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Introduction: Acquisition and pre-processing pipelines for diffusion-weighted

imaging (DWI) volumes are resource- and time-consuming. Generating synthetic

DWI scalar maps from commonly acquired brain MRI sequences such as fluid-

attenuated inversion recovery (FLAIR) could be useful for supplementing datasets.

In this work we design and compare GAN-based image translation models for

generating DWI scalar maps from FLAIR MRI for the first time.

Methods: We evaluate a pix2pix model, two modified CycleGANs using paired and

unpaired data, and a convolutional autoencoder in synthesizing DWI fractional

anisotropy (FA) and mean diffusivity (MD) from whole FLAIR volumes. In total,

420 FLAIR and DWI volumes (11,957 images) from multi-center dementia and

vascular disease cohorts were used for training/testing. Generated images were

evaluated using two groups of metrics: (1) human perception metrics including

peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), (2) structural

metrics including a newly proposed histogram similarity (Hist-KL) metric and

mean squared error (MSE).

Results: Pix2pix demonstrated the best performance both quantitatively and

qualitatively with mean PSNR, SSIM, and MSE metrics of 23.41 dB, 0.8, 0.004,

respectively for MD generation, and 24.05 dB, 0.78, 0.004, respectively for FA

generation. The new histogram similarity metric demonstrated sensitivity to

differences in fine details between generated and real images with mean pix2pix

MD and FA Hist-KL metrics of 11.73 and 3.74, respectively. Detailed analysis of

clinically relevant regions of white matter (WM) and gray matter (GM) in the pix2pix

images also showed strong significant (p < 0.001) correlations between real and

synthetic FA values in both tissue types (R = 0.714 for GM, R = 0.877 for WM).

Discussion/conclusion: Our results show that pix2pix’s FA and MD models had

significantly better structural similarity of tissue structures and fine details than

other models, including WM tracts and CSF spaces, between real and generated

images. Regional analysis of synthetic volumes showed that synthetic DWI images

can not only be used to supplement clinical datasets, but demonstrates potential

utility in bypassing or correcting registration in data pre-processing.
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1. Introduction

Scalar maps such as mean diffusivity (MD) and fractional
anisotropy (FA) are typically derived from diffusion weighted
MRI (DWI), and used as proxies of water diffusion and diffusion
directionality in brain tissue, respectively. Increased water diffusion
and decreased directionality are related to microstructural tissue
integrity loss related to neurodegenerative diseases such as
dementia. However, acquiring scalar maps from DWI relies
on processing pipelines such as Tractoflow (Theaud et al.,
2020), which are computationally expensive, time-consuming, and
susceptible to errors. Additionally, retrospective datasets may not
have DWI, which limits analysis. To overcome these challenges,
this work investigates generative adversarial networks (GANs)
to generate DWI scalar maps from fluid-attenuated inversion
recovery (FLAIR) MRI. The FLAIR sequence suppresses signal
from cerebrospinal fluid (CSF) and highlights white matter
disease and white matter lesions (WML) and as a result, FLAIR
images are commonly acquired in both clinical and research
contexts. Furthermore, existing works have found correlations
between FLAIR intensity, volume, and texture biomarkers and
DWI FA and MD measures in whole-brain, gray matter, and
white matter regions (Bahsoun et al., 2022; Chan et al., 2023).
Since FLAIR MRI can easily be acquired and has established
biomarker relationships with FA and MD metrics, it is a good
candidate for image synthesis of MD and FA maps. Synthetic data
can augment clinical datasets in segmentation and classification
tasks (Conte et al., 2021; Sajjad et al., 2021; Platscher et al.,
2022).

Recent studies successfully used generative models for
translation between brain MRI modalities to synthesize mainly
between T1 and T2-weighted images (Kazuhiro et al., 2018;
Plassard et al., 2018; Welander et al., 2018; Yang et al., 2018;
Chong and Ho, 2021; Osman and Tamam, 2022; Zhan et al.,
2022; Zhang et al., 2022). Only few works generated synthetic
DWI scalar maps from T1-weighted images (Gu et al., 2019;
Hirte et al., 2021), while none have conducted experiments
using the FLAIR modality. In this work, we design and evaluate
GAN-based image translation models to synthesize DWI maps
from whole volume FLAIR MRI for the first time. In addition
to traditional CycleGAN and pix2pix models, which are the
most commonly used architectures for medical image generation
(Kazeminia et al., 2020; Lan et al., 2020; Gong et al., 2021;
Jeong et al., 2022; Shokraei Fard et al., 2022; Skandarani et al.,
2023), we design a CycleGAN model that includes spectral
normalization layers and Gaussian noise in the discriminators to
combat mode collapse due to the diversity of training slices from
entire volumes. We use label smoothing in the discriminator
loss functions, and different initial learning rates for the
generators and discriminators. For ablation analysis, we also
compare the GAN-based models to a standard autoencoder
architecture.

