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This study explores brain-network differences between the intrinsic and extrinsic

motor coordinate frames. A connectivity model showing the coordinate frames

difference was obtained using brain fMRI data of right wrist isometric flexions

and extensions movements, performed in two forearm postures. The connectivity

model was calculated by machine-learning-based neural representation and

effective functional connectivity using psychophysiological interaction and

dynamic causal modeling analyses. The model indicated the network difference

wherein the inferior parietal lobule receives extrinsic information from the

rostral lingual gyrus through the superior parietal lobule and transmits intrinsic

information to the Handknob, whereas extrinsic information is transmitted to

the Handknob directly from the rostral lingual gyrus. A behavioral experiment

provided further evidence on the difference between motor coordinate frames

showing onset timing delay of muscle activity of intrinsic coordinate-directed

wrist movement compared to extrinsic one. These results suggest that, if the

movement is externally directed, intrinsic coordinate system information is

bypassed to reach the primary motor area.

KEYWORDS

effective functional connectivity, motor coordinate frames, multivariate pattern analysis,
reaction time, wrist movement

1. Introduction

How does the brain enable the body to interact with external physical objects given
the enormous multitude of possible body motor coordinate frames? This is a question that
neuroscientists have been exploring aiming to find where in the brain this control operates.
A usual method to approach this question is to examine the neural representations of the
motor coordinate frames. When interacting with the external environment, representing
the geometrical coordinates of objects in the outside world is necessary to plan one’s
movement with respect to the geometrical coordinates of one’s own body. Since the
external and internal body’s coordinate frames exist independently, the brain needs to
seamlessly transform between these extrinsic (i.e., Cartesian) and intrinsic (i.e., body or
muscle-centered) coordinate frames. Thus far, which brain regions and circuits perform this
operation remains unclear.

Frontiers in Neuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1199862
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1199862&domain=pdf&date_stamp=2023-07-10
https://doi.org/10.3389/fninf.2023.1199862
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1199862/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1199862 July 4, 2023 Time: 13:5 # 2

Martinez-Tejada et al. 10.3389/fninf.2023.1199862

Studies addressing this question have focused on the motor-
related areas in primates using neurophysiological recordings
(Evarts, 1968; Cheney et al., 1985; Georgopoulos et al., 1986;
Donoghue et al., 1992; Kurata, 1993; Scott and Kalaska, 1995;
Kakei et al., 1999, 2001; Pesaran et al., 2006). Furthermore,
human studies have covered a range of topographical mapping
modalities, including functional magnetic resonance imaging
(fMRI) (Eisenberg et al., 2010; Toxopeus et al., 2011; Yoshimura
et al., 2014), transcranial magnetic stimulation (TMS) (Davare
et al., 2006, 2009; Dafotakis et al., 2008; Alaerts et al., 2009;
Duque et al., 2012; Stadler et al., 2012), and positron emission
tomography (PET) (Stephan et al., 1995). The primary motor
cortex (M1) has been shown to represent both intrinsic and
extrinsic coordinate frames, initially in primates and later also
in human studies. Intrinsic information such as muscle tension
in monkeys (Evarts, 1968; Cheney et al., 1985; Donoghue et al.,
1992; Kakei et al., 1999), human muscle-specific resonating activity
(Alaerts et al., 2009; Yoshimura et al., 2014), and monkey joint
angle (Scott and Kalaska, 1995), were found to be represented
in M1. In contrast, some studies in monkeys (Georgopoulos
et al., 1986; Kakei et al., 1999) and humans (Eisenberg et al.,
2010; Toxopeus et al., 2011; Yoshimura et al., 2014) have
additionally shown that M1 also encodes movement in the extrinsic
coordinate system.

Another motor-related area, the premotor cortex (PM),
represents the extrinsic coordinate system. The ventral region
of the PM (PMv) encodes the direction of action (Kakei et al.,
2001), while its dorsal part (PMd) encodes motor preparation
(Kurata, 1993) and the relative position of targets during reaching
in primates (Pesaran et al., 2006). In humans, fMRI and TMS
studies have shown the involvement of PMd in representing
movement direction (Yoshimura et al., 2014), motor preparation
(Davare et al., 2006), and action prediction (Duque et al.,
2012; Stadler et al., 2012). On the other hand, fMRI results
indicate that the PMv is implicated in representing the motor
direction (Yoshimura et al., 2014), alongside motor imagery,
motor preparation, and grip force prediction, as shown by
TMS and PET studies (Stephan et al., 1995; Dafotakis et al.,
2008; Davare et al., 2009). Although the supplementary motor
area (SMA) proper and the pre-SMA form parts of PM,
the representation of the coordinate system in these areas
has not been explicitly examined, except by one fMRI study
(Yoshimura et al., 2014). According to that study, the SMA proper
represents the direction of movements (i.e., extrinsic coordinate
system), while the pre-SMA seems to respond similarly to both
coordinate systems.

