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Collaborative neuroimaging research is often hindered by technological, policy,

administrative, and methodological barriers, despite the abundance of available

data. COINSTAC (The Collaborative Informatics and Neuroimaging Suite Toolkit

for Anonymous Computation) is a platform that successfully tackles these

challenges through federated analysis, allowing researchers to analyze datasets

without publicly sharing their data. This paper presents a significant enhancement

to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further

reduce barriers by hosting standardized, persistent, and highly-available datasets,

while seamlessly integrating with COINSTAC’s federated analysis capabilities. CVs

o�er a user-friendly interface for self-service analysis, streamlining collaboration,

and eliminating the need for manual coordination with data owners. Importantly,

CVs can also be used in conjunction with open data as well, by simply creating a

CV hosting the open data one would like to include in the analysis, thus filling an

important gap in the data sharing ecosystem. We demonstrate the impact of CVs

through several functional and structural neuroimaging studies utilizing federated

analysis showcasing their potential to improve the reproducibility of research and

increase sample sizes in neuroimaging studies.
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1. Introduction

In recent years, neuroimaging has seen a growing emphasis

on data sharing and collaborative research, as evidenced by

the development of new standards [e.g., Brain Imaging Data

Structure (BIDS), Gorgolewski et al., 2016], open-source software

tools, and data repositories. Neuroinformatics consortia such

as Enhancing NeuroImaging Genetics through Meta-Analysis

consortium (ENIGMA) (Thompson et al., 2014), and data

repositories such as OpenNeuro (Markiewicz et al., 2021) and

National Institutes of Health Data Archive,1 were created to

facilitate analysis of data and combining data from multiple sites.

Pooling data from many studies allows for larger sample sizes that

produce more statistical power (Biswal et al., 2010; Andrade, 2020).

Though the quantity of neuroimaging data is increasing, there are

still barriers to collaboration in the form of technological, policy,

administrative, and methodological constraints that can negatively

affect data accessibility.

In this section, we discuss in detail some of the challenges

associated with collaborative analysis, particularly in centralized

approaches, where the data need to be pooled in one location to

perform an analysis. We also discuss COINSTAC, a tool built on

the principles of federated analysis to enable analysis without the

need to centralize data.

1.1. Technological challenges

Technological constraints, such as storage space, download

speed, and processing power, play a significant role in the feasibility

of performing collaborative analyses on large datasets (Homer et al.,

2008; McGuire et al., 2011) such as neuroimaging data. Existing

data repositories can contain high-resolution neuroimaging files

covering tens of thousands of subjects, with sizes ranging from

megabytes to multiple petabytes. Downloading the MPI-Leipzig

Mind-Brain-Body dataset (Babayan et al., 2022) (369.78 GB)

at the global median download speed of 76.32 Mbps2 onto a

modern MacBook Pro with 512 GB of storage3 would take

11 h and 33 min, consuming 72.2 percent of the machine’s

total storage space. The requirements for storage space and

download time can increase when an analysis involves aggregating

multiple large datasets. Additionally, processing power may

be a limiting factor for performing computations, particularly

when certain types of analyses are designed to run on specific

hardware like GPUs, which can demand resources beyond

the capacity of smaller research groups or institutions with

limited budgets.

1.2. Policy and privacy challenges

Due to the potentially sensitive nature of neuroimaging

datasets, their use in collaborative analysis is often restricted

1 https://nda.nih.gov/

2 https://www.speedtest.net/global-index

3 https://www.apple.com/macbook-pro-14-and-16/specs/

by policies intended to preserve privacy. Collaboration methods

include aggregating data in a centralized repository or using Data

Usage Agreements (DUAs) (Thompson et al., 2014, 2017). These

methods can be cumbersome and, in some cases, insufficient.

DUAs may take months or even years to approve without any

guarantee of the data’s utility. Data sharing might be limited

by law, policy, or proprietary restrictions, largely driven by re-

identification concerns. In situations where only summary data

can be shared, differences in analysis methodology may result

in inconsistent measures for meta-analysis (Rootes-Murdy et al.,

2022).

