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to alterations of functional
connectivity in Schizophrenia: a
data-driven approach

Farzaneh Keyvanfard1*, Alireza Rahimi Nasab2 and

Abbas Nasiraei-Moghaddam1,2
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Functional connectivity (FC) of the brain changes in various brain disorders. Its

complexity, however, makes it di�cult to obtain a systematic understanding

of these alterations, especially when they are found individually and through

hypothesis-based methods. It would be easier if the variety of brain connectivity

alterations is extracted through data-driven approaches and expressed as variation

modules (subnetworks). In the present study, we modified a blind approach

to determine inter-group brain variations at the network level and applied it

specifically to schizophrenia (SZ) disorder. The analysis is based on the application

of independent component analysis (ICA) over the subject’s dimension of the

FC matrices, obtained from resting-state functional magnetic resonance imaging

(rs-fMRI). The dataset included 27 SZ people and 27 completely matched

healthy controls (HC). This hypothesis-free approach led to the finding of three

brain subnetworks significantly discriminating SZ from HC. The area associated

with these subnetworks mostly covers regions in visual, ventral attention, and

somatomotor areas, which are in line with previous studies. Moreover, from the

graph perspective, significant di�erences were observed between SZ and HC

for these subnetworks, while there was no significant di�erence when the same

parameters (path length, network strength, global/local e�ciency, and clustering

coe�cient) across the same limited data were calculated for the whole brain

network. The increased sensitivity of those subnetworks to SZ-induced alterations

of connectivity suggested whether an individual scoring method based on their

connectivity values can be applied to classify subjects. A simple scoring classifier

was then suggested based on two of these subnetworks and resulted in acceptable

sensitivity and specificity with an area under the ROC curve of 77.5%. The third

subnetwork was found to be a less specific building block (module) for describing

SZ alterations. It projected a wider range of inter-individual variations and,

therefore, had a lower chance to be considered as a SZ biomarker. These findings

confirmed that investigating brain variations from a modular viewpoint can help

to find subnetworks that are more sensitive to SZ-induced alterations. Altogether,

our study results illustrated the developed method’s ability to systematically find

brain alterations caused by SZ disorder from a network perspective.
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1. Introduction

Schizophrenia (SZ) is a complex challenging mental disorder

resulting in significant functional, behavioral, and cognitive

impairments (Friston and Frith, 1995; Palmer et al., 1997; Green

et al., 2000; Luck and Gold, 2008; Sponheim et al., 2010;

Rubinov and Bullmore, 2013). This disorder, which affects about

0.45% of the adult population worldwide1 (GBD 2016 Disease

Injury Incidence Prevalence Collaborators, 2017), is rooted in a

combination of genetic and environmental factors; although the

exact causes are still unclear. SZ is known as a brain disconnectivity

syndrome (Friston and Frith, 1995; Yu et al., 2012; A Ure et al.,

2018; McNabb et al., 2018; Li S. et al., 2019), pointing to abnormal

interaction between critical areas of the brain. Focusing on

connectivity abnormalities, functional magnetic resonance imaging

(fMRI) has been increasingly used to study brain dysfunctions

in individuals living with SZ (Yu et al., 2012; Dong et al., 2018;

Adhikari et al., 2019). Several studies have found evidence for

altered resting-state functional connectivity (FC) in different brain

regions of SZ people compared to healthy control (HC) subjects

(Yu et al., 2012; Karbasforoushan and Woodward, 2013; Dong

et al., 2018; Zhuo et al., 2018; Bulbul et al., 2022; Cai et al.,

2022). Basically, our various brain functions are generated by its

interactive connections. Therefore, exploring brain variations in

disorders at the network level can bemore helpful in understanding

brain functionality alterations in SZ people.

Exploring brain abnormalities in SZ individuals compared to

HC can be investigated by a variety of methods at the voxel

or regional level. In these studies, regions of interest (ROI) are

usually identified through seed-based analysis (Zhou et al., 2007;

Whitfield-Gabrieli et al., 2009; Salvador et al., 2010; Woodward

et al., 2011; Zhuo et al., 2018; Li S. et al., 2019; Li X.-B. et al.,

2019; Gong et al., 2020; Ahmad et al., 2023) or independent

component analysis (ICA) (Calhoun and Adali, 2012; Anderson

and Cohen, 2013; Lottman et al., 2019; Salman et al., 2019; Forlim

et al., 2020), and then, the functional activity of desired regions or

connectivity strength of each voxel/region pair is compared across

SZ and HC (Camchong et al., 2011; Wolf et al., 2011; Mingoia

et al., 2012; Yu et al., 2012; Karbasforoushan and Woodward, 2013;

Li S. et al., 2019). Moreover, several connectivity parameters of

graph theory have been evaluated for the whole brain network,

indicating a significant increase in path length in SZ people and

a significant decrease in nodal degree, functional connectivity

strength, global efficiency, small-worldness, etc. (Liu et al., 2008;

Lynall et al., 2010; Micheloyannis, 2012; Anderson and Cohen,

2013; Hadley et al., 2016; Xiang et al., 2020). Overall, the abnormal

areas are mostly sought through primary hypotheses or by an

overall (random) search of the whole brain. The latter depends on

the search algorithm, and the former is limited by the accuracy of

prior knowledge.

