. The executed motor

commands are directly sampled from that distribution. Like its

human counterpart, an anthropomorphic agent has continuous

control over multiple action dimensions. This entails the

approximation of a joint probability density function (PDF).

One assumes the joint distribution over possible actions to be

i.i.d. marginal distributions. In practice, modeling joint PDFs

can become problematic because the space of potential actions

is infinite. With a growing number of marginal distributions,

this makes predictions about interactions difficult. Therefore,

it proves beneficial to bin each continuous action variable in

applications with many degrees of freedom (DoF; OpenAI et al.,

2019, 2020). This converts the problem to the approximation of a

multicategorical distribution.

AngoraPy offers different options for modeling the

probability distribution of a multiple-DoF continuous policy:

the multicategorical (binned), Gaussian, and Beta distributions and

an interface for implementing custom policy distributions. In the

following sections, the three built-in options are outlined alongside

their (dis)advantages. Figure 2 depicts their characteristic shapes.
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FIGURE 2

Three di�erent policy distribution classes as described in Section 3.5. (A) Multicategorical distribution. (B) Beta distribution for di�erent combinations

of α- and β-values. (C) Gaussian distributions with di�erent means and standard deviations. For equal α and β parameters, the Beta distribution

resembles the Gaussian distribution. For diverging parameters, it becomes increasingly skewed. Importantly, the Beta distribution’s domain is entirely

confined to the interval [0, 1].

3.5.1 Multicategorical control for continuous
action spaces

In the multicategorical setting, a continuous action space A

consisting of n actions a ∈ [amin, amax] is segmented into b bins per

action, each spanning 1
b
(amax−amin) units of the continuous space.

Accordingly, the model has an output space A ∈ R
b×n. Compared

to a continuous policy distribution, this tends to be substantially

larger. However, the problem is simplified for two reasons: First,

binning the action space leads to a finite set of possible actions that

the robot can execute. In contrast, a theoretically infinite number of

actions can be sampled from the continuous distribution. Second,

over a finite set of possible actions, optimization has full control.

A multicategorical distribution can have any shape imaginable,

while Gaussian and Beta distributions have characteristic shapes

(Figure 2).

3.5.2 Gaussian-distributed continuous control
Gaussian policy distributions predict the means and standard

deviations of every marginal distribution. The output space of an

n-DoF control task is thus 2n-dimensional. Standard deviations

are usually better trained independently from the input. That is,

the standard deviations are themselves a set of directly optimized

parameters, but the input state is irrelevant to their manifestation

in the policy output. Essentially, the optimization then slowly

anneals the standard deviations to 0 as it becomes more confident

in predicting the means. Predicting the standard deviation as a

function of the input is possible but less stable when facing outliers

in the state space. It also adds additional load to the optimization

because it requires approximating an evolving mapping between

instances and confidence.

3.5.3 Beta-distributed continuous control
In bounded action spaces, the infinite support of Gaussian

distributed policies biases them toward the limits (Chou et al.,

2017). The unconstrained support requires a fold of all predictions

outside of an action’s bounds onto the boundary values and

artificially increases their probability. Chou et al. (2017)

demonstrated that an agent predicting the parameters of a

Beta distribution circumvents this issue. The support of the Beta

distribution is in the interval [0, 1], independent of the parameters,

and is parameterized by α and β (Figure 2). By scaling samples

to the allowed interval of the action, the prediction is complete,

but bias-free. Chou et al. (2017) showcased the positive effect on

several RL algorithms (Schulman et al., 2015; Wang et al., 2017),

and we also found this to apply to the algorithm used in AngoraPy

(detailed in Section 3.7.1; see Section 4.2 for a demonstration of

the Beta distributions effectiveness). In motor control, actions are

constrained by maximum joint flexion and extension. The Beta

distribution hence is a natural choice for many anthropomorphic

systems.

Example. To learn in-hand object manipulation, we train the agent

with a multicategorical distribution. The model then predicts a vector

a ∈ R
db where d is the degrees of freedom of the motor plant (20 for

the ShadowHand) and b is the number of bins per degree of freedom.

Consistent with OpenAI et al. (2020), we set b = 11.

3.6 Brain models

With st and at in π(st|θ) → at covered in the previous sections,

the following focuses on the neural network models parameterized

by θ . We argued in Section 3.2 for Keras as the backbone of their

implementation. AngoraPy can train any model implemented in

Keras if it adheres to two constraints. First, the input layers of the

model must be a subset of the modalities present in a Sensation.