We make several contributions. First, we design and develop
the first image translation tools for synthesizing DWI scalar maps
from FLAIR MRI. Second, while previous works used only several
slices from each volume for training and generating synthetic data,
we demonstrate anatomical diversity in our GAN models with
the use of full volumes. Third, we integrate the Frechet Inception

Distance (FID) into training to reduce resource consumption and
the FID is computed using a state-of-the-art medical imaging
pre-trained architecture. Lastly, we propose a new performance
metric based on histogram KL divergence to evaluate the quality
of structural information in the generated images. Commonly used
GAN evaluation metrics including PSNR and SSIM are criticized
for instability and insensitivity shortcomings in medical imaging
(Wang et al., 2004; Huynh-Thu and Ghanbari, 2008; Pambrun
and Noumeir, 2015). We hypothesize the new metric can measure
subtle local differences between generated and real images. We also
perform regional analyses of the WM and GM to investigate the
quality of synthetic structural tissue regions.

2. Materials and methods

2.1. Data

Two datasets of brain FLAIR and DWI MRI are used
in this work. The first is from the Canadian Consortium
on Neurodegeneration in Aging (CCNA) (Mohaddes et al.,
2018) which consists of 313 DWI volumes (9,012 images) with
corresponding FLAIR MRI volumes. The dataset is a large
dementia cohort which includes subjects diagnosed with mild
cognitive impairment, Alzheimer’s disease, vascular dementia,
Mixed etiology, and healthy elderly patients. The second is
the Canadian Atherosclerosis Imaging Network (CAIN) (Tardif
et al., 2013) dataset, which consists of 107 DWI volumes (2,989
images) and corresponding FLAIR MRI volumes of subjects
with cerebrovascular disease. Acquisition parameters of the
FLAIR and DWI volumes from each dataset are summarized in
Table 1.

2.2. Pre-processing and sampling

All FLAIR volumes were brain extracted (DiGregorio et al.,
2021) and intensity normalized (Reiche et al., 2019). The ground
truth MD and FA volumes were extracted from the DWI volumes
using Tractoflow along with corresponding WM and GM masks
segmented in Tractoflow (Theaud et al., 2020). The MD and FA
volumes and masks were co-registered with the FLAIR volumes to
the Brainder FLAIR atlas (Winkler et al., 2009) with dimensions
of 256 × 256 × 55. Training and test data were sampled with
80/20 splits. Slices with at least 15% tissue relative to background
were used for training to avoid instability in model training
caused by slices with little/no brain tissue. This resulted in a
total of 9,305 training (327 patients) and 2,396 test images (84
patients) for each modality for the paired data. For unpaired
training, a paired test set of 42 patients (1,460 images) was held
out to evaluate model performances against ground truths. The
remaining 378 patients were randomly split in half to ensure
FLAIR and DWI training images came from different patients,
resulting in two sets of 6,277 training images. All images are
normalized between −1 and 1. To compute the FID during
training, 256 images from 9 subjects from the training set were held
out.
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TABLE 1 FLAIR and dMRI acquisition parameters for CCNA and CAIN datasets.

Dataset Modality TR (s) TE (s) TI (s) X/Y Spacing
(mm)

Z (mm) Directions

CCNA FLAIR 9–9.84 0.12–0.146 2.25–2.5 0.9375 3 –

dMRI 6.9–13 0.064–0.101 – 0.9375–2.6506 2–3 31–33

CAIN FLAIR 9–11 0.117–0.148 2.2–2.8 0.428–1 3 –

dMRI 8.8 0.076–0.083 – 1.484–2.969 3–3.6 25–27

2.3. Deep learning models

To generate synthetic DWI scalar maps using GAN-based
translation models, we implement an optimized (paired)
CycleGAN model, an unpaired CycleGAN, a paired pix2pix
and a standard autoencoder for comparison purposes. Paired
indicates images from the two domains are matching, in this
case, the registered FLAIR and DWI. CycleGAN was chosen as
the base model due to its success in image translation between
modalities (Zhu et al., 2017). It employs two generators and
two discriminators to learn the forward and inverse mappings
between both modalities as shown in Figure 1B. The generators
are ResNet encoder-decoder models while the discriminators are
convolutional PatchGAN classifiers which classify images as either
real or fake.