1.3. Administrative challenges

Administrative challenges can arise when collaborating on an

analysis, as various steps demand researchers’ time and attention.

These steps may include communicating between agencies,

formulating and signing data-sharing agreements, agreeing on

data preparation and analysis processes, procuring technical

resources, monitoring and auditing processes, performing data

transfer, initiating computations, disseminating results of analyses,

and so on.

The efficiency of collaborative analysis is influenced by

how quickly these manual steps are executed. Synchronized

availability of researchers can present a barrier to the collaboration

process. When researchers work asynchronously, each step

in a serial process requiring manual interaction introduces

potential delays. This can be particularly challenging when

researchers are distributed across multiple time zones or

have limited time to perform manual tasks. Furthermore,

researchers’ availability may be constrained by the need for

expertise and authority, such as having the authority to sign

a data-sharing agreement or the technical expertise to run

the appropriate Python script against a dataset. Often, these

manual steps must be executed for each new analysis, which

can slow down and even impede collaborative analysis. By

addressing these administrative barriers, research teams can

more effectively collaborate and streamline their analysis

processes, ultimately contributing to the advancement of

neuroimaging research.

1.4. Methodological di�erences

Variability in methodological approaches to data processing

and analysis can make reproducing studies challenging (Vogt,

2023). To validate results, researchers must adhere to the exact

methodology used in the original study, which necessitates clear

communication of the specific methods employed. However, as

methods are often chosen on a case-by-case basis, replicating

studies can be time-consuming and difficult (Esteban et al.,

2019), and sometimes even impossible. Moreover, when multiple

studies adopt different methodologies, combining their results

meaningfully becomes challenging, hindering the execution of

meta-analyses.
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To overcome these barriers, we introduce COINSTAC,4 a tool

that supports federated analysis for neuroimaging data.

1.5. Federated analysis using COINSTAC

Federated analysis (also federated learning, or decentralized

analysis) (Plis et al., 2016; Kairouz et al., 2021; Rootes-Murdy

et al., 2022) allows for multiple datasets to be used in analyses

without source data being directly shared. Instead, data holders run

computations on their local data and only share the outputs, which

are often group-level data derivatives or summary statistics. For

example, sites may compute an average or other summary on their

local data and send that information. Typically, these summaries

are much smaller, meaning that the source data are not shared,

thereby removing the technical challenges associated with dataset

transfer. A second potential benefit is additional privacy guarantees

for the data holders. From a purely policy perspective, datasets

are analyzed without being moved from their original location

and data holders can determine which computations are and are

not allowed on their data. From a technical perspective, strong

end-to-end encryption can prevent third parties from acquiring

the data derivatives. Depending on the trust model, additional

privacy protections are possible, including emerging technologies

like secure multiparty computation and differential privacy (Dwork

and Roth, 2013; Bonawitz et al., 2016, 2017; Heikkilä et al., 2020;

Imtiaz et al., 2021; Senanayake et al., 2022).

The Collaborative Informatics and Neuroimaging Suite Toolkit

for Anonymous Computation (COINSTAC) (see text footnote 4)

(Plis et al., 2016; Ming et al., 2017; Gazula et al., 2020, 2023;

Turner et al., 2022) is a tool developed to support federated

analysis specifically for neuroimaging data by overcoming the

aforementioned barriers to collaboration through the use of

federated analysis and standardization of collaboration methods.

COINSTAC enables researchers to run decentralized neuroimaging

analyses to perform larger collaborative studies (Rootes-Murdy

et al., 2022; Turner et al., 2022). As of now, COINSTAC

has attracted 115 users and has been downloaded 2,386 times,

showcasing its growing reach and impact within the research

community.

The COINSTAC desktop application provides an easy-to-use

graphical user interface (GUI) for coordinating and executing

federated analysis pipelines among multiple collaborators. Image

preprocessing and a variety of univariate and multivariate

approaches (e.g., VBM regression, group ICA) can be completed

within the app.

For a comprehensive understanding of COINSTAC, its

functionalities, and usage, readers are encouraged to refer to the

following papers (Plis et al., 2016; Ming et al., 2017; Gazula et al.,

2020, 2023; Turner et al., 2022).