Regardless of the search algorithm, the findings of previous

methods usually report the alterations in some brain regions or

some scattered connections, rather than describing them in the

form of modulating networks. Such modulating networks have

1 WHO report (https://www.who.int/news-room/fact-sheets/detail/

schizophrenia).

been recently introduced in a study (Keyvanfard et al., 2020),

where a blind ICA approach discovered the building blocks (units)

of inter-individual brain variations at the network level. It has

been shown that each derived building block may participate in

the modulation of several brain functions related to inter-subject

variations. Introducing more subjects with new variations (caused

by the disorder) is expected to result in the formation of new

components encompassing the brain variations related to the SZ.

Therefore, the main purpose of this study was to investigate the

usability of the previously proposed approach (Keyvanfard et al.,

2020) in determining units of inter-group variations between SZ

and HC. In the current study, we modify the previously developed

algorithm and investigate the alteration of brain connections

(subnetworks) due to including the SZ group in addition to the

HC group. This modification consists of two steps: improving the

component reproducibility and providing a new method of edge

pruning (and therefore the number of pruned edges will not be

similar for all subnetworks). We also examined how similar the

obtained subnetworks are to the well-known resting-state networks

(RSNs) (Smith et al., 2009). Through this systematic method of the

developed approach, we expect to obtain brain subnetworks that

are more sensitive to connection alterations due to SZ. This higher

sensitivity could potentially help to introduce new biomarkers or

efficient classifiers.

2. Materials and methods

2.1. Participants, data acquisition, and
preparation

In this study, we retrospectively used the resting-state

functional MRI (rs-fMRI) data of an SZ group of 27 subjects

(mean age, 41.9±9.6) and the completely matched control group

of 27 healthy individuals [mean age, 35±6.8; datasets are publicly

available on the Zenodo platform (Vohryzek et al., 2020)]. The

individuals in the SZ group had been recruited from the Service

of General Psychiatry at the Lausanne University Hospital. They

had met DSM-IV criteria for SZ and schizoaffective disorders

(American Psychiatric Association, 2000). Healthy controls had

been recruited through advertisement and assessed with the

Diagnostic Interview for Genetic Studies (Preisig et al., 1999).

Subjects with major mood, psychotic, or substance-use disorders

and having a first-degree relative with a psychotic disorder had

been excluded. Moreover, a history of neurological diseases was

an exclusion criterion for all subjects. The informed written

consent had been obtained for all subjects according to the Ethics

Committee of Clinical Research of the Faculty of Biology and

Medicine, University of Lausanne, Switzerland (#82/14, #382/11,

#26.4.2005). For each participant, two types of MR imaging

including rs-fMRI and T1-weighted had been acquired using a 3T

Siemens Trio Scanner equipped with a 32-channel head coil.

The magnetization-prepared rapid acquisition gradient

echo (MPRAGE) sequence had been applied for T1-weighted

imaging with a resolution of 1 ×1 ×1.2 mm3 and TI/TE/TR =

900/2.98/2,300ms. Each rs-fMRI scan had a duration of 8min

with a 3.3mm isotropic voxel size and TE/TR = 30/1,920ms.

The performed data preprocessing included the exclusion of the
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first four time points of signal, regressing out of physiological

signal (white-matter and cerebrospinal fluid), motion correction,

physiological noise correction, spatial smoothing, bandpass

filtering, and linear registration to the T1-weighted image.

Employing the Desikan Killiany atlas (Desikan et al., 2006) and

extra parcellation of the cortical surface described in Cammoun

et al. (2012), the gray matter of each subject in MPRAGE volume

had been partitioned into 129 cortical regions of interest (ROI)

including 114 cortical ROIs and 14 subcortical nuclei plus the

brain stem. These brain regions had been used to estimate the

functional connectivity matrices based on the Pearson correlation

between individual brain regions’ time courses. Finally, one

functional connectivity matrix with the dimension K × K (with

K = 129 number of the brain parcels) had been constructed

for each participant [please refer to Vohryzek et al. (2020) for

detailed information.] Here, to consider the connections’ strength,

the absolute value of the Pearson correlation in the functional

connectivity matrix was utilized. The functional connectivity

matrices were then evaluated for normality through the Shapiro–

Wilk test (Shapiro et al., 1968). Their p-value > 0.48 (>>0.05)

indicated that they follow a normal distribution.

2.2. PCA and ICA

The lower triangular elements of the FC matrix of each subject

were considered for constructing the feature matrix. The elements

were reshaped into a one-dimensional vector of the size K(K−1)
2 ,

where K = 129 is the number of parcels. Afterward, FC vectors of

all subjects were stacked to form the X matrix. Thus, X hadN rows;

the number of subjects and K(K−1)
2 columns. Principal component

analysis (PCA) was then performed on the feature matrices along

the subject dimension and 90% of data variance was preserved.X
′
is

the new representation of the original feature matrix after applying

PCA. The next step is source extraction from the X
′
matrix using

the ICA approach as in Eq (1).