Preliminary tests on paired CycleGAN showed the baseline
model had partial mode collapse in early epochs of training
as generators failed to map the diverse anatomical features
and instead generated the same anatomy on every slice
(Supplementary Figure 1). Mode collapse occurs when the
generator cannot output diverse sets of data, but instead finds
a certain type of data that continuously fools the discriminator
causing the entire network to over-optimize on one type of data
being generated. To combat this, spectral normalization was added
to each convolutional layer in the discriminator architecture, as
in the SN-GAN (Miyato et al., 2018). The authors concluded that
spectral normalization is effective at stabilizing GAN training
by normalizing the weight matrices in the convolutional layers
to constrain the Lipschitz constant, which mitigates exploding
gradient and mode collapse problems (Miyato et al., 2018).
Additionally, discriminator losses were observed in preliminary
tests to converge much faster than the generator losses, which
is also indicative of mode collapse. Therefore, Gaussian noise
was added to the beginning of each discriminator layer and label
smoothing was applied to the discriminator loss function. The
modified discriminator architecture is shown in Supplementary
Table 1.

An unpaired CycleGAN was trained for comparison purposes,
as well as a baseline pix2pix architecture developed by Isola
et al. (2018) which does not have cycle consistency loss. The
pix2pix model consists of a U-Net generator and a PatchGAN
discriminator (Figure 1A). For the GAN models, the generators
and discriminators were assigned different initial learning rates
of 4e-4 and 1e-4, respectively due to the fast discriminator
convergence. Learning rates were fixed for the first half of training,
then decayed linearly to zero (Zhu et al., 2017). Additionally,
a convolutional autoencoder matching the hidden layers of the
pix2pix generator architecture but without skip connections was

trained on paired data to examine the performance of the pix2pix
discriminator. The architecture details of the autoencoder can be
found in Supplementary Table 2. All models were trained for
100 epochs using Adam optimizers. The autoencoder and pix2pix
models used a batch size of 8, while the two CycleGAN models used
a batch size of 1. The autoencoder used a learning rate of 4e-4. All
experiments were performed using a NVIDIA V100 Volta GPU
with 32G HBM2 memory and implemented in Python 3.8 using
Tensorflow 2.10.

2.4. Loss functions

CycleGAN uses adversarial loss and cycle consistency loss
(Zhu et al., 2017), where the adversarial loss (Eq. 1) matches
the distribution of the generated images to the targets, and cycle
consistency loss (Eq. 2) allows the model to learn forward and
backward mappings between the two domains. The least square
error is used for the adversarial loss, which yields more stable
performances in CycleGAN (Zhu et al., 2017). The total objective
is the sum of two adversarial losses, one for each generator, and one
cyclic loss (Eq. 3).

LGAN(G,DY ,X,Y ) = Ey ∼ pdata(y)[
(
DY

(
y
)
− 1

)2
]

+Ex ∼ pdata(x)[DY (G (x))2] (1)

Lcyc(G, F) = Ex ∼ pdata(x)[||F(G(x))−x||]

+Ey ∼ pdata(y)[||G(F(y))−y||] (2)

L(G, F,DX,DY ) = LGAN(G,DY ,X,Y )

+LGAN(F,DX,Y,X)+λLcyc(G, F) (3)

The pix2pix model was trained using binary cross entropy (BCE)
for both generator and discriminator losses (Isola et al., 2018). The
total pix2pix generator loss is the combination of L1 loss, which
is the mean absolute error (MAE) between generator output and
target, and adversarial loss (BCE loss of discriminator output). The
total discriminator loss is the combination of real and generated
BCE losses. The pix2pix generator and discriminator losses are
shown in Equations 4 and 5, respectively. The autoencoder was
trained with MSE loss.

LG(G,D,X,Y) = BCE(D
(
y
)
)+ λMAE (Y,G (x)) (4)

Where λ= 100 as defined in Isola et al. (2018).

LD(G,X,Y) = BCE (Y)+ BCE(G(x)) (5)
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FIGURE 1

Pix2pix (A) and CycleGAN (B) architectures, where the DWI images are either FA or MD. The CycleGAN architecture is the same for paired and
unpaired models, but the DWI inputs in the unpaired models do not match the FLAIR inputs.

2.5. Evaluation metrics

Two groups of evaluation metrics, based on human perception
and structural information, are used to evaluate the generated test
images. The human perception metrics include peak signal-to-
noise ratio (PSNR) (Horé and Ziou, 2010) and structural similarity
index (SSIM) (Conte et al., 2021). These are shown in Equations 6
and 7.