One limitation of the original implementation of COINSTAC

is that it requires synchronized coordination (Jwa and Poldrack,

2022), users have to coordinate among data owners to confirm

their systems are online, that the data are organized within the

same structure and that the data are mapped properly within the

4 https://coinstac.org/

COINSTAC system. The need for a centralized coordinator can

delay contingent analyses.

In this paper, we address this limitation by showcasing a

method for hosting both private and public datasets where the

datasets are persistently accessible for analysis using COINSTAC

without the need for synchronized effort from data owners.

Analysis of public datasets is made more accessible by removing

the need to find, download, preprocess, and prepare datasets

for analysis. We provide curated data vaults for various openly

available neuroimaging data which COINSTAC users can simply

include in their analyses. Access to private datasets can be

restricted to a list of computations approved by the vault owner.

Standardizing access to data vaults in the COINSTAC system

simplifies analysis, optimizes computational performance, and

promotes the reusability of neuroimaging datasets.

2. Method

In this section, we discuss COINSTAC and the extension

of the COINSTAC framework with the addition of vaults,

their architecture, and various use-cases they enable. All code

for COINSTAC and COINSTAC Vaults can be found in the

COINSTAC Github repository.5

2.1. COINSTAC

To understand how Vaults improve the workflow of federated

analysis in COINSTAC, we will describe the COINSTAC system

and how it is used.

The main components of the COINSTAC system are:

the desktop application, the central server, and computation

containers. The desktop application provides a graphical user

interface (GUI) and manages local computation containers used to

participate in federated analyses. The central server manages the

central database and runs the containers that act as the inner node

in federated analyses.

In the COINSTAC desktop application, users join collections

of users called “consortia” to collaborate on an analysis pipeline. A

consortium is a group formed by individual COINSTAC users, each

with their machine that is capable of being a node in a federated

analysis pipeline. Each member within a consortium will act as a

node in the federated analysis group by running local computations

inside of a container on their system.

The following is how a researcher would use the COINSTAC

user interface to create a consortium and run a federated

analysis pipeline:

• Log in as a user

• Join (as a member) or create (as an owner) a consortium

• Configure a set of computations (a pipeline) to be performed

by a consortium

• Map their local data to the pipeline

• Initiate the pipeline (a run)

• View the results of the pipeline run.

5 https://github.com/trendscenter/coinstac
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FIGURE 1

Adding vault data to an analysis pipeline.

2.2. COINSTAC Vaults

2.2.1. Purpose and high level overview
The Vaults system is an extension of the COINSTAC platform

that allows datasets to be persistently available for participation

in federated analyses without requiring manual action from data

owners apart from the initial setup. COINSTAC consortium owners

can independently add Vaults members to their consortia, allowing

vault datasets to participate in federated analyses without the need

for coordination between consortia owners and Vault data owners.

The Vault client allows datasets to be made available to the larger

COINSTAC ecosystem, giving the ability for others to run pipelines

using the Vault’s data without it ever leaving its respective system.

2.2.2. Using the GUI to add a Vault to a
consortium and run an analysis

Vault clients can be added to a consortium by a consortium

owner without any action required from the owner of the Vault

data, as shown in Figure 1.

2.2.3. Hosting Vaults
Making datasets available for federated analysis through

COINSTAC is simple using Vaults. Vaults can be hosted in a

variety of compute environments such as: on personal machines,

on-premises servers, on a cluster of compute nodes, or in a virtual

cloud. Both publicly available datasets and private datasets can be

made available to the COINSTAC platform via Vaults. COINSTAC

consortia can include any combination of diverse types of data:

public and private datasets, data hosted on local machines, Vaults

hosted by the Tri-institutional Center for Translational Research in

Neuroimaging and Data Science (TReNDS), and third-party Vaults

connected to COINSTAC as shown in Figure 2.

In addition to TReNDS-hosted vaults, data owners are able to

host their own (public or private) data as Vaults (Figure 3) by using

the coinstac-vault-client software package at https://www.npmjs.

com/package/coinstac-vault-client.