Second, the model must be available as a tuple of policy, value,

and joint networks, where joint is the combination of policy and

value networks into a single network with two heads. The policy

network’s output must be built by the agent’s policy distribution,

and the value network must map the input onto a single scalar.

These requirements are depicted in Figure 3.

Often, a deep model of the sensorimotor system will require a

recurrent convolutional neural network (RCNN) implementation.

Recurrence affords memory and representations of environmental

dynamics. Convolutional networks mimic the hierarchical and
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FIGURE 3

Requirements for models trained with AngoraPy. The set of input modalities must be a (sub)set of the modalities available in a Sensation. Outputs

must be a policy head output following the desired distribution’s shape, followed by a value output head projecting to a single scalar.

retinotopic structure of the visual cortex (LeCun et al., 2015).

Furthermore, their layers learn representations that resemble those

found in the respective cortical areas (LeCun et al., 2015; Yamins

and DiCarlo, 2016). During training, AngoraPy employs several

strategies to deal with the computational load of RCNNs during

training (Section 3.7). However, hardware will always constrain the

viable complexity of a model.

Example. The toy model that we use in this example is a shallow

but high-dimensional recurrent neural network with an embedding

layer and implements the architecture used before by OpenAI et al.

(2020). Different modalities from the input Sensations we defined

previously will first be concatenated into a single vector and then

fed into the embedding layer. This toy model architecture is available

as a built-in baseline in AngoraPy’s network registry (under the key

wide). Recurrence is necessary to model the dynamics of the motion

of external objects because neither rotational nor positional velocities

are directly available in the raw sensory state space.

3.6.1 Weight sharing between policy and value
networks

Because at train time, optimization relies on state value

estimates, networks need additional value heads. These are trained

to predict the average future reward received under the current

policy when in the given state. As we explained in our discussion

of asymmetric value functions (Section 3.4), the value head can

be discarded at inference time. Its architecture, therefore, needs

not be biologically plausible. However, when designing a network

architecture, incorporating the value head plays an important role.

Essentially, one must decide whether to entirely separate the value

from the policy network or at what stage policy and value heads

diverge. Separation can lead to better peak performance since

optimization need not balance between two objectives. However,

since value estimation and action selection will overlap in the

information they need to extract from the input, sharing the stem of

their networks can lead to faster convergence. Naturally, auxiliary

inputs can only be integrated where heads diverge.

Example.We build the toy model without a shared base to prioritize

performance over convergence time. The policy network and the

value network have the same architecture up until after the recurrent

layer. The policy network culminates in a distribution head generated

by the policy distribution. The value head projects to a single

linear scalar predictive of the value of the state described by the

given input.

3.6.2 Modularity and pretraining
Sensorimotor systems are vast and include various

cortices. Generally, this tends to make deep implementations

of sensorimotor systems inherently modular. For instance,

subnetworks that model sensory cortices are generally

interchangeable. Extensive research on goal-driven models

in the sensory domain allows modelers to easily exploit this

modularity. First, researchers investigating specific cortical areas

in the context of sensorimotor processing can enrich their

model by integrating it with other models. On the other hand,

different models of the same brain structure can be plugged into

existing sensorimotor models to evaluate their effect on functional

performance and neurocomputational validity. Finally, upstream

models like sensory cortices can be pretrained on functions

identified in perception research. This severely disburdens the RL

training on the main task. Naturally, it might also prove beneficial

for the validity of downstream neurocomputations if upstream

feature extraction is bootstrapped with less task specificity.

3.7 Training agents

Before, we described building models and tasks and their

interaction as communicated by sensations and motor commands.
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This sets the rules for the core of AngoraPy, the distributed

deep reinforcement learning backend. AngoraPy employs proximal

policy optimization (PPO; Schulman et al., 2017) to train its

agents’ policies using stochastic gradient descent (specifically

Adam; Kingma and Ba, 2014). PPO is an RL algorithm that

alternates between data gathering and optimizing in continuous

cycles. During the gathering phase, experience is collected by

acting in the environment following the current policy. During the

optimization phase, this experience is used to update the policy.

This asynchronicity between data generation and optimization

allows for distributed, sample-efficient training, as Section 3.7.3

will detail.