PSNR = 10 log10
(L− 1)2

MSE
(6)

SSIM
(
x, y

)
= [l

(
x, y

)
]
∝
· [(c

(
x, y

)
]
β
·
[
s
(
x, y

)]γ (7)

Where l, c, and s are the three components of luminance, contrast,
and structure and∝, β, γ are parameters for adjusting the weight of
each component:

l
(
x, y

)
=

2 (1+ R)
1+ (1+ R)2 + C1

µ2
x

, c
(
x, y

)
=

(
2σxσy + C2

)
(σ 2

x + σ
2
y + C2)

,

s
(
x, y

)
=

(
σxy + C3

)
(σ x + σy + C3)

where x and y are two images being compared, R is the size of
luminance change relative to background luminance, µ is the mean
intensity of an image, σ is the standard deviation of an image, and
C1,2,3 are constants.

The structural metrics include mean squared error (MSE) and
a proposed metric measuring the KL divergence of histograms
(Hist-KL) between real and generated images. The histogram
of an image reflects the probability distribution of the pixels
within the image. Histogram analysis is particularly important

when evaluating modalities such as DWI in which different tissue
types appear at different intensities, thus corresponding to specific
histogram peaks. Additionally, previous studies have found that
increased kurtosis of FLAIR histogram distributions is related to
worsening cognition and decreased tissue integrity (Bahsoun et al.,
2022), demonstrating that changes in tissue are reflected in the
histogram. Therefore, we hypothesize that differences related to
tissue structures in the real vs. generated images can be assessed
by measuring the distance between their histograms. Low Hist-KL
indicates high degree of similarity between images. The MSE and
Hist-KL computations are shown in Equations 8 and 9.

MSE =
1
mn

m−1∑
i = 0

n−1∑
j = 0

(
x
(
i, j
)
− y

(
i, j
))2 (8)

HistKL = KL(P| |Q) = −
∑
x

P(X)log
P (X)
Q (X)

(9)

Where P and Q are the distributions of the two images, and x is
the histogram bins.

2.6. Frechet Inception Distance (FID)

The FID score is commonly used for evaluating GAN
performance (Heusel et al., 2018). It employs a pre-trained
classification model, InceptionV3, to generate feature vectors of
real and fake images, then quantifies similarity between images
by measuring the difference between feature vectors. However,
InceptionV3 is pretrained on natural images from ImageNet, which
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FIGURE 2

Samples of FLAIR inputs (top row), real FA (second row) and generated FA slices from each model. For paired models, the images shown are different
slices from the same patient volume. From left to right, randomly sampled lower to upper slices (12 to 35) are shown.

may be non-optimal for medical imaging applications. In this
work, FID was computed using an InceptionV3 model pre-trained
on a large medical imaging dataset called RadImageNet (Rad-
InceptionV3) containing 1.35 million annotated medical images
with 3 modalities, 11 anatomies, and 165 pathologies (Mei et al.,
2022). Typically, the FID is computed after training to determine
the best epoch and requires a massive sample size of at least 50,000
images to obtain reliable values. To reduce resource consumption,
we implemented the FID score during model training. Computing
FID during training requires only a small sample size (256) of
generated images with a large number ( > > 2,048) of real
images (Mathiasen and Hvilshøj, 2021). All 9,305 real images in
the training set and 256 fake images generated from the held out
validation set were used to compute the FID score at the end of
each epoch. For all GANs, lowest FID score was used to select the
best epoch. Additional analyses on the FID computation during
training and optimal epoch selection can be found in section 2 of
the Supplementary Material Data Sheet.

3. Results

3.1. Model performances

Qualitative results for all models are shown in Figures 2, 3. The
pix2pix model generates images with high visual correspondence
with the ground truth, and seems to best capture complex anatomy
such as WM tracts in FA and CSF regions in MD. The optimized

paired CycleGAN has good correspondence, but variability
and inability to resolve fine-details are noted in the unpaired
CycleGAN. The autoencoder fails to generate anything sensible.

Quantitative performance for MD and FA models is shown
in Table 2. The distribution of the metric, with t-tests between
models is shown in the Supplementary Figure 2. The pix2pix
model performed the best across all metrics, for both MD and
FA (p < 0.05). Figures 4, 5 show several pix2pix generations
for MD and FA along with the corresponding histograms. There
is high visual similarity between generations and real images
which is exemplified by the histograms. The PSNR and SSIM
results for the pix2pix in this work for MD and FA images are
comparable to existing literature as shown in Table 3. CycleGAN
models performed worse than pix2pix but the paired CycleGAN
demonstrated better performance across all metrics than the
unpaired, which corresponds to the qualitative findings. The
autoencoder performed poorly and was not considered further.