When addressing other than motor-related areas to study
how the brain process information to allow the body’s interaction
with physical objects represented in internal and external motor
coordinates, previous researches have studied areas related to
sensorimotor transformation or visually-guided movements. In
this regard, the involvement of the parietal cortex has long been
noted, as reflected in the two-stream hypothesis (Jannerod, 1981;
Binkofski and Buxbaum, 2013). This hypothesis posits that the
dorsoventral and dorsomedial streams mediate the grasping and
reaching processes, respectively (Jeannerod, 1999). In primate
studies, the dorsomedial stream extends from the primary visual
cortex to the medial intraparietal area (MIP) and PMd, while the
dorsoventral stream goes to the anterior intraparietal area (AIP)

and PMv (Matelli et al., 1986; Tanné et al., 1995; Shipp et al., 1998;
Tanné-Gariépy et al., 2002; Borra et al., 2008; Gamberini et al., 2009,
2020; Bakola et al., 2010, 2017; Passarelli et al., 2011). A human
study examining the neural representation of motor coordinate
frames using a reaching task focused on the posterior parietal cortex
(PPC) supports this hypothesis and demonstrates the involvement
of the PPC in the extrinsic motor coordinate frame (Fujiwara et al.,
2017). Also, an fMRI study focused on the PPC to disentangle the
fronto-parietal networks mediating in visuomotor functions during
the execution of saccades, hand, and foot pointing, described
a functional distinction between lateral region in the posterior
intraparietal sulcus (lpIPS), preferring saccades over pointing and
coupled with the frontal eye fields (FEF) at rest, and a more medial
portion (mpIPS) intrinsically correlated to the PMd (Bencivenga
et al., 2023a). On the other hand, a recent high-resolution 7
T fMRI study found that information can be accessed through
shared functional connectivity, including the superior frontal and
precentral gyrus, central sulcus, intraparietal sulcus, precuneus,
and insular cortex (Greulich et al., 2020). Therefore, to examine
the neural representations of the motor coordinate frames during
motor tasks other than grasping and reaching, it is worthwhile
and necessary to probe the entire cortex. Considering the entire
cortex can lead to identifying the effective connectivity across brain
regions that might transform information between the intrinsic and
extrinsic motor coordinate frames, which has not been investigated
previously. If there are differences in connectivity between the two
coordinate frames, examining whether the differences are related to
behavioral data may also help elucidate the mechanisms of motor
control.

In this study, we report a representation analysis based on
multivariate pattern analysis (MVPA) using fMRI whole-brain data
acquired during visually-guided wrist movements performed in
two different right-forearm postures. Focusing on the brain regions
that the MVPA showed to be predominantly tracking the intrinsic
or extrinsic coordinate frames, we conduct a psychophysiological
interaction (PPI) analysis to formulate a model regarding which
regions receive or transmit intrinsic and extrinsic coordinate frame
information in the task. The model was further evaluated and
adjusted via dynamic causal modeling (DCM) analysis. To provide
further evidence on the information processing path differences
between motor activity in the external and internal coordinate
frames, we conducted a behavioral experiment examining the
reaction times (RT) of four wrist movements performed in three
right forearm postures for the intrinsic and extrinsic coordinate
frames.

2. Materials and methods

2.1. Participants

From the original experiment (Yoshimura et al., 2014),
participants fMRI data was used for the current analysis, 10 right-
handed healthy human participants (2 female and 8 male), between
21 and 47 years old (MD = 34.1, SD = 10.7). In the behavioral
experiment, 20 right-handed human participants (7 females and 13
males), between 21 and 51 years old (MD = 29.7, standard deviation
SD = 6.2) participated. Written informed consent was obtained
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FIGURE 1

(A) Schematic of participant postures and relation between movement directions and tasks according to visual instructions in two different wrist
postures. (B) Block design for the fMRI experiment.

TABLE 1 Combination of the four-condition (ExtUp, FlexUp, FlexDown,
and ExtDown) used in the three analyses, binary classification, PPI,
and DCM analyses.

Two types of binary classification analysis

FvE (FlexUp+ FlexDown) vs. (ExtUp+ ExtDown)

UvD (FlexUp+ ExtUp) vs. (FlexDown+ ExtDown)

Two dataset combinations for contrast settings in PPI

Intrinsic Flex
Ext

FlexUp+ FlexDown
ExtUp+ ExtDow

Extrinsic Up
Down

FlexUp+ ExtUp
FlexDown+ ExtDown

Four task settings for DCM analysis

Intrinsic Flex FlexUp+ FlexDown

Ext ExtUp+ ExtDow

Extrinsic Up FlexUp+ ExtUp

Down FlexDown+ ExtDown

All of these combinations were defined according to the analysis method to separate
information according to intrinsic and extrinsic coordinate frames.

from all participants before both experiments. The experimental
protocols were approved by the ethics committee of the National
Center of Neurology and Psychiatry and the Tokyo Institute of
Technology (No. 2022047, 2022).

2.2. fMRI dissociable dataset for intrinsic
and extrinsic coordinate frames

The fMRI experimental design allows for dissociating
coordinate frame information into intrinsic and extrinsic
(Yoshimura et al., 2014). Specifically, visual cues for the right
wrist flexion (Flex) and extension (Ext) movements were provided
by graphical arrows pointing up and down, which can trigger
motor commands in an extrinsic coordinate frame manner. One
arrow direction cued multiple tasks depending on the wrist posture
by changing the forearm postures of the right wrist: pronated (Pro;
palm downward), and supinated (Sup; palm upward) (Figure 1A).

Table 1 shows the paired data based on arrow directions for the
binary classification, the PPI and the DCM analysis.

There were eighteen 18 s task blocks in one functional run
(Flex, Ext, and Still, 6 times each; Figure 1B), with a 3 s rest
period between the task blocks. The three task blocks appeared
in pseudo-randomized order to assure that all the tasks were
performed within three consecutive blocks. According to a visual
cue of a graphical arrow toward up or down shown on a computer
screen, the participants repeated a task (i.e., force exertion or still)
six times during the task period, with each exertion lasting 2 s
interspersed with 1 s rest periods. A detailed description can be
found in Yoshimura et al. (2014).