3.7.1 Proximal policy optimization
Proximal policy optimization (Schulman et al., 2017) directly

optimizes the selection of actions. This avoids the proxy of

evaluating every action in a given state. Gradients are calculated

with respect to the parameterized policy πθ (at|st). In essence,

the objective tries to move the policy in a direction that

increases the likelihood of beneficial actions and decreases that of

disadvantageous ones, captured by advantage estimate Â(at , st) ∈

R. However, traversing the policy space in this way might

apply steps too large to permit stable learning. PPO addresses

this issue by scaling the update by the ratio rt(θ) between

the currently optimized πθ (at|st) and the previous version of

the policy at gathering time π
θold

(at|st). By clipping this ratio,

potentially excessive updates are avoided. This is implemented in

the following objective:

L(θ)PG = −min(rt(θ)Â(at , st), clip(rt(θ), 1−ǫ, 1+ǫ)Â(at , st)) (3)

Here, rt(θ) = e
πθ (at |st)−π

θold
(at |st)

is the logarithmic ratio.

The minimum in Equation (3) removes the lower bound if the

advantage is positive (Schulman et al., 2017). If the advantage is

negative, we want to decrease the ratio. The clipping bounds by

how much we want to decrease it. The minimum ensures that

recoveries from deteriorated policies receive gradients (instead of

being clipped away).

The advantage Â(at , st) is the difference between the return

collected from taking action at and the average future return R̄t
from being in state st , estimated by the value network Vθ (st) with a

mean squared error loss

L(θ)V = (Vθ (st)− Rt)
2. (4)

The Rt that serve as a target to Vθ (st) come from the same

samples the policy network learns from. Thus, Vθ (st) boils down

to a state-conditioned running mean estimator. The estimator may

be a separate network or share part of its parameters with the policy

network. In any case, it is convenient (and required for the latter)

to implement the optimization of both Vθ (st) and πθ (at|st) jointly,

hence combining their objectives into one joint cost function

J(θ) = L(θ)PG − cvL(θ)
V + ceH(πθ ), (5)

where cv can be adjusted to prevent J(θ)V from dominating

J(θ)PG when sharing parameters between value and policy network.

H(πθ ) is the entropy of random variable πθ . A stochastic policy’s

entropy can be seen as a measure of the degree to which the agent

still explores. Thus, incorporating it (scaled by constant ce) into the

objective discourages premature convergence (Williams and Peng,

1991; Williams, 1992).

Example. Since we previously made the decision not to share

parameters between policy and value network, setting cv is

unnecessary. The clipping range is kept at ǫ = 0.2, the value

recommended by Schulman et al. (2017). We include an entropy

bonus. In the literature, the entropy coefficient ce is often in the range

[0, 0.01] (Mnih et al., 2016; Schulman et al., 2017; Engstrom et al.,

2020; OpenAI et al., 2020). We set ce = 0.001 at a fairly low value

because the entropy of independent marginal distributions is the sum

over marginal entropies, which naturally increases the entropy bonus.

3.7.2 Truncated backpropagation through time
During training, long input sequences to recurrent layers

can overload memory. That is because backpropagation through

time (BPTT) needs to record the activations throughout the

entire sequence to calculate gradients. Truncated BPTT (TBPTT;

Williams and Peng, 1990) tackles this issue by dividing the sequence

into subparts, over which the gradients are backpropagated. At the

end of each subsequence, the RNN’s state(s) are passed over to

the next subsequence, but the computation graph is cut off. This

alleviates the need for memory in sacrifice for well-modeled long-

distance dependencies (LDD) and precise gradients. However, in

practice, LDDs are often negligible if we hypothesize the recurrence

to encode external dynamics mostly. Imprecise gradients have

likewise proven to be of limited harm. AngoraPy thus natively

uses TBPTT to balance precision and memory efficiency. Note that

TBPTT is often compulsory where episodes are long and networks

are large. However, where this is not the case, TBPTT can be turned

off by setting s to the length of the episode.

During the gathering phase, we collect data points in

subsequences of length s if the policy is recurrent. Each worker

initializes a buffer with all-zero matrices B ∈ R
(h/s)×s×n for each

collected transition information where n is the length of the vector

representing the piece of information. The buffer matrices are

progressively filled with the transitions recorded while stepping

through the environment. Whenever a subsequence of length s is

filled, it is pushed to the buffer, and the next subsequence is started.

If an episode finishes before the end of a subsequence, its current

state is pushed to the beginning of the buffer’s subsequence, and

the worker skips s − (t mod s) − 1 time steps (where t is the

current time step). Given the buffer initialization, this essentially

fills the remainder of the sequence with zeros. During optimization,

these zeros are masked to be ignored when calculating gradients.

Tuning s attempts to fit the number of previous time steps

relevant to modeling the dynamics of the environment. Thus, it is

task-dependent. Figure 4 visualizes the implementation of TBPTT

in AngoraPy.