Structural similarity index and PSNR may not be adequately
quantifying the subtle differences between generated and real
images, such as overestimating CSF in the sulci and gyri
(subarachnoid spaces) and underestimation of small structures
such as WM tracts. The fine-details and structural similarity
between generated and real images may be better measured by Hist-
KL. See Figure 6 for pix2pix FA and MD images with high and
low Hist-KL values. The PSNR and SSIM values between high and
low Hist-KL images are similar, while there is a large difference in
their Hist-KL values. Structures in the generated images are more
anatomically accurate and aligned for low Hist-KL images (see WM
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FIGURE 3

Samples of FLAIR inputs (top row), real MD (second row) and generated MD slices from each model. For paired models, the images shown are
different slices from the same patient volume. From left to right, randomly sampled lower to upper slices (12 to 35) are shown.

TABLE 2 Mean (standard deviation) of evaluation metrics over all models.

Model PSNR in dB ↑ SSIM ↑ Hist-KL ↓ MSE ↓

MD pix2pix 23.41 (1.9) 0.80 (0.044) 11.73 (16.7) 0.005 (0.002)

MD CycleGAN (paired) 19.73 (1.77) 0.73 (0.047) 27.43 (20.9) 0.011 (0.004)

MD CycleGAN (unpaired) 19.03 (2.90) 0.72 (0.10) 34.92 (24.6) 0.013 (0.0068)

MD Autoencoder 16.44 (1.53) 0.63 (0.073) 79.11 (27.5) 0.024 (0.0069)

FA pix2pix 24.0 (1.16) 0.78 (0.033) 3.74 (3.15) 0.004 (0.001)

FA CycleGAN (paired) 19.26 (2.76) 0.71 (0.044) 26.46 (23.4) 0.014 (0.009)

FA CycleGAN (unpaired) 19.04 (1.80) 0.69 (0.034) 28.32 (18.2) 0.014 (0.006)

FA Autoencoder 18.30 (1.88) 0.64 (0.069) 71.44 (38.5) 0.016 (0.007)

Bold indicates best performance of MD and FA models. Metrics with ↑ indicate better performance with a larger value, and metrics with ↓ indicate better performance with a smaller value.

tracts in FA and CSF spaces in MD) which is highlighted by the
histograms. For generated images with large histogram differences
(high Hist-KL), images have vastly different histograms, which is
representative of the local, subtle spatial inaccuracies of the method.
Thus, this metric may be more sensitive to differences in fine-
details and microstructure than the standard visual perception
metrics, making it useful in image generation and super resolution
particularly for medical imaging.

3.2. Regional analysis of synthetic
volumes

The best-performing pix2pix method was further evaluated
in its ability to synthesize accurate structural information by

regional analysis. All further experiments use only pix2pix
generated test volumes.

3.2.1. Performance metrics in GM and WM
regions

The gray and white matter tissue regions of the MD and FA test
volumes were analyzed. From the test set, a total of 32 patients from
both datasets had corresponding registered GM and WM masks.
The masks were used to segment GM and WM from both real and
synthetic volumes, and evaluation metrics were computed in the
sub-regions. Table 4 shows the mean evaluation metrics for GM
and WM. All metrics were better in FA for the WM compared to
the GM region, which indicates excellent reconstruction of the WM
tracts. In MD the findings were similar when considering PSNR
and SSIM, however, upon inspection of the Hist-KL metric there

Frontiers in Neuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.1197330
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1197330 July 27, 2023 Time: 13:38 # 7

Chan et al. 10.3389/fninf.2023.1197330

FIGURE 4

Pix2pix FA generation. Top row: real FA, middle row: generated FA, bottom row: FA histograms (real is blue, generated is orange). All slices shown
belong to the same patient volume and are randomly sampled between slices 16 (lower) to 40 (upper).