X′ = A× S (1)

where A is the mixing matrix and S is the independent

source. ICA was performed based on the Infomax (Bell and

Sejnowski, 1995) algorithm. Each row in S is considered one

component, whose values determine the contribution of edges

in that component. We call these values the “ICA value” of the

edges in the rest of this study. A few of these components have

a major role in forming the feature matrix X
′
. Selecting the

important components among all of them requires an algorithm

to assess the reproducibility of the components during different

runs. Ranking and Averaging Independent Component Analysis by

Reproducibility (RAICAR) (Yang et al., 2008) had been previously

employed (Keyvanfard et al., 2020) to avoid run-to-run variability

of components ordering and identify reproducible components

across 100 ICA runs. Nevertheless, the edge value of obtained

(ordered) components in RAICAR was averaged and therefore

varied during different runs, and it resulted in dissimilar final

subnetworks in different runs. To overcome this limitation, we

modified the RAICAR algorithm by considering the correlation

values as well as the number of similar components, so that every

time, it resulted in the same components with no need to average

or perform any kind of manipulation of the edge values. Details are

discussed in section 1 of the Supplementary material.

2.3. Edge pruning

The components derived from ICA consist of all brain

connections with different weights (the ICA values). Edge pruning

is, therefore, required in order to keep only the important

connections. This had been previously performed through their

z-score values (normalization of connections of each component

by subtracting the mean value of that component and dividing

by its standard deviation) and thresholding them (Keyvanfard

et al., 2020). This would result, however, in having a similar

number of connections remaining in each component (due to their

normal distribution). Here, we modified the pruning algorithm

by revisiting the definition of importance for each edge. In

the previous criterion (based on z-score), the weight values of

edges specified their importance level. Here, their effect on the

reversibility of the ICA procedure was replaced instead of that

criterion. We, therefore, developed a new algorithm (detailed

in section 2 of the Supplementary material) to calculate the

contribution of each edge to the reconstruction of the original

functional connectivity matrices. The edges with maximum effects

on the reversibility of the ICA procedure were kept, and the others

were replaced by zero. The component after edge pruning will be

hereafter referred to as a “subnetwork.”

The pipeline of the proposed algorithm is shown in Figure 1.

2.4. Statistical analysis

The subnetworks should be statistically evaluated to determine

significantly different subnetworks between the HC and SZ groups.

To this end, each individual was projected on a vector, which was

defined by two different methods as described below. The statistical

analysis was then performed on the projected values.

A) In this viewpoint, only the location of preserved connections

(rather than the ICA values) was considered on each

subnetwork. For the subnetwork i: first, the location of the

selected edges was determined. Second, the mean weight of the

original functional connectivity values of the selected edges in

the HC and SZ groups was calculated. Third, the difference

between these two mean vectors was calculated (Diff(i)). Then,

for each subject in the two groups, the original functional

connectivity vector of selected connections was projected on

the difference vector (through the inner product) as follows:

for subnetwork (i) :

Diff (i)= |VHC(i)−VSZ(i)| ,

for subject
(

j
)

:

A− PrjHC

(

i, j
)

=
〈

Diff (i) , FCHC

(

i, j
)〉

A− PrjSZ
(

i, j
)

=
〈

Diff (i) , FCSZ

(

i, j
)〉

(2)
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FIGURE 1

The proposed pipeline. The functional connectivity matrices of all participants were vectorized and stacked on top of each other. The size of this

matrix was N×

(

K(K−1)

2

)

. PCA was performed to reduce information redundancy. The reduced feature matrix had C < N rows. The modified RAICAR

algorithm based on Infomax was then applied. Next, edge pruning was performed to select the most important edges in each component (zero

edges show pruned connections and the colors indicate di�erent ICA values of edges). Finally, cortical surface maps of functional subnetworks were

constructed based on their normalized nodal strengths.

where V is the average vector of FC values of subnetwork

i, FC (i,j) is the functional connectivity vector of individual j at

the location of selected connections in subnetwork i, and 〈x, y〉

illustrates the inner product of x and y vectors. Finally, a two-

sample t-test was applied between the obtained projected vectors,

A− PrjHC (i) and A− PrjSZ (i ).

B) Since some selected locations were common among different

subnetworks, in this comparison, we were interested in

giving value to the degree of contribution of each edge. In

other words, the ICA values of the selected edges in the

subnetworks were considered. The functional connectivity

weights of each individual were projected on the subnetworks

through the inner product. Statistical analysis was then

applied between these projected values of the two groups

(B− PrjHC , B− PrjSZ). Here, functional connectivity

averaging is no longer performed over individuals and is,

therefore, expected to be more robust against inter-individual

variations within a group.

for component (i) and subject
(

j
)

:

B− PrjHC

(

i, j
)

=
〈

Comp(i) , FCHC

(

j
)〉

B− PrjSZ
(

i, j
)

=
〈

Comp(i) , FCSZ

(

j
)〉

(3)

The Bonferroni correction (Benjamini and Hochberg, 1995) for

multiple comparisons was employed for both parts, A and B, and

the p-value < 0.005 was considered statistically significant.

Furthermore, the practical significance of the outcomes was

evaluated through the calculation of the effect size. Cohen’s d, the

most common measurement method of effect size was used, where

the mean difference between the two groups is divided by the

pooled standard deviation.