Example. To capture the dynamics of IHOM, we set s = 16 which

equates to 1.28 s. This covers the approximation of external velocities
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FIGURE 4

Truncated Backpropagation Through Time (TBPTT) during gathering (top) and optimization (bottom). During gathering, the transition sequence is cut

o� every k elements. If the episode ends before a cuto� point, the remainder of positions up to the next cuto� points is filled with dummy transitions.

During optimization, this leads to a dataset of equally sized sequences. Dummy transitions are masked when backpropagating the error. Cuto�

points at nonterminal states are handled by copying the last hidden state of the previous sequence into the initial hidden state of the current one.

FIGURE 5

Analysis of the dynamics in the in-hand object manipulation environment to determine the temporal dependencies between state variables. (Top

row) Violin plots depicting the distribution of cross-correlations between singular variables at each lag. (First column) Mean and maximum

cross-correlations between singular variables at di�erent lags. (Second column) Mean and maximum autocorrelations (each variable is only

compared to itself) at di�erent lags. (Third column) Correlations between state vectors (as opposed to time series of single variables) taken at

di�erent lag distances. Dashed red lines mark lag 16, at which the here presented example cuts o� gradient propagation to past time steps. All plots

are based on 15 i.i.d. time series of 100 time steps that were collected by randomly taking actions in the environment. Standard errors around the

mean are indicated by light blue shaded areas.

by relating spatial to temporal distances between two consecutive

time steps. As an additional means of determining a reasonable

s, one can consult an analysis of the temporal dependencies of

states in the environment. Consider Figure 5, where we plot different

perspectives on auto- and cross-correlations between steps at different

lag displacements. Although looking at the maximum cross- and

autocorrelations reveals dependencies beyond a lag of 16, it is also

evident that the strongest dependencies tend to lie within lag 16 and

thus we set s = 16.

3.7.3 Distributed computation
At the core of AngoraPy’s ability to train large-scale models

on complex tasks lies its native distributed design. Learning in

a recurrent, convolutional setting can require extensive training

on a large amount of data. To manage this during simulation

and optimization, high-performance computing on a distributed

system is inevitable. Proximal policy optimization provides the

algorithmic foundation necessary for AngoraPy to implement

this. As PPO generates data asynchronously, any number of
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FIGURE 6

Distributed Training with MPI. An exemplary depiction of the distributed training cycle comprising gathering and optimization on two compute

nodes. Distribution scales to an arbitrary number of nodes. Spawned processes (e.g., on every CPU thread or core) all share the load of gathering

information. The GPU(s) on a node is assigned to the lowest-rank process of the node, and all GPU processes share the computational load of

optimization. At cycle 0, every process initializes the policy, which is then synced to match the single initial policy on the root process. Every process

then rolls out the policy to generate experience up to horizon T. The data is stored in shards. Every optimization process then collects and merges

the shards produced by workers on the same node. Based on this data, the optimization process calculates a gradient. The gradients of all optimizers

are then reduced into one by averaging and applied as an update to the policy on the root process. πnew is then broadcasted to all processes, which

repeat the cycle by rolling out the new policy.

parallel gathering workers (GW; usually allocated to a thread/core

of a CPU) can simulate the environment and roll out the

policy independently. Similarly, optimization can be spread over

multiple optimization workers (OW; preferentially GPU enabled)

by calculating and merging gradients on partial minibatches.

AngoraPy implements this bipartite distribution strategy under

the Message Passing Interface (MPI). The detailed process is

depicted in Figure 6. MPI spawns multiple processes running the

same script, each building a full copy of the agent. At initiation,

virtual workers are evenly allocated to processes if possible.

Optimally, the allocation is bijective. Forcing uneven allocation by

creating a number of virtual workers not divisible by the number

of available CPU workers would substantially waste computational

time. During the gathering phase, every worker acts as a GW. Each

GW rolls out the policy and generates a trajectory of experience up

to horizon T. The worker then temporarily saves this trajectory on

disk. During the optimization phase, the data is evenly assigned to

all OWs. Every OW reads its data share from the disk and calculates

a partial gradient. In between batches, the partial gradients are

accumulated among all OWs, and the total gradient is applied to

the policy weights.

Note that while complex tasks involving recurrent and

convolutional networks may require distributed computation,

many simpler tasks such as finger oppositions or anthropomorphic

robots with less degrees of freedom (e.g., locomotion) do not.