FIGURE 5

Pix2pix MD generation. Top row: real MD, middle row: generated MD, bottom row: MD histograms (real is blue, generated is orange). All slices
shown belong to the same patient volume and are randomly sampled between slices 16 (lower) to 40 (upper).

are discrepancies, which further strengthens our hypothesis that
Hist-KL provides valuable information on image synthesis. The
high value for the MD Hist-KL metric in the WM regions can
be attributed to both under- and over-estimation of CSF in the
synthetic MD volumes, particularly in volumes with large amounts
of CSF (Figure 7, top right). In comparison, MD volumes with
low Hist-KL (Figure 7, bottom right) demonstrate inherently less
CSF, as seen in the smaller amount of hyperintensities along the
edges of the brain. As the amount of CSF in MD varies drastically
between patients, it is expected that perfectly accurate CSF regions
will be difficult to synthesize thus resulting in higher Hist-KL
metrics overall in MD relative to FA. Figure 7 (left column) also
shows sample FA from GM and WM regions of the subjects with
highest and lowest Hist-KL metrics. The volumes with low Hist-
KL metrics have very similar real and synthetic WM and GM
structures with little to no overlap of tissues between regions after
masking. Additionally, the synthetic GM have fewer border artifacts
from registration than the real images. In high Hist-KL volumes,
the main cause of histogram KL divergence is the warping of the
WM tracts in the real registered images, while they are generated
properly in the synthetic images. This suggests that synthetic data
generation may be used to reduce registration errors.

Figure 8 shows the mean performance metrics per slice
over all synthetic test volumes. In both MD and FA, the
PSNR metric is consistent across slices. However, the other
metrics show worse performance in the WM region for higher

numbered slices, corresponding to the upper (superior) slices
of the brain volumes. On the other hand, in the GM region,
lower (inferior) slices related to cerebellar structures showed
worse performance. Samples of upper and lower slices from
different patients show mismatched histograms between real and
synthetic FA volumes due to registration warping (Figures 9A,
B) and artifacts (Figure 9C) of the real images. This suggests
that generating synthetic FA maps using FLAIR images may
remove the need for co-registration pipelines and thus reducing
registration errors, as the generated images are in the same
space as the input images. However, another cause for low GM
performance is in the cerebellum of the synthetic images, where the
model inaccurately generates hyperintense regions in the synthetic
cerebellar GM (Figure 9D).

3.2.2. Correlations between real and synthetic
data

Pearson’s correlation tests were used to examine the
relationships between real and synthetic MD and FA volumes. The
median MD and FA values of the GM and WM were extracted
from real and synthetic volumes and correlated to one another
(Figure 10). Strong and significant (p < 0.001) R correlations
of 0.71 and 0.88 were found between real and synthetic FA of
the GM and WM, respectively, while no significant correlations
were found for MD volumes (Table 5). This may be attributed to
the overestimation of CSF in synthetic MD as seen in the high
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Hist-KL example of generated MD shown in Figure 7, resulting in
significantly increased median MD values of the synthetic volumes.

TABLE 3 Summary of studies involving image-to-image translation of
brain MRI modalities.

Model Input/Output
modalities

Performance

CycleGAN
(Gu et al., 2019)

T1w/DWI scalars SSIM: 0.861 (MD)
SSIM: 0.948 (FA)

introVAE, StyleGAN
(Hirte et al., 2021)

T1w/DWI Comparable ISD and LVSS
to real dataset

CycleGAN (paired)
(Welander et al., 2018)

T1w/T2w PSNR: 24 (T1w)
PSNR: 24.15 (T2w)

Switchable CycleGAN
(paired)
(Zhang et al., 2022)

T1w/T2w PSNR: 31.733, SSIM: 0.723
(T1w)

PSNR: 31.671, SSIM: 0.747
(T2w)

MGM-GAN
(Zhan et al., 2022)

T1 + T1c + T2/FLAIR PSNR: 26.801, SSIM: 0.918

U-Net
(Osman and Tamam,
2022)

T1/FLAIR PSNR: 33.25, SSIM: 0.946

cGAN+L1
(Yang et al., 2018)

T1/T2 PSNR: 29.979, SSIM: 0.69

pix2pix (this work) FLAIR/DWI scalars PSNR: 23.41, SSIM: 0.80,
Hist-KL: 11.73 (MD)

PSNR: 24.05, SSIM: 0.78,
Hist-KL: 3.74 (FA)

4. Discussion

In this work, performance of GAN-based image translation
tools for synthesizing DWI scalar maps from whole-volume
FLAIR MRI, is investigated. Three architectures were investigated
including an optimized CycleGAN for paired translation that
employs Gaussian noise and spectral normalization to combat
mode collapse, a CycleGAN trained with unpaired data, and
a pix2pix model (no cycle consistency) with paired data. For
ablation purposes, a convolutional autoencoder was also compared,
which is essentially pix2pix without the discriminator. FID scores,
computed using Rad-InceptionV3 (a novel medical imaging pre-
trained network), were used to determine the optimal epoch on the
fly rather than after training. Through qualitative and quantitative
performance, pix2pix offered the highest quality image generations
for MD and FA images. This was followed by the optimized paired
CycleGAN, unpaired CycleGAN and lastly, the autoencoder, which
failed to generate anything meaningful for the task.