2.5. Components evaluation

The distribution of connectivity values for the subnetworks

that significantly differentiated the SZ group from HC, and called

“significant subnetworks” hereafter, was compared with the well-

known RSNs introduced by Yeo et al. (2011). Yeo’s atlas includes

seven RSNs: visual (VIS), somatomotor (SM), dorsal attention

(DA), ventral attention (VA), frontoparietal (FPN), default mode

network (DMN), and limbic (Limb) functional systems. These

RSNs are illustrated in Supplementary Figure 2. The overlap

between the subnetworks and the seven RSNs was determined

by computing nodal strengths summation of the common nodes

between the RSNs and the obtained subnetworks (Keyvanfard

et al., 2020). The detail can be found in section 4 of the

Supplementary material.

A non-parametric permutation test was used to statistically

evaluate the overlap percentage between the subnetworks and the

RSNs. To this end, connection weights were randomly assigned

to each subnetwork and the overlap percentage with the RSNs

was recalculated. This procedure was repeated 1,000 times. The p-

value was then computed as the number of times that the newly

obtained overlap percentage exceeded the test statistic obtained

from the original data, divided by the number of permutations. The

significance level was set to 0.005.

2.6. Graph parameters

We performed graph theory analysis to examine the

connectivity characteristics of the whole brain network as

well as the obtained subnetworks. The whole brain network

analysis was conducted on weighted and fully connected FC
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matrices of each individual. In other words, no thresholding

and binarization were applied to the adjacency matrices. The

five common topological measures were computed: shortest

path length, network strength, global and local efficiency, and

clustering coefficient, and then, t-test statistical analysis was

applied between these graph measures of the two groups, HC

and SZ.

In the next step, the graph theory analysis was performed

on the obtained subnetworks. For each individual, the weighted

subnetwork graph was constructed based on the original functional

connectivity values at the location of the selected edges. The same

five graph metrics were calculated and then statistically analyzed to

determine significant differences between SZ and HC groups.

All graph theoretic measures for the weighted graphs were

computed with the Brain Connectivity Toolbox (Rubinov and

Sporns, 2010). In this section, a p-value < 0.05 was considered to

indicate statistical significance.

The graph topological characteristics utilized in this study are

described as follows:

The shortest path length of a node pair {Li,j} is the minimum

edge weight summation required to link the ith and the jth node.

The average of the shortest path length of the network Lnet , or

characteristic path length, is the mean of the shortest path length

between all node pairs (N) in the network (Watts and Strogatz,

1998):

Lnet =
1

N(N − 1)

∑

i6= j
Lij (4)

Network strength (S) is computed as the average of the nodal

strength (defined as the summation of all absolute edge values (wij)

connected to each node) of all nodes in the network (Liu et al.,

2017). It is described as follows:

S =
1

N

∑

i6=j
wij (5)

Global efficiency (Eglobal) measures the degree of integration

of brain networks (Latora and Marchiori, 2001, 2003; Achard

and Bullmore, 2007). It is the inverse of the average of the

shortest path length between each node pair and is defined

as follows:

Eglobal =
1

N(N − 1)

∑

i6=j

1

min
{

Li,j
} (6)

The local efficiency (Ei_local) could be interpreted as how well

the nodes in the subgraph Gi exchange information when the ith

node is removed, revealing the tolerance of the network (Latora and

Marchiori, 2001). Its calculation is as follows:

Eilocal =
1

NGi

(

NGi−1
)

∑

i6=j

1

min
{

Li,j
} (7)

The absolute clustering coefficient of a node (Ci) in a weighted

graph is the ratio of the sum of triangle intensities (wij) to the

number of all possible connections in the subgraph Gi including

k nodes (Onnela et al., 2005):

Ci =
Ei

ki(ki−1)
2

=
2

ki(ki−1)

∑

j,k

(

wij, wik,wjk

)
1
3 (8)

The clustering coefficient of a network Cnet is then derived by

averaging the clustering coefficients of all nodes within the network.

Cnet =
1

N

∑

i∈G
Ci (9)

The entire analysis of this study was performed usingMATLAB

version 2021a.

3. Results

Applying the developed algorithm on the concatenated

connectivity matrix of both HC and SZ groups led to obtaining

brain subnetworks. Considering the robustness of the components

(Keyvanfard et al., 2020) and the connectedness of the areas,

only the first eight subnetworks were studied in this study (see

Discussion for more details). The edge pruning step was performed

with a threshold of 0.2, which resulted in more than 30% of the

edges remaining in the subnetworks.

The order of the input data was randomly changed 10

times, and the developed algorithm was re-executed. To assess

the change in the order of the output components that might

occur due to a change in the order of the input data, we

used the correlation coefficient as a similarity index to find

the corresponding components in every two runs. The modified

RAICAR algorithm resulted in the appearance of all components

in their stable locations within 10 times implementation. Moreover,

evaluation of the ICA value in each component showed that there

was no change in the different runs of the algorithm.