The process for hosting a dataset in a Vault is described below:

• Install the Vault client: The user installs the Vault client on

their host machine.

• Request Vault integration: The user submits a request to

the COINSTAC team for integrating the Vault into the

COINSTAC ecosystem.

• Receive API keys: The COINSTAC team provides the user

with the necessary API keys for the user’s Vault client.

• Configure dataset directory: The user specifies the

local directory containing the dataset in the Vault

client configuration.

• Select approved computations: The user chooses a list of

computations, granting permission for these computations to

be executed on their vault data.

After this process, the Vault becomes available for use in the

COINSTAC system. Consortium owners can select to include the

Vault in their consortium and perform federated analysis using

Vault data. Whether the data was downloaded from a public

repository or collected privately, the process is the same for both

types of data since the source data stays on the user’s local machine.
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FIGURE 2

Di�erent types of participants interacting with COINSTAC.

FIGURE 3

Process of creating a vault in COINSTAC.

2.2.4. Vault architecture overview
The Vault client software package is built upon the same

core code as the COINSTAC desktop application to manage

containers and execute computation pipelines. However, it omits

the user interface (UI) component and includes additional

code that enables the client to be persistently online and

available. The desktop application has been modified to allow

consortium owners to add Vault clients to their consortium via

the GUI.

The Vault client is a NodeJS server running on the local

machine, responsible for maintaining a persistent connection with

the COINSTAC system using the coinstac-vault-client package.

The server communicates with the COINSTAC central server

using websockets and HTTP protocols. It manages the life-cycle

of containers (Docker, Singularity) through the coinstac-container-

manager package, which is responsible for isolating and executing

the computations within the federated analyses. The Vault client

also utilizes other core COINSTAC libraries such as coinstac-

client-core, coinstac-client-server, coinstac-pipeline, and coinstac-

common, all of which are npm packages, to ensure seamless

integration with the COINSTAC ecosystem. An overview is shown

in Figure 4.

Message passing, which is an integral part of federated analyses,

is handled by the Vault client using MQTT (MQ Telemetry

Transport) and HTTP protocols. MQTT is a lightweight messaging

protocol optimized for high-latency or unreliable networks.

For pipeline runs in consortia that only use Vaults, the result

data is uploaded to a secure Amazon S3 bucket, which can

then be downloaded by consortium members using the desktop

application. This ensures that the results are securely stored and

easily accessible by authorized users.

In summary, the Vault architecture in COINSTAC improves

the overall efficiency and user experience of performing federated

analyses. By maintaining a persistent connection, the Vault client
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FIGURE 4

Architecture of vaults in COINSTAC.

ensures that datasets are readily available for analysis without the

need for manual intervention by data owners. Additionally, the

integration of the Vault client within the COINSTAC ecosystem

allows for seamless interaction between the desktop application and

the Vaults, making it simple for consortium owners to include Vault

data in their federated analyses.

2.2.5. Vault use-cases
In this section, we present various use-cases that highlight the

benefits and versatility of Vaults in COINSTAC.

2.2.5.1. Curated Vaults

TReNDS actively curates and hosts public datasets, making

them readily available for the COINSTAC community through the

creation of Vaults. These curated Vaults ensure that the public

datasets are vetted, of high quality, and easily accessible. Users

can contribute to this initiative by hosting Vaults for other public

datasets, further expanding the range of data resources available

within COINSTAC.

2.2.5.2. User with local data

A researcher with a local dataset can benefit from incorporating

Vault datasets containing relevant variables into their analysis.

Integrating multiple datasets is especially advantageous when

the researcher’s local data is inadequate for conducting a

comprehensive analysis. Collaborating with other COINSTAC

consortium members and leveraging data from Vaults enables

researchers to enhance the sample size and statistical power of

their study efficiently while preserving privacy and streamlining the

process by eliminating manual collaboration steps.

2.2.5.3. User with no local data

For investigators who do not have their own data but want to

analyze existing datasets, Vaults provide a valuable solution. The

investigator can create a consortium, add selected Vaults using the

COINSTAC UI, and initiate the analysis. This approach enables the

investigator to obtain meaningful insights from existing datasets

without needing to coordinate with the Vault data owners.