2.3. Data acquisition

A 3 T Magnetom Trio MRI scanner with an 8-channel array coil
(Siemens, Erlangen, Germany) was used for the fMRI experiment.
Functional data were acquired with a T2∗-weighted gradient-echo,
echo planar imaging sequence using the following parameters:
repetition time (TR) = 3 s; echo time (TE) = 30 ms; flip angle
(FA) = 90◦; field of view (FOV) = 192 × 192 mm; matrix
size = 64 × 64; 36 slices; slice thickness = 3 mm; 140 volumes.
The following MP-RAGE T1-weighted sequence was used for
a 3D anatomical image (TR = 2 s; TE = 4.38 ms; FA = 8◦;
FOV = 192 × 192 mm; matrix size = 192 × 192; 160 slices; slice
thickness = 1 mm). EMG signals were also recorded using the
Delsys Trigno wireless system (Delsys Inc., Natick, MA, USA), and
mean muscle activity levels were compared across conditions to
determine the consistency of force and muscle activity levels across
conditions after the experiment.

2.4. Data preprocessing

Functional magnetic resonance imaging data were
preprocessed using SPM12 (The Wellcome Centre for Human
Neuroimaging, 1991), running on MATLAB R2020b (The
MathWorks, Inc., Natick, MA). The preprocessing flow for the
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classification analysis (i.e., MVPA) differed from the one used for
the effective connectivity analyses (i.e., PPI and DCM).

For the classification analysis, all functional images and the T1-
weighted anatomical image were realigned and co-registered to the
mean image of the functional images, respectively, to keep the voxel
values in the functional images unchanged as much as possible. The
co-registered T1-weighted image was used to obtain an inverse-
normalization transformation matrix to convert region of interest
(ROI) masks (described in Section “2.5. Region of interest mask”)
defined in the standard Montreal Neurological Institute (MNI)
space into individual participants’ native brain spaces. No spatial
smoothing was applied to the functional images at this stage.

For the PPI and DCM analyses, on the other hand, we
followed the standard preprocessing flow: All functional images
were processed with slice-timing corrections, realigned to the mean
image of the functional images, and then co-registered to the T1-
weighted anatomical image. The co-registered functional images
were further normalized to the MNI standard brain space and

spatially smoothed with a Gaussian kernel having 8 mm full-width
at half-maximum.

2.5. Region of interest mask

We used ROIs based on Brainnetome Atlas (Brainnetome
Center Institute of Automation, Chinese Academy of Sciences,
2014; Fan et al., 2016) for the classification analysis to cover the
whole brain, and the left Handknob [i.e., a sphere ROI with a
center coordinate of [−34, −25, 57] (Davare et al., 2010)] the
Human Motor Area Template (HMAT) (Mayka et al., 2006) was
additionally used for the PPI and DCM analyses. The Brainnetome
Atlas divided the whole brain into 246 brain areas, whereas
the HMAT consists of 12 motor-related areas; left and right
hemispheres of the primary motor area (M1), the primary sensory
area (S1), ventral and dorsal premotor areas (PMv and PMd),
supplementary motor area (SMA), and pre-SMA.

TABLE 2 ROIs showing significant difference between the FvE and UvD classification, the accuracies, and p-values.

ROIs with centroid MNI coordinate values (mm) Classification accuracy (%) p-value

FvE UvD

MVOcC_L54, MedioVentral Occipital Cortex (MVOcC), rostral lingual gyrus (rLinG), [−17,−60,−6] 60.5 73.8 p < 0.001

LOcC_L44, Lateral Occipital Cortex (LOcC), inferior occipital gyrus (iOccG), [−30,−88,−12] 58.7 71.9 p < 0.001

PCun_L43, Precuneus, dmPOS, dorsomedial parietooccipital sulcus (PEr), [−12,−67, 25] 56.4 69.6 p < 0.001

LOcC_L21, Lateral Occipital Cortex, msOccG, medial superior occipital gyrus, [−11,−88, 31] 57.9 72.5 p < 0.001

MVOcC_L52, rostral cuneus gyrus (rCunG), [−5,−81, 10] 59.9 75.6 p < 0.001

FuG_L32, Fusiform Gyrus, A37mv, medioventral area37, [−31,−64,−14] 58.4 70.1 p < 0.001

MVOcC_L55, vmPOS, ventromedial, [−13,−68, 12] 58.8 72.0 p < 0.001

LOcC_L43, Occipital polar cortex (OPC), [−18,−99, 2] 58.7 71.7 p < 0.001

MVOcC_L53, Caudal cuneus gyrus (cCunG), [−6,−94, 1] 61.7 76.7 p < 0.001

MVOcC_R52, Rostral cuneus gyrus (rCunG), [7,−76, 11] 59.9 74.2 p < 0.001

MVOcC_R54, Rostral lingual gyrus (rLinG), [18,−60,−7] 59.6 70.7 p < 0.001

LOcC_R21, medial superior occipital gyrus (msOccG), [16,−85, 34] 60.0 71.2 p < 0.001

