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Background: Neuron morphology analysis is an essential component of

neuron cell-type definition. Morphology reconstruction represents a bottleneck

in high-throughput morphology analysis workflow, and erroneous extra

reconstruction owing to noise and entanglements in dense neuron regions

restricts the usability of automated reconstruction results. We propose SNAP, a

structure-based neuron morphology reconstruction pruning pipeline, to improve

the usability of results by reducing erroneous extra reconstruction and splitting

entangled neurons.

Methods: For the four di�erent types of erroneous extra segments in

reconstruction (caused by noise in the background, entanglement with

dendrites of close-by neurons, entanglement with axons of other neurons, and

entanglement within the same neuron), SNAP incorporates specific statistical

structure information into rules for erroneous extra segment detection and

achieves pruning and multiple dendrite splitting.

Results: Experimental results show that this pipeline accomplishes pruning

with satisfactory precision and recall. It also demonstrates good multiple

neuron-splitting performance. As an e�ective tool for post-processing

reconstruction, SNAP can facilitate neuron morphology analysis.

KEYWORDS

neuron morphology reconstruction, bioinformatics, image processing, post-processing,

dendrite tracing

1. Introduction

Characterization of neuron cell type is an international research frontier in neuron

science (Zeng and Sanes, 2017). Neuronmorphology is considered to be a critical component

of neuron cell type identification (Ascoli et al., 2008). In recent years, there has been

considerable development of techniques, including sparse, robust, and consistent fluorescent

labeling of a wide range of neuronal types (Peng et al., 2021) and fluorescence micro-optical

sectioning tomography (fMOST; Gong et al., 2016). With these techniques, reconstruction

of single-neuron morphology from optical microscopy images has become possible and

now has an essential role in neuron science. Researchers have developed various manual,

semi-automated, and automated neuron reconstruction tools for digital reconstruction of

neuron morphology (Meijering, 2010). Research institutions have also held competitions

and established worldwide projects, such as the DIADEM competition (Liu, 2011) and

BigNeuron (Peng et al., 2015; Manubens-Gil et al., 2023). A large number of automated

neuron reconstruction algorithms exist. For example, the 3DVisualization-Assisted Analysis

software suite Vaa3D (Peng et al., 2014) has more than 32 plugins, including ENT
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(Wang et al., 2017), APP (Peng et al., 2011), APP2 (Xiao and Peng,

2013), NeuTube (Zhao et al., 2011), MOST (Wu et al., 2014), and

ST (Chen et al., 2015).

Nevertheless, neuron morphology reconstruction remains

an unsolved problem (Li S. et al., 2019). The wide variety

of brain images in terms of background noise, complicated

branching patterns, and clutter of neuron fibers presents challenges

for automated neuron reconstruction. Existing automated

reconstruction algorithms are generally effective only for a few

specific data sets. Owing to the complexity of the images and

the limitations of automated reconstruction algorithms, these

algorithms are unsuitable for whole-brain images. Moreover,

for data sets with a low signal-to-noise ratio and dense neuron

distribution with neuron fiber entanglement, the existing

reconstruction algorithms do not show satisfactory performance.

Pre-processing algorithms, including multi-scale enhancement

(Zhou et al., 2015), CaNE (Liang et al., 2017), and filtering-based

enhancement (Guo et al., 2022) aim to enhance images by reducing

background noise and improving image contrast. Deep learning–

based approaches have been investigated for neuron tracing.

Among them, weakly supervised learning (Huang et al., 2020) and

false negative mining (Liu et al., 2022) are proposed to rescue and

connect the weak and broken neurites in the segmentation step

for reconstruction; subgraph connection (SGC) method (Huang

et al., 2022) starts from prediction map obtained by CNN to link

the broken reconstruction; crossover structure separation (CSS)

method (Guo et al., 2021) is proposed to detect the crossover

structures and generate deformed separated neuronal fibers in the

images to eliminate entanglements in reconstruction. However,

even with these pre-processing and advanced deep learning–based

approaches, the results of automated reconstruction still contain

complex errors and cannot be used directly in analysis. To obtain

gold-standard morphology reconstruction, researchers need to

curate reconstruction results withmanual reconstruction platforms

such as Vaa3D (Peng et al., 2014), TeraVR (Wang et al., 2019),

or FNT (Gao et al., 2022); however, such manual annotation is

labor-intensive and time-consuming, limiting the throughput of

the morphology reconstruction workflow.