2.2.5.4. User with limited storage/computing resources

Vaults are also advantageous for researchers with limited

storage or computing resources. For example, a researcher with

a low-powered laptop and minimal storage capacity can still

analyze large datasets by creating a consortium and running an

analysis using only Vault clients. The data processing occurs on

the respective Vault servers, and the results are sent back to the

investigator, eliminating the need for high-capacity local hardware.

By addressing these diverse use-cases, COINSTAC Vaults offer

a flexible and efficient solution for researchers to access, collaborate,

and analyze datasets in a federated environment.

3. Results

In this section, we conduct a series of analyses using

multiple Vaults hosted by TRENDS, emphasizing the practical
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application and utility of the Vaults feature. We specifically

focus on the TReNDS VBM COBRE, TReNDS FreeSurfer

COBRE, Child Mind Institute (CMI) VBM, and TReNDS

NeuroMark Group-ICA COBRE datasets. These datasets were

chosen to be hosted in Vaults based on their relevance to

the neuroimaging research community, and their potential to

demonstrate the diverse capabilities of COINSTAC Vaults. The

hosting decisions were made in coordination with the respective

data owners.

Our analyses highlight how the inclusion of Vault data can

significantly increase sample size, thereby enhancing the statistical

power of results. The diversity of datasets also underscores the

flexibility and adaptability of COINSTAC Vaults, demonstrating

how they can accommodate a wide range of research contexts and

data types.

3.1. TReNDS VBM COBRE

The TReNDS VBM COBRE Vault contains structural

MRI images from 152 participants, approximately half healthy

volunteers and half individuals diagnosed with schizophrenia,

collected as part of the Mind Research Network COBRE

study (Aine et al., 2017). The Vault includes gray matter MRI

images that have been run through a VBM preprocessing pipeline

in the SPM toolbox. In addition, we have demographic information,

symptom severity scales, and cognitive measures to select from

when building a desired model. Figure 5 shows the beta images

from running VBM regression on all the voxels from normalized

smoothed gray matter images from the TReNDS COBRE Vault.

Age, sex, and diagnosis information were used as covariates in

the regression model. Results show decreases in brain volume

with age, reduced volume in visual areas and along the gray/white

boundary in females, and reduced volume in insular-temporal and

medial frontal regions in schizophrenia patients, consistent with

previous results.

The following section describes this use-case with 55

participant’s structural MRI scans collected under MCIC

project (Gollub, 2013). The results from running regression on the

normalized smoothed gray matter images from this project are

shown in Figure 6.

Using the MCIC dataset, we similarly see widespread reduction

in brain volume for age, visual and gray/white boundary

reductions in volume in females, and insular-temporal and

medial frontal (as well as more wide spread) reductions in

schizophrenia patients.

The TReNDS VBM COBRE Vault was combined with the

MCIC dataset, allowing for an increased sample size, in the

same regression analysis to examine diagnostic effects while

accounting for age and sex. The combined dataset was largely

consistent with the individual site analysis, with the exception

of the male/female effect which shows a more complex pattern

of increases and decreases, though still largely conforming to

reductions in white/gray matter boundary and primary visual area

volumes (Gupta et al., 2015). Results of this study are shown in

Figure 7.

3.2. TReNDS FreeSurfer COBRE

This Vault contains data from 152 subjects, approximately half

controls and half individuals with chronic schizophrenia, collected

as part of the Mind Research Network COBRE study.6 The Vault

includes cortical and sub-cortical volumetric and surface-based

measurements from two FreeSurfer atlases, Desikan-Killiany and

Destrieux. In addition, we have a total of 11 variables across

demographic, cognitive, and substance use to select from when

building a desired model.

We ran Ridge regression on the above Vault data on Freesurfer

volumetric and surface based measurements on about 500 regions

of interest. We noticed the following differences between controls

and patients.

Controls have higher values in temporal lobe, as shown in the

thickness measurements of tables (Tables 1–5).