3.1. Statistical analysis

Based on the two types of scoring for statistical analysis,

described in section 2.4, a statistical analysis was performed on each

subnetwork and the following outcomes resulted:

A) Considering the location of selected edges in the subnetworks

(see Eq. 2), three of eight, #2 (p = 0.0025), #5 (p = 4 ×

10−5), and #7 (p= 1.7× 10−4) showed a statistically significant

difference between HC and SZ people.

B) Subnetwork #5 (p = 9× 10−4) and #7 (p = 6× 10−4)

significantly differentiated SZ from HC using the ICA values

in the projected values (described in criteria B, Eq. 3).

The p-value of all subnetworks is listed in Table 1. The lower

p-values of subnetwork #5 and subnetwork #7 in Part A (Table 1)

may indicate that they are more specific to the SZ and called

the “SZ-specific” subnetworks hereafter. This outcome can be also

inferred from p-values in Part B (Table 1) in which considering the

ICA values resulted in an increased p-value (to be not significant
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TABLE 1 p-values of all subnetworks through two types (A and B) of statistical analysis.

Subnetwork # 1 2 3 4 5 6 7 8

p-values in criteria A 0.0072 0.0025 0.056 0.049 4 × 10
−5 0.013 1.7 × 10

−4 0.0076

p-values in criteria B 0.505 0.203 0.169 0.414 9× 10
−4 0.286 6× 10

−4 0.232

The bold p-values (<0.005) are statistically significant subnetworks.

TABLE 2 E�ect size of three subnetworks through both statistical

analysis, Part A and Part B in section 2.4.

HC (mean
± SD)

SZ (mean ±
SD)

E�ect
size

P
ar
t
A

Subnetwork #2 34.5± 5.3 29.9± 3.7 0.904

Subnetwork #5 30.976± 4.4 25.6± 4.7 1.007

Subnetwork #7 34.5± 5.8 28.1± 4.6 1.038

P
ar
t
B

Subnetwork #2 9.4± 2.4 8.6± 1.7 0.378

Subnetwork #5 9.7± 2.1 8.02± 2.2 0.738

Subnetwork #7 7.1± 2.3 4.9± 1.4 0.965

It shows the practical significance of the subnetwork #2 is generally less than #5 and #7.

HC, healthy control; SZ, schizophrenia; SD, standard deviation.

anymore) for #2. Moreover, the reported effect sizes in Table 2

support this outcome. Cohen’s d for #2 in Part A was higher than

0.8 which implied a large impact; however, this value was less than

the other two subnetworks. In Part B, the effect size of subnetwork

#2 decreased to 0.3, which revealed its almost limited practical

application compared to Cohen’s d > 0.7 in #5 and #7.

3.2. The most a�ected areas/links by SZ

For visualization purposes, the subnetworks were mapped onto

the cortical surface by computing the nodal strength of each region

concerning the ICA values. The nodal strength was computed

as the summation of the absolute weights of all edges connected

to that node. These nodal strength values were then normalized

into the range [0–1] for each subnetwork. Figure 2 shows three

significant subnetworks.

Figure 2 illustrates that high nodal strength values in

subnetwork #2 are mostly observed in regions of the occipital

cortex, while for subnetworks #5 and #7, regions in the parietal

cortex, and the pre-, post-central gyrus are mostly allocated

with high nodal strength, respectively. The visual inspection of

subnetwork #2 in Figure 2A with the Yeo atlas (Yeo et al., 2011)

indicated that the regions having high nodal strength mostly

belong to the visual network. In addition, it seems that the regions

in Figures 2B, C can be considered as part of ventral attention

(VA) and somatomotor (SM) networks, respectively. This visual

inspection was quantified through the computation of their

overlap with the RSNs in the Yeo atlas (Yeo et al., 2011) using

their nodal strengths. Table 3 represents the overlap percentage of

these three subnetworks with the seven RSNs. The bolded values

in Table 3 indicate the overlap percentages with p < 0.005 in the

permutation test.

To further determine the discriminant connections of a

subnetwork, we first selected connections with absolute ICA

values >3.5. They are visualized in Figure 3A for the SZ-specific

subnetworks (#5 and #7). Then for those selected connections, a t-

test was performed over the original connectivity values between SZ

and HC groups. Connections having p-value<0.01 were visualized

in Figure 3B as the most discriminant links (/connections) affected

by SZ. It is evident from Figure 3 that the discriminant connections

in subnetworks #5 and #7, in particular, link the SM and VA regions

in two brain hemispheres.

3.3. Graph parameters

There were no significant differences in characteristic path

length, network strength, global efficiency, local efficiency, and

clustering coefficient of the whole brain network between our

limited number of participants in the HC and SZ groups (Table 4).

Nevertheless, a significant difference in these five metrics was

observed for two subnetworks #5 and #7 over the same dataset

(Figure 4 and Table 4). The path length of the SZ group in

subnetwork #7, however, was marginally significant. Moreover, the

effect size of all metrics of #5 and #7 was >0.5, which implies their

acceptable practical impact. All the measured graph metrics of the

whole brain and the two subnetworks are given in Table 4. It should

be mentioned that the p-value in other subnetworks was ≥0.1 for

these graph parameters.