The pix2pix model outperformed all other models. Comparing
to the autoencoder, our findings demonstrate the utility of a
discriminator network to force outputs to be more realistic. The
autoencoder used MSE loss and was unable to reconstruct the
complex mappings between FLAIR and DWI. We expected the
paired CycleGAN to yield similar results to pix2pix. However,
pix2pix was qualitatively and quantitative superior, which may be
attributed to pix2pix’s objective function that leverages paired data
to learn pixel-wise mappings between modalities. On the other
hand, CycleGAN matches FLAIR and DWI domain distributions,
but does not directly map each input pixel to the output. The
paired CycleGAN performed better than the unpaired model,

FIGURE 6

(A) Real (first column) and pix2pix generated (second column) FA images of middle slices with low Hist-KL (top row) and high Hist-KL (bottom row).
Corresponding histograms of real (blue) and generated (orange) images are shown in the third column. (B) Real (first column) and pix2pix generated
(second column) MD images with low Hist-KL (top row) and high Hist-KL (bottom row). Corresponding histograms of real (blue) and generated
(orange) images are shown in the third column. All slices shown belong to different patients. Notable visual differences between real and synthetic
images in the high Hist-KL images are denoted with red boxes.

TABLE 4 Mean metrics (with SD) computed across all MD and FA test volumes.

MD FA

PSNR SSIM Hist-KL MSE PSNR SSIM Hist-KL MSE

GM 27.69 (1.17) 0.955 (0.008) 4.71 (1.68) 0.002 (0.0005) 28.89 (0.92) 0.927 (0.012) 3.56 (1.43) 0.0015 (0.0003)

WM 30.81 (2.06) 0.966 (0.013) 6.04 (2.32) 0.0011 (0.0005) 29.6 (1.04) 0.951 (0.011) 2.14 (0.93) 0.0014 (0.0004)

Bold values indicate best performance metric.
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FIGURE 7

Sample FA (left column) and MD (right column) images of middle slices with segmented GM and WM regions of different patients with high Hist-KL
(top row) and low Hist-KL (bottom row). In high Hist-KL volumes, the most notable visual differences are outlined in red boxes. In the low Hist-KL
volumes, the GM and WM structures are very similar between real and synthetic with only some visual differences.

FIGURE 8

Distribution of mean metrics per slice across all synthetic FA (top row) and MD (bottom row) test volumes.

demonstrating the modifications we proposed to mainly remove
mode collapse improved performance.

Perceptual metrics (PSNR and SSIM) from our pix2pix models
are comparable to those in existing literature (Welander et al.,
2018; Gu et al., 2019; Zhang et al., 2022), which use T1w images
to generate DWI and T2w images. Contrasted to previous studies,
the FA model resulted in better performance metrics overall than
the MD model, with subtle differences noted in the Hist-KL metric,

showing GAN-based models are able to generate fine structures
such as WM tracts with good resolution and detail. Perceptual
metrics have been widely used to evaluate the visual quality of
synthetic images, but these metrics may not correlate to accuracy of
generating important anatomical structures such as WM tracts or
CSF spaces. The proposed Hist-KL metric is useful in this regard,
as differences in intensity distributions are related to the number
of pixels in each tissue region. Any under- or overestimation of
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FIGURE 9

Samples of real and synthetic upper slices 33 and 34 (A,B), a lower slice 17 (C), and cerebellum slice 10 (D) from different patients. Registration
warping and artifacts in the real images are highlighted in the red boxes in panels (A–C), while the hyperintense errors in the cerebellum in the
synthetic image is highlighted in a red box in panel (D).

tissue types (such as CSF in MD), are reflected in the histogram
and captured by this metric. For the same method, the main
contributor to differences in Hist-KL seems to be the varying
amount of under/over-estimated tissue present in the real images.
As visualized in Figure 7, the real image of the high Hist-KL MD
sample has substantially larger amounts of CSF than that of the
low Hist-KL sample, which increases metric variability within a
particular method and modality. Further, findings from regional
analysis demonstrate that the pix2pix model performs better in the
WM regions than the GM. The FA scalar offers unique information
on microstructural tissue integrity and tractography, thus synthetic

FA volumes with anatomically accurate WM structures would be
extremely valuable in supplementing datasets. However, further
validation of the synthetic FA volumes with respect to performance
in WM tract segmentation pipelines is required.