3.3. Child Mind Institute (CMI) VBM VAULT

This Vault contains data from 922 children and adolescents

(ages 6–22, 603 Male and 319 female), collected as part of the

Healthy Brain Network study (Alexander et al., 2017). The Vault

includes gray matter segmentation data from an SPM VBM

preprocessing pipeline. In addition, we have a total of 11 variables

across various demographic, cognitive and substance use domains

to select from when building a desired model.

Figure 8 shows the beta images from running regression on all

the voxels from normalized smoothed gray matter images from

the CMI VBM VAULT. Age and sex were used as covariates in

the regression model. Results were largely consistent with those

from the MCIC and COBRE analyses, showing widespread volume

reductions with age, and reductions along the gray/white matter

boundary in females.

3.4. TReNDS NeuroMark Group-ICA COBRE
VAULT

Group ICA (Calhoun et al., 2001) is one of the frequently

used preprocessing computations for neuroimaging data. Data

preprocessed with group ICA can be used to perform different types

of analyses. This GICA Vault comprises data from 189 subjects

from the COBRE project analyzed with Neuromark template which

uses 66 predefined ROIs. This Vault data includes independent

component analysis (ICA) maps, Functional network connectivity

maps (FNC) data etc. that have been generated using spatially

constrained ICA with the Neuromark_fMRI_1.0 template

(available in the GIFT software)7 ,8 including 53 intrinsic networks

(components). This Vault data can be readily used for secondary

analysis like mancova. In this case, we use the GICA pre-processed

data from the Vault to perform univariate regression analysis, the

results of which are shown in Figure 9.

6 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

7 http://trendscenter.org/software/gift

8 http://trendscenter.org/data
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FIGURE 5

(A–C) Rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using COBRE VBM data Vault in

COINSTAC. For age, negative values show that the gray matter volume decreases with age. For sex, positive values indicate male’s gray matter

volume is greater than female’s gray matter volume and vice versa. For diagnosis, positive values indicate control’s gray matter volume is greater than

patient’s gray matter volume and vice versa.

FIGURE 6

(A–C) Rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using MCIC sMRI data in COINSTAC. For

age, negative values show that the gray matter volume decreases with age. For sex, positive values indicate male’s gray matter volume is greater than

female’s gray matter volume and vice versa. For diagnosis, positive values indicate control’s gray matter volume is greater than patient’s gray matter

volume and vice versa.

FIGURE 7

(A–C) MCIC+COBRE vault: rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using MCIC sMRI data

along with the data in the COBRE Vault in COINSTAC. For age, negative values show that the gray matter volume decreases with age. For sex,

positive values indicate male’s gray matter volume is greater than female’s gray matter volume and vice versa. For diagnosis, positive values indicate

control’s gray matter volume is greater than patient’s gray matter volume and vice versa.

TABLE 1 Global freesurfer stats for lh_S_temporal_inf_thickness.

Global stats – lh_S_temporal_inf_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 2.5552 -0.0052 0.0323 0.1071

t stat 44.8963 -5.014 1.0642 4.1085

P-value 0 0 0.289 1.00E-04

R squared 0.237444911

Degrees of freedom 145

The Neuromark fMRI domains identified in Du et al. Briefly,

these seven identified network templates were divided based on

anatomical and functional properties (Du et al., 2020). In each

subfigures, one color in the composite maps corresponds to an

intrinsic connectivity network (ICN). The Neuromark_fMRI_1.0

template is available in the GIFT software (Figure 10).

4. Discussion

In recent decades, data sharing has driven substantial

advancements in the field of neuroimaging and expanded

opportunities for open science collaboration. Although

data sharing has undeniable merits, it also faces inherent
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TABLE 2 Global freesurfer stats for rh_S_oc − temp_lat_thickness.

Global Stats – rh_S_oc-temp_lat_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 2.5331 −0.0036 0.0127 0.1158

t stat 38.8572 −3.0471 0.3663 3.878

P-value 0 0.0027 0.7147 2.00E-04

R squared 0.149884354

Degrees of freedom 145

TABLE 3 Global freesurfer stats for lh_middletemporal_thickness.