4. Discussion

In the present study, the previously developed algorithm

(Keyvanfard et al., 2020) was first modified and then applied

to the population of 54 individuals including SZ and HC

people. The algorithm output was the components related to

the brain variations between individuals (Keyvanfard et al.,

2020). The first eight components were considered for further

analysis. Considering the selected edges in the subnetworks,

three components indicated significant differences between the

functional connectivity of SZ and HC groups.

4.1. Anatomical distribution of subnetworks

The second subnetwork had a significant and wide overlap

(30.9%) with the visual network.Moreover, the statistical analysis of

this subnetwork (Part A) indicated a significant difference between

the HC and SZ. Therefore, it can be concluded that the visual

network variations are somehow related to SZ. It is worth noting

that the damaged and reduced functional connectivity of visual

resting-state network in SZ people has been previously reported

(van de Ven et al., 2017; Arkin et al., 2020; Keyvanfard et al.,
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FIGURE 2

Three brain subnetworks significantly di�erentiated schizophrenia people from healthy controls. (A–C) show subnetworks #2, #5, and #7,

respectively. The values are assigned to each region based on the normalized nodal strength. The maps are color-coded in which the larger value is

shown in dark red and the smaller one in dark blue.

TABLE 3 Overlap percentage of subnetworks #2, #5, and #7 with the seven well-known RSNs.

Overlap percentage (%) Vis SM DA VA Limb FP DMN

Subnetwork #2 30.9 9.9 16.1 11.8 7.4 11.7 12.2

Subnetwork #5 1.9 29.1 9.5 40.1 4.3 5.5 9.6

Subnetwork #7 19.5 38.8 9.7 5.8 10.5 7.8 7.8

The items having a p-value <0.001 in the permutation test are in bold.

Vis, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; Limb, limbic; FP, frontoparietal; DMN, default mode network.

2022; Wei et al., 2022). The prior independent reports have also

demonstrated abnormalities in different levels of visual processing

in individuals living with SZ (Butler et al., 2008; Green et al., 2011;

King et al., 2017; Kogata and Iidaka, 2018; Adámek et al., 2022).

Furthermore, the recent studies’ results have discussed that the

visual system has a possible key role in the development of SZ

(Benson et al., 2012; Bolding et al., 2014; Morita et al., 2016; Császár

et al., 2019).

Subnetwork #5 showed significant overlap (40%) with the

ventral attention (VA) network. Its significant difference between

the SZ and the control group indicated the functional connectivity

of the VA network is disrupted in SZ. Deficits in attentional control

are known as a main feature of SZ and a pivotal contributor to

cognitive dysfunction (Luck and Gold, 2008; Nuechterlein et al.,

2009; Orellana et al., 2012; Arkin et al., 2020). It has also been

suggested that complex visual hallucinations reflect dysfunction

within and between the attentional networks, leading to the

inappropriate interpretation of ambiguous percepts (Shine et al.,

2014). The VA network is closely associated with the so-called

“salience network.” The salience network has been involved in

the pathophysiology of SZ. Its dysfunction results in the incorrect

assigning of salience, which can, in turn, lead to the key symptoms

of SZ, including delusions (Palaniyappan and Liddle, 2012).

Hypoconnectivity within the VA network has been previously

reported in several studies (Yan et al., 2012; Wang et al., 2015; Dong

et al., 2018; Li S. et al., 2019; Arkin et al., 2020; Keyvanfard et al.,

2022).

The somatomotor network regions were partly observed in

the third significant subnetwork #7. The nodal strengths in this

subnetwork showed a 39% overlap with the somatomotor network.

In addition, subnetwork #5 also had a 29% overlap with this RSN

(SM). Neurological soft signs such asmotor symptoms are common

among SZ people [at least one neurological soft sign is detectable in

98% of individuals with SZ (Lane et al., 1996)]. Thus, these signs,

while not specific to SZ, are as much a feature of SZ as any other

signs or symptoms, and altered FC in somatomotor networksmight

have been expected (Lane et al., 1996; Shinn et al., 2015). Alteration

of the SM areas in SZ has been previously reported in different

studies (Zhuo et al., 2014; Dong et al., 2018; Li S. et al., 2019; Liu

et al., 2020), and therefore, the emergence of this building block

of variations using our developed algorithm is in line with other

independent studies.

4.2. Specificity of subnetworks

The developed algorithm is designed to decompose the

functional connectivity data into components that form the

building blocks of group variations. Having a brain disorder is

only one of the inter-group variations, and therefore, it is expected

that one or more of the obtained components distinguish the SZ

group from the healthy one. However, other blocks may relate to

other population differences and demographic variables, such as

their degree of rationality, gender, and life quality. The developed
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FIGURE 3

The discriminant connections in subnetworks #5 and #7. (A) The connections with absolute ICA values above a threshold (3.5). (B) The most

discriminant (p-value < 0.01) links that were obtained by applying the statistical t-test to the original functional connectivity of selected edges in (A).

The node color determines the RSN they belong to. The lower p-value is shown in red in (B).

algorithm was also performed on the healthy group, including

27 subjects, and the similarity of the first eight components was

compared with the eight components from 54 individuals (SZ +

HC). This comparison indicated high similarity (around 70%) for

some subnetworks, such as #1. It suggests that the subnetworks

which did not show significant differences between SZ and HC

groups can correspond to other inter-individual differences. Here,

we aimed to find the SZ-specific subnetworks that discriminate

between SZ and healthy groups. No explanation of other obtained

subnetworks is, therefore, provided.