AngoraPy can flexibly be applied without, with little (e.g., on local

workstations or laptops) or extensive (on supercomputing clusters)

parallelization. On systems without GPU support, AngoraPy

instead distributes the optimization amongst CPU processes.

Distributed computation is thus purely a feature, not a constraint.

In the given example segments, we describe an application

that scales the distribution capabilities of AngoraPy to the capacity

of large high-performance computing (HPC) clusters. However,

such resource-rich computing environments are not necessary to

make productive use of either AngoraPy itself or its distribution

strategies. Local workstations suffice to train policies sufficiently

complex to be of ecological relevance, as verified by the benchmarks

described in Section 4.2. All of these can be trained locally on

a consumer-grade workstation, including the anthropomorphic

dexterous task of reaching.

Batch tiling

The combination of distributed optimization and the division

of sequences into chunks that need to remain in order requires

batches to be tiled. Tile shapes are defined by the number of

trajectories n and chunksm per trajectory where nmmust equal the

number of chunks per update. Balancing between the two presents

a tradeoff between temporal bias and trajectory bias. The more

chunks included per trajectory, the lower the bias of the update

toward a specific temporal segment of the trajectories. At the same

time, the resultant lower number of independent trajectories will

inevitably produce a bias toward specific trajectories. However,

particularly during early training, independent trajectories differ

vastly in their course. Thus, temporal links between trajectories

disappear early, and temporal biases dissolve. When AngoraPy

automatically determines tile shapes based on the number of
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chunks per update and the number of available optimizers, it

thus finds the valid shape with the highest number of trajectories

included at the same time. To support this process, it is generally

a good practice to choose combinations of batch and chunk

sizes that produce chunks per update divisible by the number of

available optimizers.

Example. Data collection is distributed among 384 CPU workers,

and we use 32 GPUs for optimization. Every gathering worker

generates 2, 048 time steps. We use a batch size of 12, 288 transitions.

As TBPTT groups transitions into chunks of length 16, a total of 768

chunks are divided among optimizers. Every cycle entails 64 updates

to the current policy each epoch and 192 updates per cycle. The batch

size is intentionally high to lower the number of updates per cycle.

Too many updates would cause the policy to move away from the

data-generating policy. Additional updates would thus increasingly

optimize based on off-policy data and conflict with the on-policy

assumption of PPO’s objective function.

3.8 Saving agents, resuming experiments,
and monitoring

Training automatically stores the model’s best-performing

parameters between cycles, if the model’s performance during

the gathering phase surpasses the previous best performance.

Additionally, AngoraPy always saves the newest version of the

model. Optionally, the training procedure can save themodel’s state

in intervals, for instance to later probe the model at different levels

of progress. Model storing uses Keras’ built-in formats, but the

parameters of the Adam optimizer and those needed to reload the

agent object (mostly hyperparameters) are captured separately in

NumPy and JSON files. This strategy allows agents to be loaded

both for evaluation purposes and to resume training.

A Monitor can be connected to the training process to

additionally log the training process. The monitor tracks rewards,

episode lengths, losses, and preprocessor statistics and logs

hyperparameters. Additionally, it records several statistics about

training, including runtimes and memory usage. All log files are

in JSON format and thus are both human- and machine-readable.

The progression traces are live updated during training and can

be conveniently monitored during or after training using a native

web application offering a filterable and searchable overview of

all experiments stored on the machine and graphs visualizing

stored progression traces and statistics for specific experiments or

comparing multiple.

4 Results

In this section, we present the results of exemplary experiments

to demonstrate the efficacy of AngoraPy’s RL backend. Specifically,

we demonstrate its ability to handle different task categories

and model architectures. The experiments were designed to

highlight the versatility and robustness of the toolkit and include

benchmarks on various tasks, from classical control to robotics. The

outcomes of these experiments provide compelling evidence of the

effectiveness of AngoraPy in developing performant goal-driven

anthropomorphic models of any shape and purpose.

4.1 In-hand object manipulation with a toy
model

To render the technical description of the key components

of AngoraPy more intelligible, we provided a concrete example

of applying the full framework using the model suggested by

OpenAI et al. (2020). In the context of the present work, it acts

as a simple toy model without any biological plausibility and

serves to demonstrate AngoraPy’s efficacy in training complex

anthropomorphic tasks. The results for this example are depicted

in Figure 7. Agents reliably converge toward a strategy chaining

an average of 30 goals. Convergence occurs after ∼1, 500 cycles,

corresponding to 96 h of training in our setup employing 384 CPU

cores (Intel Xeon E5-2690 v3) for data collection and 32 GPUs

(NVIDIA Tesla P100 16 GB) for optimization.4 At this point, the

agent has seen 1, 187, 512, 320 samples, equating 3.012 years of

experience. The best performing agent converges at a similar speed,

but chains∼40 goals.