LOcC_L41, Middle occipital gyrus (OccG), [−31,−89, 11] 59.3 73.1 0.01

MVOcC_R51, Caudal lingual gyrus (cLinG), [10,−85,−9] 59.7 73.1 0.03

IPL_L61, Angular, Caudal area 39 (PGp), [−34,−80, 29] 56.6 62.7 0.03

IPL_R63, Rostrodorsal area 40 (PFt), [47,−35, 45] 56.3 65.0 0.03

LOcC_R44, Inferior occipital gyrus (iOccG), [32,−85,−12] 59.7 71.2 0.03

FuG_R32, Medioventral area37, [31,−62,−14] 59.6 69.8 0.03

LOcC_R41, Middle occipital gyrus (mOccG), [34,−86, 11] 60.7 72.0 0.03

MVOcC_L51, Caudal lingual gyrus (cLinG), [−11,−82,−11] 63.7 74.2 0.03

FuG_R33, A37lv, lateroventral area37, [43,−49,−19] 58.7 67.1 0.04

PCun_L44, Area 31 (Lc1), [6,−54, 35] 57.5 64.4 0.04

LOcC_L42, V5/MT+ , area V5/MT+ , [−46,−74, 3] 59.8 66.5 0.04

MVOcC_R53, Caudal cuneus gyrus (cCunG), [8,−90, 12] 63.7 75.2 0.04

PrG_R64, Area 4 (trunk region), [15,−22, 71] 55.4 62.6 0.05

PCun_R44, Area 31 (Lc1), [6,−54, 35] 58.2 65.4 0.05

PrG_L63, Area 4 (upper limb region), [−26,−25, 63] 67.4 62.6 0.09

The bold values are the higher classification accuracies between FvE and UvD binary classification analysis.
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2.6. Binary classification for coordinate
frames’ neural representation analysis

We chose MVPA as a neural representation analysis because
the method has been recognized to be sensitive to experimental
manipulation and areal dissociation in previous studies (Mourão-
Miranda et al., 2005; Kriegeskorte, 2011). In our previous study, we
have successfully used the method to obtain physiological findings
comparable to those obtained with animals. We applied the same
classification method, sparse logistic regression (SLR) (Yamashita
et al., 2008), as used in our previous study (Yoshimura et al.,
2014). Using voxel data included in each ROI, we trained two
types of binary classifiers, Flex vs. Ext (FvE) classification and Up
vs. Down (UvD) classification, and compared across-participant
mean classification accuracies of the two classifiers for each ROI.
The idea is that the brain regions representing intrinsic coordinate
frame information should show significantly higher classification

accuracy in the FvE classification than in the UvD classification.
In contrast, the regions representing extrinsic coordinate frame
information should show significantly higher accuracy in the UvD
classification. The validity of the idea has been proven in our
previous study, which showed that the neural representations
focusing on motor-related areas were consistent with existing
electrophysiological studies of primates (Yoshimura et al., 2014).
The target regions were expanded to the whole brain in this study.

The classification analyses were performed for the 246 ROIs
separately using images in participants’ individual native spaces.
The time series functional data of individual ROIs were extracted
from the preprocessed data at six-time points per block, providing
36 scans for each task. To remove temporal baseline shift, mean
signal intensity calculated from the 6 scans of the Still task
block was subtracted from the signal intensities of the Flex and
Ext block data, which can minimize dependency among blocks
rather than high-pass filtering used in the standard preprocessing

TABLE 3 ROIs showing significant difference between the FvE and UvD classification, the accuracies, and p-values.

Seed Dataset combination Target MNI coord. (x, y, z) Target regions Cluster-level

kE pFWE

MVOcC_L54, rLinG
[−17,−60,−6]

Extrinsic −30 −24 60 Left PrG 283 <0.001

Extrinsic −18 −16 40 White matter 172 <0.001

Extrinsic −32 −58 32 White matter 166 <0.001

Extrinsic −36 −44 60 Left SPL 172 <0.001

LOcC_L22, occipital gyrus
[−22,−77, 36]

Extrinsic −14 −66 −12 Left Cerebellum
Exterior

99 0.008

Extrinsic −4 −60 58 Left Precuneus 228 <0.001

A39c, IPL_L61, Angular
[−34,−80, 29]

Extrinsic −26 −20 48 White matter 173 <0.001

Extrinsic 34 −10 54 White matter 87 0.02

A39rd, IPL_L62, Angular
[−38,−61, 46]

Extrinsic −42 −28 38 Left PoG 117 0.03

A39rv, IPL_L65, Angular
[−47,−65, 26]

Extrinsic −46 −8 10 Left central operculum 100 0.043

Extrinsic −42 −20 66 Unknown 154 0.006

A37mv, Fug_L32, Fusiform
[−31,−64,−14]

Extrinsic 8 −58 54 Right Precuneus 68 0.03

A7r, SPL_L51,
[−16,−60, 63]

Extrinsic −6 −62 50 Left Precuneus 83 0.03

A7pc, SPL_L54,
[−22,−47, 65]

Extrinsic −28 −76 38 Left Angular 197 <0.001

PoG_L42,
[−56,−14, 16]

Extrinsic 50 −4 32 Right PrG 70 0.04

Extrinsic −8 −64 38 Left Precuneus 69 0.05

PoG_L44,
[−21,−35, 68]

Extrinsic −18 −54 −2 White matter 93 0.01

Extrinsic 10 −50 12 White matter 67 0.05

Handknob, M1 left
[−34,−24, 58]

Intrinsic −28 −72 38 Left Angular 187 0.003

PMv left (HMAT) Intrinsic 4 −16 16 Right thalamus proper 69 0.016

Pre-SMA left (HMAT) Extrinsic −38 −16 62 Left PrG 231 <0.001
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method. The classifiers were trained based on L1-norm based
SLR with Laplace approximation using SLR Toolbox version 1.2.1
alpha (Yamashita et al., 2008; Advanced Telecommunications
Research Institute International, Japan, 2009) using six-fold leave-
one-block-out cross-validation. Specifically, five blocks from each
task (20 in total) were used to train a classifier, and the one
remaining block from each task (four in total) was used to
evaluate the performance of the trained classifier. This was repeated
six-fold, with each fold using a unique partition of training
and testing blocks.

For each ROI, the mean accuracies for the UvD and FvE
classification were first calculated based on each participant’s
mean accuracy from six-fold cross-validation. Then, statistical
significance comparing the accuracies between UvD and FvE was
evaluated by t-test using the mean accuracies from all participants.