It should be also noted that in this algorithm, each component

can participate in the modulation of more than one variation,

and mutually, each difference in behavioral level may be rooted

in a few of these modules (Keyvanfard et al., 2020). We focused

on the altered subnetworks in SZ and performed statistical tests

based on two different criteria. While the first one (Part A in

section 2.4) only considered the location of selected edges in

the obtained subnetworks, in the second one (Part B in section

2.4), the importance of each connection in the subnetwork was

also considered by using the ICA values. Using the latter test,

subnetwork#2 did not display a significant difference between

the two groups. It can be inferred that the ICA values in #2

may be affected by various individual variations in the visual

network, which inherently exist between people. This component

is, therefore, not considered as a SZ-specific subnetwork; a point

that can also be concluded from the p-values comparison in Part

A (Table 1). The p-value of #2 in Part A was at least one order of

magnitude higher than #5 and #7 but one order of magnitude lower

than other (non-significant) subnetworks. Moreover, the effect size

of subnetwork #2 was generally less than #5 and #7, confirming the

less practical significance of this subnetwork.

4.3. Sensitivity to graph analysis

Another interesting finding of this study is related to

the topological properties of the obtained subnetworks. The

characteristic path length indicates how easily information can

be transferred across the network (Rubinov and Sporns, 2010).

An increase in this value in the SZ group reveals harder (less
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flexible) communication across multiple nodes. Network strength

shows the overall connectivity through a network and is therefore

expected to have lower values in the SZ group. Local efficiency

reflects the fault tolerance of the network system or the efficiency

of communication between the first neighbors of a node when it

is removed. Brain networks with high clustering coefficients and

high local efficiency are robust in local information processing

even if some neurons are inefficient or damaged (Zhao et al., 2008;

Farahani et al., 2019). The low local efficiency and low clustering

in SZ suggest that the ventral attention and somatomotor networks

in SZ had lower local fault tolerance (i.e., more vulnerable) than

the HC group. Reduced local efficiency and clustering coefficients

for the whole brain in the SZ group have already been reported

in previous fMRI studies (Liu et al., 2008; Lynall et al., 2010). It is

worth noting that most previous studies show remarkable changes

in these graph metrics of the whole brain in SZ disorder (Liu et al.,

2008; Lynall et al., 2010; Micheloyannis, 2012; Xiang et al., 2020).

Regardless of the method of graph construction and the amount

of change induced by the disease in those metrics, it seems that

the change may not be significant on the whole brain for some

datasets. However, the significant graph metrics change can be

observed in specific subnetworks of the brain. It may be concluded,

therefore, that probing these specific brain subnetworks (instead

of the whole brain) with those metrics may assist in disorder

diagnosis/treatment by elevating the sensitivity.

4.4. Feasibility of classification

The higher sensitivity of graph parameters in the SZ-specific

subnetworks #5 and #7, compared to the whole brain network,

along with their effect size and significant differences they made

between SZ and HC, encouraged us to investigate whether the

classification of data can be performed through these subnetworks.

A simple classifier can be, therefore, suggested to discriminate these

two groups’ data. The following procedure was performed for both

#5 and #7. The mean value and standard deviation of projected

functional connectivity (Part B in section 2.4) in the SZ and HC

groups were computed. Two z-score values were then assigned

to each individual based on his/her obtained values considering

the mean and standard deviations calculated for both SZ and HC

groups. These values were interpreted as the individual score in

the SZ/HC group. The summation of the scores for each individual

indicated its class; the HC label was applied if the score value was

less than zero, and the SZ label was applied otherwise. To evaluate

the classification performance, the metrics including accuracy =

(TP + TN)/(TP + TN + FP + FN), precision = TP/(TP +

FP), sensitivity = TP/(TP + FN), specificity = TN/(TN + FP),

balanced accuracy = (sensitivity + specificity)/2 were used, where

TP, TN, FP, and FN represent the numbers of true positive, true

negative, false positive, and false negative, respectively. In addition,

the area under the receiver operating characteristic (ROC) curve

(AUC) was also used to provide a threshold-independent reliability

assessment. The AUC value evaluates the overall classification

performance of the method. These parameters are stable measures

of test performance, and therefore, we also calculated the positive

predictive value (PPV) and negative predictive value (NPV). If
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FIGURE 4

Graph metrics of healthy (green bar) and schizophrenia (red bar) groups in two subnetworks #5 and #7. (A) Characteristic path length, (B) network

strength, (C) clustering coe�cient, (D, E) global and local e�ciency. N.S, not significant, *p-value < 0.05, **p-value < 0.01.

disease prevalence increases, the positive predictive value will

increase and the negative predictive value will decrease (Kuhn and

Johnson, 2013; Monaghan et al., 2021; Varoquaux and Colliot,

2022).