Note that Figure 7 shows two metrics of performance: The

cumulative reward based on the task set in the example segment

in Section 3.3, and the number of consecutive goals reached (CGR)

within one episode. Although the former differs from the latter by

incorporating the distance between initial position and goal, the

two metrics provide nearly identical insights. Nevertheless, when

communicating the performance of goal-driven models trained by

RL, we recommend to report interpretable auxiliary metrics (like

CGR for IHOM), instead of cumulative rewards. This abstracts

away the actual performance from the specific reward function used

and even allows one to compare their variants. Most importantly,

however, it enables readers who are less familiar with reinforcement

learning terminology or who may not be acquainted with the

specific reward function to quickly assess the power of a model.

After training, we evaluated the best performing version of

the toy model (i.e., the set of weights that achieves the maximum

average results in its gathering cycle) on 480 independent episodes.

Here, actions are no longer sampled from the policy distribution,

but instead the most probable action is chosen deterministically.

The distribution of these episodes as measured by CGR is shown

in Figure 7. It can be observed that while on average the agents

chain ∼34 reorientations, in most episodes they actually chain the

maximum possible 50 reorientations, as discerned from the mode.

The best agent is highly stable, with both the median and the mode

at 50.

Our results show that while most agents reliably converge to

a reasonable performance (30 CGR or higher), outliers can occur.

Specifically, both time-to-convergence and peak performance vary

between runs. Designing biologically plausible models can mitigate

this variance. By constraining the flow of information and its

integration, the policy space can be transformed to favor specific

4 The number of GPUs in this setup is a byproduct of how the HPC

architecture that we use is set up and should not be taken as a guideline.

Usually, a substantially lower number of GPU optimizers should su�ce.
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FIGURE 7

Training of in-hand object manipulation agents using a toy model. Average episode returns (left) and average goals achieved per episode (middle)

show the progression of performance over training cycles. The mean performance over 9 independent runs is shown in blue, with a shaded 95%

confidence interval. The curve of the best performing agent is shown in red. The distribution (boxplot) of 480 episodes over the number of the

consecutive goals reached (right) shows the performance of the agent after training. Red lines indicate the median, white circles indicate means, and

red triangles modes.

solutions to the problem. At the same time, since policies are

similar in their manipulation strategy but only differ in the

effectiveness of their execution, the observed variance between

agents can also be interpreted as an interindividual difference in

a neuroscientific context.

The architecture we employed in this example was proposed

in the seminal work of OpenAI et al. (2020). It is not biologically

plausible but serves as a good baseline for assessing our tool.

The training performance that we report in Figure 7 differs from

OpenAI et al. (2020) mainly because the network relies only

on raw sensory information and because batch sizes and the

amount of data gathered per cycle differ for practical, hardware-

related reasons.

4.2 Benchmarks

AngoraPy aims to provide out-of-the-box functionality on a

wide range of tasks. The following section presents benchmarking

experiments on classical and sensorimotor tasks implemented

by Gym (Brockman et al., 2016) to demonstrate the general

applicability of AngoraPy to various problems beyond the one

showcased above. Naturally, this set of tasks is not exhaustive.

Nevertheless, the following indicates the general-purpose

applicability of the stack of methods underlying AngoraPy’s

training framework.

4.2.1 Classical control
Pendulum equilibration tasks constitute a standard benchmark

for control systems. We present learning trajectories for the Gym

implementation of three variants in Figure 8 alongside a classic

trajectory optimization for a 2D spacecraft (LunarLander).Without

any specific parameter tuning, AngoraPy’s PPO implementation

solves all tasks.

4.2.2 3D control in MuJoCo
Whereas the control tasks in Figure 8 are easy to solve for most

state-of-the-art RL algorithms, the set of (robotic) control tasks

benchmarked in the first three columns of Figure 9 pose a more

significant challenge. This challenge stems (i) from a more rigid

simulation in three-dimensional space, (ii) from purely continuous

control, and (iii) in some cases, from higher degrees of freedom.

Nevertheless, PPO again demonstrates an impressive invariance in

its applicability to different robots using the same parameters. Note

that for most of the environments tackled in Figure 9, the original

paper introducing PPO (Schulman et al., 2017) already presented

benchmarks, yielding similar results with differences stemming

from different parameter settings. Agents using Beta distributions

often outperform or are on par with their Gaussian counterparts

on these tasks.