2.7. PPI analysis of effective connectivity

Psychophysiological interaction analysis was performed to
reveal the brain areas that show stronger effective connectivity
during intrinsic and extrinsic movement tasks. We followed the
standard process of the PPI analysis (O’Reilly et al., 2012),
but two general linear models were separately estimated
using intrinsic dataset and extrinsic dataset combinations
(The middle plane in Table 3). The intrinsic combination
dataset consisted of flexion tasks (i.e., FlexUp and FlexDown)
and extension tasks (i.e., ExtUp and ExtDown), whereas the
extrinsic combination dataset consisted of up tasks (i.e., FlexUp
and ExtUp) and down tasks (i.e., FlexDown and ExtDown).
Time-series data of each seed-ROI was extracted from the
individual combination datasets, and voxels showing significant
psychophysiological interaction were estimated on contrasts
of flexion vs. extension and up vs. down, respectively. Group
analysis was performed to identify significant voxels for individual
combination datasets.

2.8. PPI results model’s validation using
DCM analysis

Based on the results from the PPI analysis, we formulated
a model representing the differences between the effective
connectivity activated with intrinsic and extrinsic conditions. Then,
the model was validated using dynamic causal modeling (DCM)
analysis implemented in SPM12. We performed the following
standard DCM analysis flow (Stephan et al., 2010), but the analysis
was repeated 4 times using the different task combinations of the
dataset (the lower plane in Table 1). Specifically, time-series data of
areas in the model was extracted from the preprocessed functional
images, and models to be validated were created for the 4 tasks
(i.e., Up, Down, Flex, and Ext) by selecting 2 from the 4 tasks (i.e.,
FlexUp, FlexDown, ExtUp, and ExtDown). For example, models for
the up task were created using FlexUp and ExtUp. Next, the models
were evaluated by the Bayesian model selection (BMS) at the group
level using fixed-effect analysis (FFX).

FIGURE 2

Behavioral chronology experiment method: (A) Intrinsic and
extrinsic images for visual stimuli: pronation (Pro; palm downward),
supination (Sup; palm upward), and midway (Mid; palm leftward).
(B) Tasks methodology.

2.9. Behavioral chronometry of wrist
movement

Electromyography has proven to be a reliable method for
visuomotor RT recordings due to its time resolution and none
invasive nature (Tomberg et al., 1991; Ballanger and Boulinguez,
2009). The 20 participants performed 4 wrist movements, flexion,
extension, radial deviation, and ulnar deviation, according to visual
stimuli. The visual stimuli were provided in an intrinsic or extrinsic
coordinate frame manner through an image on a computer
monitor. In intrinsic, the images represented hand postures of
the 4 movements, while in extrinsic, the images were arrows
pointing in 4 directions, up, down, left, and right (Figure 2A).
The participants were instructed to perform a wrist movement
according to the visual stimulus as fast as possible, and performed
the tasks in three sessions by changing the forearm postures of
the right wrist: pronated (Pro; palm downward), supinated (Sup;
palm upward), and midway (Mid; palm leftward). The tasks were
presented 25 times for each task for each posture in randomized
order (Figure 2B). EMG signals were recorded using a Delsys
Trigno wireless system (Delsys Inc., Natick, MA) at 2 kHz sample
frequency. Two electrodes were placed over the right flexor carpi
radialis (FCR) and right extensor carpi radialis brevis (ECRB),
which are the major muscles for wrist movements. For the pro-
down, mid-left, and sup-down movements, the FCR signal was used
for analysis, ECRB signal was used for the rest of the movements.

To acquire the EMG wrist movement signal and calculate the
RT, the participants were instructed to perform the movement
as fast as they could and then go back to a neutral position.
The EMG signal was extracted between the 2 s time window of
the stimulus presentation. After signal extraction, the mean was
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removed from the EMG signals and a band pass filter between
20 Hz and 450 Hz was applied, signals were rectified and filtered
with a low pass filter at 10 Hz to obtain the EMG envelope. EMG-
RT is considered as the time interval between the onset of the time
stimulus presentation and the actual onset of the required motor
response (premotor and motor time) (Ballanger and Boulinguez,
2009). RTs were calculated from the onset of stimulus presentation
to the peak amplitude from the EMG signal within the time window
of each picture presentation. Then, RTs were analyzed using a
three-way repeated-measures full-factorial ANOVA having Frame,
Posture, and Movement as factors. The analysis was performed
both on the raw times and on the z-normalized values.

3. Results

3.1. Neural representation of coordinate
frames through comparison of fMRI
classification accuracies

In the fMRI experiment, we studied four conditions according
to a two-by-two design for the right-wrist movements: an up
arrow visual stimulation indicating extension (Ext) in pronated
posture (Pro; palm downward) (ExtUp) and flexion (Flex) in
supinated posture (Sup; palm upward) (FlexUp), and a down arrow
visual stimulation indicating Flex in Pro (FlexDown) and Ext in
Sup (ExtDown). This experimental paradigm allows examining
the brain activity difference in the two coordinate frames by
varying the combination of the four-condition representation
(ExtUp, FlexUp, FlexDown, and ExtDown). To elucidate the
cortical representation of the extrinsic coordinate system, the
data were paired based on the arrow directions: Up data consists
of ExtUp and FlexUp, and Down data consists of FlexDown
and ExtDown. On the other hand, to elucidate the intrinsic
coordinate system, the data were paired based on the movements:
Flex data consists of FlexUp and FlexDown, whereas Ext data
consists of ExtUp and ExtDown. In this manner, the analyses
conducted on such separated datasets enabled examining the
distribution of brain activity underlying each of the coordinate
systems (Table 1).