Greater errors between real and synthetic images were mainly
attributed to registration warping in the real volumes as seen in
Figures 9A, B. The warping in the real images is due to registration
errors from co-registering real DWI and FLAIR to FLAIR atlas
space. This is a necessary pre-processing step in order to have
both volumes in the same space for studies requiring analysis of
both modalities. Registration from DWI space to FLAIR space can
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FIGURE 10

Correlations between real and synthetic FA (top row) and MD (bottom row) in GM and WM regions.

TABLE 5 R correlation coefficients between real and synthetic
MD and FA values.

MD FA

R p R p

GM 0.197 0.23 0.714 <0.001

WM 0.204 0.26 0.877 <0.001

Bold R-values indicate strong correlations, and bold p-values indicate significant
correlations.

be difficult as their resolutions in native space can be drastically
different. For example, a matched pair of FLAIR and DWI volumes
of a CCNA patient have voxel sizes 0.94 × 0.94 × 3 mm and
2.65 × 2.65 × 2 mm, respectively. The DWI volumes have
substantially lower in-plane resolution, limiting the detail of fine
anatomical structures in the DWI volumes in contrast to FLAIR.
As registration requires non-linear deformations, the distortion in
the registered DWI volumes is caused by attempting to estimate
the deformation fields from low resolutions (less detail) to high
resolutions (more detail), and vice versa. A standard solution
to minimize distortion is to resample the volumes to similar
resolutions before registration; however, this can also cause loss of
information or interpolation artifacts when resampling to largely
different voxel sizes. As such, our findings demonstrate that
synthetic image generation offers a potentially useful method to

bypass both registration and resampling (and effectively reducing
warping errors) by generating images in the native space of
the input image. However, more investigation into registration
methods will be required to make a valid comparison between
synthetic and registered images. Lastly, strong correlations between
real and synthetic median FA in both WM and GM regions indicate
that the synthetic volumes are generated with accurate FA values
and thus may be used for analyses alongside real data.

This work proposes generation methods for supplementing
datasets with synthetic FA and MD measures. Such methods may
also be used for generating other microstructure measures related
to diffusion-weighted imaging. A previous study investigated
the use of GANs for generating synthetic DWI volumes (Hirte
et al., 2021), from which metrics quantifying tissue microstructure
such as NODDI parameters and ADC maps may also be
extracted. A generation method which could synthesize scalar maps
representing all DWI microstructural tissue measures would offer a
wide translation potential for clinical utility, as it would replace the
need for time-consuming DWI scalar map extraction.

To improve the paired CycleGAN model, future work could
leverage the strengths of pix2pix (pixel-wise objective function)
and our modified CycleGAN models (cycle consistency). The
unpaired model may be improved with additional datasets or
3D CycleGAN models. A limitation of the work includes lower
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performance in cerebellar slices, which may be due to the small
amount of tissue (low sample sizes) and varying anatomy which
hinders performance. A 3D model may help, or it may be
possible to train separate 2D models for each region. Another
limitation of the work is the lower performance of the MD models
compared to FA. Future work may include optimization methods
to optimize models specifically for MD volume generation. To
determine clinical utility, future work could include domain-
adaptation, dataset-specific models, and using the generated data
in classification/segmentation tasks. Further, model performance
should be evaluated on out-of-distribution cohorts to evaluate
mapping on entirely different datasets. Future investigation into the
generation of other DWI measures would also be clinically useful.

5. Conclusion

We design and evaluate GAN-based image translation tools
for generating MD and FA scalar maps from FLAIR MRI. Pix2pix
is the top performer that can best generate fine details such as
WM tracts, due to the objective function that leverages paired
data to learn pixelwise mappings between modalities. Ablation
with an autoencoder (pix2pix without the discriminator) produces
insensible results, which highlights that a discriminator is needed to
force realism in the generations. The CycleGAN with paired data
was successfully optimized to prevent mode collapse, but because
CycleGAN aims to match FLAIR and DWI domain distributions,
rather than directly mapping each input pixel to the output,
the performance is suboptimal. CycleGAN with unpaired data
performs the worst and is likely due to the problem space being too
large to resolve fine details in the images. We have also shown that
Hist-KL is an effective metric in evaluating the accuracy of tissue
structures in synthetic images and may be used alongside existing
visual quality metrics. Additionally, regional analysis of volumes
generated using the pix2pix model demonstrated that synthetic
DWI FA volumes may be useful in supplementing clinical datasets
and correcting registration errors.
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