PPV =
Sensitivity × Prevalence

Sensitivity × Prevalence+
(

1− Specificity
)

× (1− Prevalence)

NPV =
Specificity × (1− Prevalence)

(1− Sensitivity)× Prevalence+
(

Specificity
)

× (1− Prevalence)

(10)

Figure 5A shows the classification result for all 54 individuals.

The values above the horizontal dash line indicate the classifier

decision as an SZ individual, and below this line correspond to the

diagnosis as a healthy person. The ROC curve analysis is shown

in Figure 5B. Its AUC is 77.5%. In addition, to evaluate the simple

classifier performance, six-fold cross-validation (Efron and Gong,

1983) was used. The dataset was divided into six randomly chosen

subsets of equal size (nine subjects). A one-fold was left out to be

used as the test subset, and the rest were used for the training subset.

Since PCAwas utilized in the developed algorithm, to avoid leakage

between train and test data, the subnetworks were kept fixed and

the training subset indicated the main decision values of each class

in the scoring; the mean and the standard deviation.

The six-fold cross-validation was performed 10 times resulting

in 60 values for each metric. The performance measures were

then calculated as an average value across all folds from all runs,

as reported in Table 5. The outcomes of our simple classifier

revealed the capability of the obtained subnetworks to distinguish

SZ individuals from the HC. Although our main goal in this study

is not to propose a classification method, the results showed an

acceptable performance compared to the well-known and advanced

classifiers, such as neural networks and support vector machines

(Shen et al., 2010; Moghimi et al., 2018; Yang et al., 2019; Cai et al.,

2020). It should be noted that in contrast to most classification

studies where a large number of features are usually used, we

assigned only one score to each individual for classification.

Nevertheless, the outcome was satisfactory. Furthermore, it can

be inferred that our proposed scoring method may be considered

as a disorder indicator such as a biomarker. Here, we used six-

fold cross-validation to evaluate the classifier for test samples.

However, in each run, 45 individuals were utilized as training

data and nine samples were considered as tests. Therefore, it

can be led to the classifier overfitting. However, to evaluate each

classifier’s effectiveness, adding new individuals and other datasets

is required.

4.5. Limitation and future study

Applying ICA on the dataset along the subject dimension with

M members, in general, results in M components; not all of them

are reproducible. In general, applying ICA on a larger dataset

leads to more reliable findings. In the preceding version of the

algorithm (Keyvanfard et al., 2020), the data of a larger number of

healthy subjects (92 individuals) had been utilized and the first 10
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FIGURE 5

Classification results of schizophrenia people (SZ) and healthy control (HC). (A) The summation of their relative z-score values in subnetworks #5 and

#7 was computed. The horizontal dashed line indicates the classification border, and the vertical one indicates the number of individuals in groups.

(B) ROC curve of the suggested classifier for all 54 individuals. The area under the curve is 77.5%.

TABLE 5 Classification performance of six-fold cross-validation over 10 runs based on the proposed individual scoring.

Accuracy Balanced accuracy Precision Sensitivity Specificity PPV NPV

70.01% 69.35% 69.99% 72.32% 66.38% 63.88% 74.63%

The prevalence of schizophrenia was considered 0.45% for PPV and NPV.

PPV, positive predictive value; NPV, negative predictive value.

components with higher stability in the RAICAR algorithm were

considered for further analysis. Here, this research was performed

retrospectively, and consequently, the number of available data

was limited. In this study, the available data were collected from

27 people with SZ along with their matched group of healthy

individuals.We, therefore, chose eight (rather than 10) components

based on the components’ reproducibility and also connectedness

of the corresponding regions in the subnetworks.

The results of this study are, therefore, based on a limited

data sample, which may lead to the inadequate generalizability

of the results. With a higher number of datasets, we would

be able to separate the training and test data and come up

with a classifier with a low risk of overfitting. However, the

evaluation of the developed algorithm and the scoring classifier

for different and large datasets would be our perspective on

future research direction. Nevertheless, using this dataset and the

proposed blind approach, we found SZ-specific subnetworks that

were associated with regions whose changes had been previously

reported independently.

The findings of this study suggest that the modular viewpoint

for brain activities increases the sensitivity for alteration detection.

It further suggests that alterations induced by abnormalities

(including SZ) can be revealed in the form of specialized

subnetworks with high sensitivity to these alterations. Therefore,

future studies will focus on the advanced classification of SZ using

the variations of subnetworks as a biomarker. Moreover, tracking

the changes in these subnetworks may provide a basis to evaluate

the progress/prognosis of the disorder.

5. Conclusion

In summary, the discriminating subnetworks related to SZ

were obtained via a blind approach in this research. The presented

subnetworks mostly covered the visual cortex, ventral attention,

and somatomotor networks. The two subnetworks with a large

overlap with the ventral attention and the somatomotor networks

were more specifically related to SZ and also illustrated the

significant graph metric variations. In addition to obtaining the

subnetworks that modulate the brain functional connectivity in

the disease, the derived ICA values were also found important

in finding the discriminating altered links that play a key

role in the classification. Using these ICA values can then

potentially help in defining a score as a biomarker for SZ.

This systematic blind method can be utilized to extract the

modulating blocks that describe activity variations in each

group of individuals, including those who live with different

brain disorders.
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