For the MVPA, we extracted voxel intensity values included
in individual anatomical ROIs based on the Brainnetome Atlas
(Brainnetome Center Institute of Automation, Chinese Academy
of Sciences, 2014; Fan et al., 2016) to cover the whole brain.
For each ROI among 246 brain regions, two types of binary
classifiers, that is, Flex vs. Ext (FvE) classification and Up vs.
Down (UvD) classification, were trained using sparse logistic
regression (SLR) (Yamashita et al., 2008). Across-participant
average classification accuracies were compared between the FvE
and UvD classifiers, and the ROIs showing statistically significant
accuracy differences through a paired t-test are given in Table 2
and Figure 3.

All significant regions showed higher accuracies in the UvD
classification (i.e., green-colored regions in Figure 3), including the
left and right occipital areas (MVOcC), left and right precuneus
(PCun), left and right fusiform (Occipitotemporal gyrus), left
and right inferior parietal lobules (IPL), and right precentral
gyrus, most of which are relating to visual information processing

FIGURE 3

Brain regions showing significantly different accuracy between the
UvD and FvE classifications. The upper panel shows axial 2D slices,
and the lower panel shows lateral views of 3D brain. Green-colored
regions show higher accuracy in UvD, while red-colored regions
show higher accuracy in FvE. The p-values were calculated using
paired t-tests.

(Chan et al., 2013; Yang et al., 2015). The left precentral gyrus,
which is known to represent the intrinsic coordinate frame (Kakei
et al., 1999; Yoshimura et al., 2014), showed relatively higher
accuracy in the FvE classification, although the effect did not
react statistical significance (PrG_L63, p = 0.09, red colored region
in Figure 3). Altogether, these results suggest that the occipital
areas, SPL, fusiform, IPL, and precentral gyrus may relate to
neural processing across motor coordinate frames. Therefore, we
considered ROIs covering these five regions as seeds for the
following PPI analysis.

3.2. Psychophysiological interaction
analysis

Psychophysiological interaction analysis was performed to
reveal the brain areas showing stronger effective connectivity
during intrinsic and extrinsic movement tasks. Since the
experimental tasks were performed using the right wrist, we
used the five regions in the left hemisphere as seeds for the PPI
analysis. Additionally, to examine motor-related areas thoroughly,
the following regions of the left hemisphere are also included
as seeds: the Handknob, the primary motor area (M1), the
primary sensory area (S1), ventral and dorsal premotor areas
(PMv and PMd), supplementary motor area (SMA), and pre-SMA.
Table 3 shows statistically significant effective connectivity, and
Figure 4 summarizes the networks between the significant regions,
excluding findings in white matter and basal ganglia. Since the task
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FIGURE 4

Significant effective connectivity from the PPI analysis. Green arrows denote results obtained using the dataset combination for extrinsic coordinate
frame shown in Table 3, whereas the red arrow denotes a connectivity found using the dataset combination for intrinsic coordinate frame. The
network consisting of the blue-colored regions was selected as a model to be evaluated by the subsequent DCM analysis.

was performed using the right wrist, most of the connectivity was
represented in the left hemisphere. In the intrinsic combination
dataset, only one connectivity from the left Handknob to the left
Angular gyrus (A39c) reached significance in the left hemisphere.
In this study, we aim to elucidate the connectivity difference
between the intrinsic and extrinsic motor coordinate frames.
Therefore, as shown in Figure 4, we decided to focus on the part
of the model encompassing blue-colored regions, namely, the
Handknob, IPL (Angular gyrus), MVOcC (rLinG), SPL (A7pc),
and pre-SMA for the following DCM analysis.

3.3. Dynamic causal modeling analysis

For the DCM analysis, our hypothesis is that model pairs for
Flex and Ext, and Up and Down, should show similar tendencies
if the fixed-effect defined in the models is promising. Figure 5A
shows the model from the PPI results to be verified by DCM,
Figure 5B is an updated model based on DCM results, and
Figure 5C shows the results of the subdivided models. For the
intrinsic connection (i.e., the left column panel in Figure 5C), the
models 3 and 6 (3 was from Ext data and 6 was from Flex data) with
bidirectional connectivity between the Handknob and the angular
gyrus showed stronger evidence than the other unidirectional
models. For the extrinsic connections (i.e., the middle column
panel in Figure 5C), the originally expected models 1 and 4 (1
was from Down data and 4 was from Up data) with connectivity
from the rLinG to the Handknob and SPL, and from the SPL
to the angular gyrus showed the highest probabilities than the
other models. Finally, for the connection between pre-SMA and
the Handknob (i.e., the right column panel in Figure 5C), although
the tendencies were not completely identical among the dataset of
Down (models 1–3), Up (models 4–6), Ext (models 7–9), and Flex
(models 10–12), the bidirectional connections seemed to have the
highest evidence for both intrinsic and extrinsic cases. Therefore,
the original suggested model in Figure 5A was updated as shown

in Figure 5B. On Figure 6 all the significant brain regions included
in the model shown in Figure 5B are summarized.

3.4. Behavioral chronometry analysis

We hypothesized that, if the model shown in Figure 5B is
valid, a temporal delay should occur between executing wrist
movements when being instructed in the intrinsic coordinate frame
manner as compared to the extrinsic coordinate frame manner. To
examine the hypothesis, we performed a behavioral chronometry
experiment involving measuring the RTs of wrist movements using
electromyography (EMG) from the right forearm [i.e., flexor carpi
radialis (FCR) and extensor carpi radialis brevis (ECRB)]. We
asked 20 participants to perform four wrist movements: flexion,
extension, radial deviation, and ulnar deviation, with three different
wrist postures of pronation, supination, and midway, according
to visual stimuli showing wrist posture images (i.e., intrinsic
coordinate frame manner) or directional arrows (i.e., extrinsic
coordinate frame manner, see Figure 2).