4.2.3 20-DoF dexterous control
One of themost fascinating and complex problems in themotor

domain is sensation-guided manual control. The complexity of

the hand as a motor plant stems from high degrees of freedom

coupled with nontrivial dependencies between joints. To solve

any task involving this plant, the model first needs to learn the

relationship between control applied to the joints and its effect

on the position of the plant’s individual parts. A task focusing

on this raw skill thus is a good benchmark and initial proof-of-

concept for any model of the sensorimotor system. In Figure 9,

the last column shows results for two manual dexterity tasks,

reaching and freereaching. Both tasks challenge the agent to join the

thumb’s fingertip with one other digit’s fingertip (target finger) as

indicated by the goal description. In reaching, we model this task

by rewarding the proximity of individual fingertips to locations

sampled around their initial position for nontarget fingertips and

sampled around a meetup point for the thumb’s and the target’s

fingertip. In freereaching, we abstract away from predetermined

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2023.1223687
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Weidler et al. 10.3389/fninf.2023.1223687

FIGURE 8

Learning curves of agents trained on di�erent classical control tasks implemented by Gym (Brockman et al., 2016). All agents use the same two-layer

neural network architecture with a Beta/categorical policy head. Weights were not shared between policy and value network. Blue lines represent

the average returns of 16 independent agents, and the lighter area around them is their standard deviation.

locations and instead formulate the reward as the inverse distance

between the thumb and the target finger, and add a punishment

for other fingertips entering a zone around the thumb’s fingertip.

As demonstrated in Figure 9, both formulations of the task can be

reliably learned within 100–150 cycles.

5 Discussion

The present article introduces AngoraPy, a Python library

that allows researchers to build goal-driven models of the

human sensorimotor system at scale. This library specifically

targets computational neuroscientists and aims to empower the

community by offering a tool that simplifies the setup and

training of large-scale neuroconnectionist sensorimotor models

of high functional validity. AngoraPy provides a distributable

reinforcement learning (RL) backend that is accessible through

a high-level, easily comprehensible API. Thereby, it allows its

users to train large recurrent convolutional neural networks

(RCNNs) as models of the brain without the need for precollected

data, and features standards for defining model architectures

and tasks. AngoraPy’s task API is implemented on top of

Gym(nasium) (Brockman et al., 2016; Towers et al., 2023), and

the constituent bodies and environments of the tasks are simulated

in MuJoCo (Todorov et al., 2012). A synergy of wrappers and

interfaces standardizes the configuration of anthropomorphic task

environments. These ship together with predefined environments

for dexterity tasks, including variants of finger tapping (reaching)

and in-hand object manipulation. Available sensory modalities

comprise vision, touch, and proprioception, or a subset thereof.

Motor commands are issued by stochastic policies and are sampled

from multivariate distributions over the joint space of the motor

plant. The construction of models is standardized but flexible.

AngoraPy supports multimodality, weight sharing, asymmetric

policies, and pretrainable components. The reinforcement learning

backend implements proximal policy optimization (Schulman

et al., 2017) and embeds it in a stack of supportive methods.

To support large RCNNs applied to long-lasting tasks, the

gradient-based optimization chunks sequences and truncates out-

of-chunk time steps. Both simulation and optimization are highly

scalable through native MPI distribution strategies. Taken together,

AngoraPy combines the power of state-of-the-art reinforcement

learning with high-performance computing in a sensorimotor

modeling toolbox.

We demonstrated AngoraPy’s capability to train arbitrary

network architectures on several task domains, including

anthropomorphic robots with up to 20 degrees of freedom. Our

benchmarking results highlight that no extensive hyperparameter

tuning is necessary to successfully apply AngoraPy to new tasks,

which makes the toolbox particularly suitable for users who do not

have experience with reinforcement learning. The wide range of

robotic motor plants used in these benchmarks, from one-legged

bodies (Hopper) to bipedal walkers (Walker2d) to five-finger hands

(e.g., Reaching), furthermore shows that the toolkit’s applicability

is by no means confined to a specific part of the body.

In an example that accompanied the technical details of

the presented software, we illustrated the workflow of applying

AngoraPy to study anthropomorphic motor functions in more

detail. This example did not aim to present a novel model, but

rather to demonstrate the functionality of AngoraPy. As such,

we trained a simple toy model without biological plausibility but

adhering to the anthropomorphic input and output constraints

posed by AngoraPy’s modeling standards. The toy model acts as a

placeholder for carefully designed model architectures developed

by the research that the tool presented here seeks to empower.