Global Stats – lh_middletemporal_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 3.0038 −0.0057 −0.0134 0.0829

t stat 60.2257 −6.3161 −0.5056 3.63

P-value 0 0 0.6139 4.00E-04

R squared 0.275552216

Degrees of freedom 145

TABLE 4 Global freesurfer stats for lh_superiortemporal_thickness.

Global Stats – lh_superiortemporal_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 2.9341 −0.0067 0.0169 0.0682

t stat 52.568 −6.6199 0.5679 2.6659

P-value 0 0 0.571 0.0085

R squared 0.266849477

Degrees of freedom 145

TABLE 5 Global freesurfer stats for Left_Inf_Lat_Vent.

Global Stats – Left_Inf_Lat_Vent β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 428.1455 4.8982 −144.8783 −164.4922

t stat 5.1293 3.2264 −3.2585 −4.3021

P-value 0 0.0015 0.0014 0

R squared 0.22384763

Degrees of freedom 145

FIGURE 8

(A, B) Rendered images show voxel-wise β values corresponding to the age and sex covariates using CMI VBM Vault data in COINSTAC. For age,

negative values show that the gray matter volume decreases with age. For sex, positive values indicate male’s gray matter volume is greater than

female’s gray matter volume and vice versa.
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FIGURE 9

(A–C) Rendered images show univariate regression results demonstrating the e�ects of age and sex on correlation between the 53 independent

components and FNC correlation map using vault data in COINSTAC.

FIGURE 10

The Neuromark fMRI 1.0 template with 53 intrinsic networks (components) from 7 major networks.
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limitations, including technological, policy, administrative, and

methodological barriers that can hinder progress. COINSTAC

Vaults and the federated computing framework within COINSTAC

uniquely address these challenges by enabling data analysis

while maintaining privacy protection, specifically in the context

of neuroimaging research. The “always-on” status of Vaults

streamlines collaboration between institutions by eliminating the

need for synchronized efforts across users. The accessibility and

user-friendly interface of COINSTAC Vaults serve as powerful

tools for reproducible research, an area that has faced significant

criticism in recent years. By bolstering the collaborative capabilities

of federated learning and addressing the limitations of traditional

data sharing, COINSTAC Vaults provide a cutting-edge solution

for the neuroimaging community, pushing the boundaries of data

analysis and open science.

COINSTAC offers a user-friendly GUI for the neuroimaging

field, enabling federated learning on neuroimaging data with ease.

Its extensive library includes numerous algorithms and pipelines,

facilitating efficient processing of large datasets. Currently, over

twenty computations are available in open-source repositories,

allowing users to create versatile analytic pipelines. The integration

of Vaults further enhances the user experience by providing access

to diverse datasets, enabling efficient analysis with robust data, and

fostering collaboration across institutions asynchronously.

Compared to OpenNeuro,9 and OpenfMRI (Poldrack and

Gorgolewski, 2017) like projects, where users can access data,

download them and perform analysis on their own, Vaults allow

users to perform neuroimaging analysis in federated learning

platform immediately, without the need to download data and

toolboxes onto a centralized computing environment. Vaults can

help researchers to run an initial test on a data or their algorithm

quickly to help setup their hypotheses or validate it to save time

before they commit to a big project.

In addition to being faster to execute by being immediately

available with no downloading or manual coordination, curated

Vaults that follow documented standards make studies easier

to design, execute, and reproduce. For example: Neuroimaging

datasets can contain a large number of variables that apply to

each subject: demographic information, cognitive measures, etc.

The number of these variables can range from tens to hundreds.

Using standard naming conventions makes it easier for researchers

to understand what each variable tracks so that they can select the

relevant variables for their study. Standard and predictable ways for

handling missing data in Vaults makes it easier for researchers to

design their analyses.

COINSTAC is unique in its commitment to open science,

with its open-source platform promoting seamless integration of

modular computations and streamlining federated analyses. The

addition of COINSTAC Vaults reinforces this commitment by

simplifying dataset inclusion in federated analyses, encouraging

community contributions, and preserving privacy for private

datasets. By offering easy access to public datasets and enabling

secure contributions from private dataset owners, COINSTAC

Vaults foster collaboration and dedication to open science.