The grand average and corresponding standard deviation of
the EMG recording amplitude envelopes across participants are
presented in Figure 7. A consistent tendency for signals recorded
in response to movements performed under the intrinsic frame
to activate and reach their maximum amplitude later than the
extrinsic frame homologs is well-evident.

As visible in Figure 8, the RTs were consistently longer across
postures and movements for the intrinsic than the extrinsic frame.
Accordingly, the ANOVA for the raw RTs revealed a strongly
significant main effect of Frame [F(1,19) = 67.1, p < 0.001,
ηp

2 = 0.78] alongside a weaker main effect of Posture [F(2,38) = 3.9,
p = 0.03, ηp

2 = 0.17], a Frame× Posture interaction [F(2,38) = 4.7,
p = 0.02, ηp

2 = 0.20] and a Frame × Posture × Movement
interaction [F(6,114) = 3.0, p = 0.01, ηp

2 = 0.14]. Post hoc ANOVAs
conducted separately for the three levels of Posture confirmed
that the effect of Frame was consistently strongly significant
under the pronation [F(1,19) = 11.4, p = 0.003, ηp

2 = 0.38],
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FIGURE 5

Proposed models and results from the DCM analysis. (A) The model proposed from the PPI analysis and to be verified by the DCM, (B) The updated
model after the DCM, (C) Subdivided models that were examined in the DCM analysis. The left, middle, and right columns focus on connectivity in
the intrinsic coordinate frame, in the extrinsic coordinate frame, and between pre-SMA and the Handknob, respectively. In each column, models in
the first row include expected direction based on the PPI results, those in the second row have connectivity with opposite direction, those in the
third row have bidirectional connectivity, and the bottom row shows the probability of the Bayesian model selection done in the DCM. In the models
in the left and middle columns, models 1–3 and 4–6 used the extension and flexion movement combination dataset, respectively. On the other
hand, in models in the right column, models 1–3, 4–6, 7–9, and 10–12 used the downward, upward, extension, and flexion movement combination
dataset, respectively. The orange-colored models showed the highest evidence from the models.

midway [F(1,19) = 69.5, p < 0.001, ηp
2 = 0.79] and supination

[F(1,19) = 33.1, p < 0.001, ηp
2 = 0.64] conditions. The ANOVA

for the z-normalized RTs provided analogous results, with a strong
main effect of Frame [F(1,19) = 49.9, p < 0.001, ηp

2 = 0.72]. The
main effect of and interaction with Movement were additionally
significant, and in post hoc ANOVAs the effect of Frame remained
significant across all conditions, not reported for brevity.

4. Discussion

In this study, MVPA-based neural representation analysis
and effective connectivity analyses inspired the model evaluation
positing a difference in effective connectivity between the

intrinsic and extrinsic coordinate frames while performing
visually-guided wrist movements. According to this model
(Figure 5B), signal transmission of the extrinsic coordinate
frame information from rLinG would be split into two: one
directly to the Handknob and the other via SPL and the
IPL (angular gyrus) to the Handknob as intrinsic coordinate
information. The model also includes pre-SMA that exchanges
the both coordinate information with the Handknob. The model
suggests an information transmission difference between the
two coordinate frames, which implies that intrinsic coordinate
information might arrive to the Handknob later than the
extrinsic coordinate information. This aspect of the model was
indirectly supported by the behavioral chronometry experiment,
which showed longer reaction times of wrist movements
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FIGURE 6

Significant regions included in the model from the PPI results
verified by DCM. The regions are pre-supplementary motor area
(preSMA), Handknob, IPL Angular gyrus (A39c), SPL (A7pc), and
MVOcC (rLinG).

visually-guided in the intrinsic coordinate frame compared to
extrinsic.

The MVPA-based neural representation analysis across all
brain regions revealed that those showing accuracies significant
difference between FvE (i.e., intrinsic) and UvD (i.e., extrinsic)
classifications were visual processing-related regions, and showed
higher accuracy in the extrinsic classification (Table 2; Figure
3). Only the Handknob provided almost significantly higher
accuracy in the intrinsic classification; notably, this finding is in
line with the results of our previous study (Yoshimura et al.,
2014). In our previous study, we showed a voxel-level neural
representation by calculating weight values of the individual voxels
for the intrinsic and extrinsic classifiers of individual regions
and by comparing the mean weight values of the individual
regions between the two classifiers. In that way, M1 around
the Handknob showed significantly higher weight values in the
intrinsic coordinate frame. In our current study, on the other hand,
we showed region-level neural representation by simply comparing
across-participant mean classification accuracies between the
two coordinate frame classifications in accordance with recent
conventional practices of machine-learning-based representation
analysis (Weaverdyck et al., 2020; Gessell et al., 2021). Therefore,
individual differences in voxel-level representation seemed to affect
the lack of statistical significance in the Handknob accuracy.
Nonetheless, the significantly higher accuracies at low p-values of
the extrinsic classification in the visual processing related regions
(Table 2) suggest the highly plausible representations of extrinsic
coordinate frame information in the regions.

Among the significant regions highlighted by the
representation analysis, we considered only those in the left
hemisphere as the movement task was performed by the right
wrist, allowing to simplify the model submitted to the PPI
analysis. The assumption to limit the number of regions under

consideration, comes from the evidence of interhemispheric
inhibition for simple unilateral movements (Ferbert et al., 1992).
However, in the case of more complex movements like grasping, it
is worth to consider the bilateral involvement of both motor and
premotor areas (Bencivenga et al., 2023b).