Such research conducts extensive surveys of biological data and

aggregates them to develop novel inductive biases that can be

implemented in the network model.

As inductive biases become increasingly constraining, the range

of possibly emerging neurocomputational strategies should be

reducing. Given that these biases adequately reflect the anatomical

and biological constraints of the brain, the neuroconnectivity

shaping thereunder will better fit the solutions employed by the

brain. The careful, data-driven design of these biases is thus

not only the most eminent, but also a substantial work. By

publishing AngoraPy, we intend to empower researchers to focus

their work on this intricate part of modeling and alleviate the
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FIGURE 9

Benchmark experiments on three-dimensional control tasks simulated in MuJoCo (Todorov et al., 2012) and implemented by Gym (Brockman et al.,

2016). Tasks with italic titles are anthropomorphic reaching tasks. In all other tasks, the model controls non-anthropomorphic motor plants. The

latter agents use the same two-layer architecture used in Figure 8. For anthropomorphic tasks, a recurrent network with an LSTM cell builds the

policy. Lines represent the average returns of 16 independent agents, and the lighter area around them is their standard deviation. Blue lines

correspond to agents using a Gaussian policy, whereas red lines summarize the performance of Beta distributed policies.

effort of integrating and training their brain models as part of the

sensorimotor loop.

Previously, there had been a lack of software that thoroughly

supports goal-driven modeling in the sensorimotor domain.

Existing libraries that offer high-quality implementations of various

RL algorithms (e.g., Guadarrama et al., 2018; Moritz et al.,

2018; Raffin et al., 2021) are primarily intended for use by

RL researchers. This is reflected on the one hand in the wide

range of covered algorithms, which comes at the cost of user-

friendliness for non-experts. Additionally, as they are nonspecific

in nature, general RL libraries often require substantial engineering

efforts when applied to training anthropomorphic sensorimotor

models. Moreover, they forfeit out-of-the-box flexibility with

respect to applications in favor of flexibility with respect to

algorithms. As a consequence, applying an algorithm to a specific

problem can become cumbersome if the flexible standards of

the library do not align well with the requirements of the

problem.With AngoraPy, we instead offer the research community

a comprehensive tool specifically tailored to its application in

neuroscience. In neuroscientific modeling, where the choice of the

RL algorithm is less important, such a domain-specific tool is more

efficient and easier to use and, therefore, better suited than general

RL libraries.

AngoraPy does not, in principle, limit the level to which users

can customize brain, body, and task models. Nevertheless, more

extensive customizations will require more effort from the user

to implement. AngoraPy enables this without necessitating direct

modification of the library by making most of its components

available to the end user. Only the training algorithm itself is not

available for customization because training, unlike network, body,

and task, is not part of the biologically inspired model. Instead, it is

a tool to build the model. Importantly, we do not require users to

make all possible customizations, as we offer thoughtfully selected

default parameters, procedures, and built-in models and tasks.

However, some components must be customized by the end-user

to generate novel outcomes and models.

Although AngoraPy is highly flexible in its support for brain

model architectures, certain network layouts may still conflict

with its training procedure. We currently explicitly account

for fully connected, convolutional, feedforward, and recurrent

networks, and any combination thereof. As we continue to actively

expand AngoraPy, we monitor trends in the goal-driven modeling

community and adapt AngoraPy accordingly.

With its comprehensive set of features, AngoraPy can be used

by neuroscientists who seek to build models of sensorimotor

systems that bridge across Marr’s (1982) levels of description

of neural information processing. Specifically, our framework

addresses the algorithmic implementation of a sensorimotor

function guided by both computational theory and biological

constraints. Observing under which constraints biologically valid

organization emerges (and under which it does not) may

additionally support our understanding of the interplay between

structure and function. The resulting goal-driven models can

then be utilized to evaluate existing hypotheses, as well as to

generate novel predictions to guide theoretical and empirical

research. For example, AngoraPy may be used to develop models
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of the frontoparietal network with biologically inspired pathways

and regions trained on in-hand object manipulation tasks to

better understand the neurocomputations that underlie human

dexterity. These models may then generate new hypotheses about

information processing that occurs within and between areas in

both feedforward and feedback directions. Similarly, AngoraPy

may be employed to study complex motor skills such as grasping,

reaching, manipulating, balancing, or locomotion.
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