9 https://openneuro.org/

4.1. Limitations and challenges

COINSTAC Vaults offer numerous benefits, but there are also

limitations and challenges to consider, particularly in the areas of

data privacy and security, and resource usage.

One concern is that allowing arbitrary summary queries on a

datasetmight enable an attacker to reconstruct the data. Tomitigate

such risks, the system must be privacy-preserving from “end-to-

end,” incorporating techniques like secure multiparty computation

or differential privacy. Implementing these methods can be difficult

due to floating point implementation issues (Mironov, 2012;

Ilvento, 2020a,b) and the introduction of noise, which may increase

error or variance in the analysis results.

While differentially private algorithms can provide stronger

privacy guarantees, sharing data derivatives without differential

privacy might be adequate in some situations, depending on the

trust model and privacy concerns of data holders. These issues

should be addressed on a case-by-case basis.

Vault owners can currently restrict computations on their data

to a pre-approved list. To enhance privacy protection, further

improvements are recommended. Potential solutions include

allowing Vault owners to:

• Approve or deny individual analysis runs.

• Specify users and consortia that are allowed to run analyses.

• Limit the overall number of computation runs for a vault.

• Set expiration dates for specific approval permissions.

Another challenge is handling slowdowns or crashes during

resource-intensive analyses due to high compute usage. To address

this issue, Vault owners can be given more control over resource

usage and compute capacity. They could limit the number of

concurrent computations and overall CPU usage. Improving

compute capacity could involve strategies like deploying multiple

instances behind a load balancer or dynamically scaling resources.

Additional challenges include data distribution, network

bandwidth, and communication speed. Federated learning and

open-source solutions can help address some of these problems,

but further research and development are needed to optimize

COINSTAC Vaults’ performance in various research settings.

Our “Decentralized Sparse Deep Artificial Neural Networks in

COINSTAC (CPU and GPU enabled)” algorithm allows users to

save network bandwidth when transferring thousands of derived

data/machine learning parameters across nodes.

In summary, COINSTAC Vaults mark a significant

advancement in federated neuroimaging research, data privacy

preservation, and open science promotion. By tackling the existing

limitations and challenges, COINSTAC Vaults can further improve

collaboration and innovation within the field.

5. Conclusion

The neuroimaging field is experiencing rapid growth,

generating substantial data volumes. However, access to this

data is challenged by technological, privacy, administrative, and

methodological constraints. In this study, we present COINSTAC

Vaults as a solution that streamlines data access and analysis,
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specifically in the context of neuroimaging research. COINSTAC

Vaults ensure continuous availability of high-quality data,

promoting the advancement of open science and fostering efficient

collaboration between researchers.

We invite researchers to use COINSTAC Vaults in their

studies and to host their own datasets using COINSTAC

Vaults. By adopting COINSTAC Vaults, the neuroimaging

community can overcome the barriers associated with traditional

data sharing and analysis methods, paving the way for

groundbreaking discoveries.

5.1. Future work

The long-term vision for COINSTAC and COINSTAC

Vaults includes:

• Introducing new user interface features, such as the ability

to search Vaults and filter by covariates, to improve user

experience and efficiency.

• Making new datasets available as Vaults, including those

from OpenNeuro, the Autism Brain Imaging Data Exchange

(ABIDE), the National Institute of Mental Health Data

Archive (NDA), the Open Access Series of Imaging Studies

(OASIS), and the Image and Data Archive (IDA), to enhance

the diversity of Vaults.

• Increase BIDS (Brain Imaging Data Structure) support to all

major neuroimaging modalities and Vault datasets, to ensure

interoperability and ease of use.

• Increase compliance to programs such as the FAIR

(Findability, Accessibility, Interoperability, and Reuse)

Guiding Principles for scientific data management and

stewardship, to enhance the overall data sharing ecosystem.

• Exploring the integration of differential privacy techniques to

further safeguard data privacy, while preserving the utility of

data analysis.
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