We also included the seven motor-related areas (i.e.,
Handknob, M1, S1, PMv, PMd, SMA, and pre-SMA) in the
analysis because it is expected that the extrinsic information is
transformed to intrinsic information somewhere in the pathway
from visual related areas to sensorimotor areas. Most of the PPI
results (Table 3; Figure 4) also showed information transmission of
the extrinsic coordinate frame, and only one connection between
the Handknob and the angular showed intrinsic information
transmission. Therefore, we formulated a model mainly consisting
of the Handknob and the angular gyrus and evaluated the signal
transmission directions by DCM (Figures 5A, B). Since the regions
showing significant effective connectivity were included in SPL
and IPL, the model formulated in the study does not completely
match either stream of the two-stream hypothesis of sensorimotor
transformation or visually guided movements. However, it is
relatively close to the dorso-ventral stream (Jannerod, 1981;
Binkofski and Buxbaum, 2013) as the AIP is included in the
supramarginal gyrus (Davare et al., 2010) that has physical
connection with the angular gyrus (Seghier, 2013). The wrist
movement task used in this study was not reaching nor grasping
tasks, but the relative closeness to the dorso-ventral stream of the
constructed model might suggest that the task require pathway for
grasping rather than reaching.

We employed the behavioral experiment examining reaction
times to indirectly evaluate the information transmission difference
between the two coordinate frames described by the obtained
model. The strongly statistically significant delay in the intrinsic
coordinate instruction obtained from the ANOVA should show,
at least, the existence of the different pathway between the two
coordinate frames, indicating the validity of the network model.
RT has long been regarded to represent the functionality of the
central nervous system (Lakhani et al., 2012), and it has been
found that the reaction time is affected by many factors including
age (Welford, 1976; Luchies et al., 2002), anticipation (Welford
and Brebner, 1980), arousal (VaezMousavi et al., 2009), stimulus
modality (Galton, 1890; Welford and Brebner, 1980), and stimulus
intensity (Kohfeld, 1971; Pins and Bonnet, 1996). However, to the
best of our knowledge, there are no studies that have examined
and significantly revealed differences in reaction time due to neural
transmission differences. Also, there are no studies on motor
coordinate frames that mention differences in reaction time caused
by differences in brain networks, and most of them examine
whether components related to movement, such as joints (Scott
and Kalaska, 1995), muscles (Evarts, 1968; Cheney et al., 1985;
Donoghue et al., 1992; Kakei et al., 1999; Alaerts et al., 2009;
Yoshimura et al., 2014), direction (Georgopoulos et al., 1986;
Eisenberg et al., 2010; Toxopeus et al., 2011; Yoshimura et al., 2014),
force (Saha et al., 2015), and proprioception (Hussian, 2022), are
represented in the intrinsic or extrinsic coordinate frames.

Our ultimate interest on the motor coordinate frames is to
answer “where in the brain is information between intrinsic and
extrinsic coordinate frames during motor control transformed?”
To tentatively answer this question, our model indicates that
the angular (IPL), Handknob, and pre-SMA seem to deal with
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FIGURE 7

Intrinsic (red) and extrinsic (green) average and standard deviation of the EMG recordings across participants. Twenty participants performed each
movement 25 times, and the figures show the grand average across participant averages per each movement. The grand average of the right flexor
carpi radialis (FCR) signal is shown for pronation down, midway left, and supination down movements, and the grand average of the right extensor
carpi radialis brevis (ECRB) signal is shown for the rest of the movements.

FIGURE 8

Intrinsic and extrinsic RT means and standard deviations across participants for posture-movement. On average, intrinsic RTs were slower
(0.72 s ± 0.06) than extrinsic RTs (0.66 s ± 0.07). Extrinsic midway-left had the fastest RT average (0.57 s), while the slowest RT average was for
observed intrinsic supination-up (0.82 s).
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both coordinate frame information. However, considering the
existence of the two-stream hypothesis, the dorso-ventral and the
dorso-medial stream, it is unlikely that the angular is the main
area where the transformation takes place, as it is not included in
the dorso-medial stream that knowingly mediates grasping process.
Alternatively, it might be possible that multiple regions play a
role in performing the transformation, which could vary from
time to time in a task-dependent manner. To further clarify this
question, it would be useful to conduct common analyses of several
motor tasks, build a model, and then construct an interventional
experimental design that allows evaluation of behavior while
function is temporarily blocked by TMS, rTMS or other stimulation
methods. While the present work was based on the pre-existing
and widely used atlases as Brainnetome Atlas (Brainnetome Center
Institute of Automation, Chinese Academy of Sciences, 2014; Fan
et al., 2016) and the Human Motor Area Template (HMAT)
(Mayka et al., 2006), future work should consider surface-based
delineation of the individual ROIs for a more accurate selection of
the brain regions.

5. Limitations of the study

For the effective functional connectivity analysis, we expected
further intrinsic frame dominated brain regions to be identified, but
their absence might be partly due to the design of the experiment,
where the tasks were instructed by visual stimuli. Likewise, the
behavioral chronometry experimental design was not capable
of fully examining the model because the intrinsic coordinate
movements cannot be induced by visual instruction and we cannot
get any anatomical information from the design. In order to fully
assess the validity of the model, some sort of intervention methods
such as TMS or intracranial stimulation may be useful since there
have been arguments on the use of MVPA for representation
analysis that might cause misinterpretations (Gessell et al., 2021).

Although the reported findings showed a difference in effective
connectivity between the intrinsic and extrinsic coordinate frames
while performing visually-guided wrist movements, for the fMRI
study, the sample size is relatively small, therefore, the findings
should still be considered as preliminary and future work is needed
for definite confirmation.
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