In morphology reconstruction systems, therefore, the manual

annotation time should be reduced to achieve high throughput,

which means the errors resulting from automated reconstruction

must be reduced. We closely studied the errors in reconstruction

results from several automated algorithms, including ENT (Wang

et al., 2017), APP2 (Xiao and Peng, 2013), and ST (Chen et al.,

2015). Based on observations of a vast number of samples (see

Supplementary material, Section 1), we identified several types of

error: missed reconstruction and erroneous extra reconstruction

due to entanglement, noise, or other artifacts. Note that by

the term “entanglement” in this paper, we mean neuron fibers

very close to each other in optical microscopy images that

are difficult to distinguish, resulting in “crossing” structures in

reconstruction. These intertwined reconstructions within the same

neuron or from different neurons constitute significant challenges

for automated reconstruction. Figures 1A–D show examples from

various situations of automated neuron reconstruction results

with errors. With manual annotation for error type on the error

sample set (see Supplementary material, Section 1), we found the

majority (around 63.53%) were erroneous extra reconstructions

(false positive), whereas a reasonable number (around 24.16%)

were due to missed reconstruction (false negative), and the rest

(around 12.31%) were combined errors. On the other hand, we

carried out a survey for the annotation personnel on their opinion

on which of the two tasks, annotating automated reconstruction

results with some extra segments or reconstruction with some

missing segments, would bemore time-consuming or tiring. Ninety

percentage of the group believed the process of eliminating extra

reconstruction segments is more time-consuming or laborious than

addingmissing segments. Reducing erroneous extra reconstruction

segments could expedite the process of manual annotation.

Therefore, it is a promising approach to prune automated

reconstruction results.

In the literature, there are several papers describing post-

processing of automated reconstruction results using various

methods, e.g., G-Cut (Li R. et al., 2019), ray-shooting based

repairer (Yu et al., 2021), and solemnization algorithm (Jiang

et al., 2020). However, only some of these studies focused on the

pruning of results. In the challenging scenario of group neuron

reconstruction in densely labeled regions with entanglement of

dendrites frommultiple neuron cells, the main errors are erroneous

extra reconstructions due to crossings, as mentioned above.

Solutions to this problem include G-Cut (Li R. et al., 2019),

NeuroGPS-Tree (Quan et al., 2016; Zhou et al., 2021), and TREES

Toolbox (Cuntz et al., 2010), which separate densely intertwined

neurons. G-Cut determines which neuron a node belongs to by

judging the angle between the local segment and the line connecting

the soma and the node. NeuroGPS-Tree identifies spurious links

(“bridges”) between the reconstructions of two neurons in an

iterative manner and separates the neurons by removing certain

ends of bridges. TREES Toolbox employs competitive branch order

in neuron splitting. However, most of these software tools do not

handle other errors, such as entanglement errors within the same

neuron and errors involving other axons passing by, which are

essential tasks in pruning.

This paper proposes SNAP, a structure-based neuron

reconstruction automated pruning pipeline. It aims to prune

away errors in the reconstruction results while keeping correct

reconstructions, thereby speeding up further curation. It also

separates the entangled reconstructions of multiple neurons as

this is part of the pruning problem. We focus particularly on

dendrite reconstruction as this is the basic component of neuron

reconstruction. The dendrite corresponds to the near-soma

region, which serves as the first image block of UltraTracer (Peng

et al., 2017) for complete neuron morphology reconstruction.

When post-processing in this first block reduces errors, fewer

wrong reconstructions will be made when UltraTracer adaptively

explores and traces neighboring subareas, which will improve

the overall reconstruction performance. When developing SNAP,

we thoroughly studied dendrite structure and identified models

for the four main categories of errors we needed to prune. SNAP

has three main steps, and the pipeline is illustrated in Figure 1E.

The algorithms are described in Section 2. The performance

of our proposed SNAP pipeline is validated (in Section 3) by

applying it to automated reconstruction results and comparing the

pruned results with those of gold-standard manual annotation.
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FIGURE 1

Examples of automated reconstruction results and SNAP pipeline processes. (A–D) Display MIP images of neurons overlaid with automated

reconstruction results in red. The green arrows point to places of erroneous reconstruction. Four situations of erroneous extra reconstruction

segments are shown: (A) noisy segments in the APP2 results; (B) dense neuron fibers with entanglement with other neurons in the APP2 results; (C)

entanglement with passing neuron fibers in the ST results; (D) entanglement with the neuron itself in the ENT results. (E) The workflow of the SNAP

pipeline illustrated with an example. In each step, the corresponding type of wrong segments are pruned away. Step 1 prunes noisy segments; step 2

prunes entanglements with other dendrites; step 3 prunes crossings involving passing fibers of other neurons or fibers of the neuron of interest itself.

Note that blue segments are the result of each step, while red ones are the pruned–way ones in each step.

We demonstrate that a great proportion of erroneous extra

reconstruction segments are removed, and thus the reconstruction

quality is improved substantially.

2. Methods

The digital neuron morphology reconstruction results can

be organized into a tree-like set of nodes with parent–child

relationships (O’Halloran, 2020) and are usually stored in

standardized SWC files (Cannon et al., 1998). In SNAP, the

reconstructions are first converted into a segment-based tree data

structure, as shown in Figure 2. We denote the segment set as

{Si}, i = 1, 2, ...,N, where N is the total number of segments.

The parent and child relationships of nodes in SWC format are

converted into the parent and child relationships of the segments.

The nodes, including the soma point, bifurcation points, and

endpoints, have a facilitating role, and we denote the corresponding

node set as {Bj}, j = 1, 2, ...M, where M is the total number of

nodes. If a segment is the furthest segment from the soma, without

any child segments, we call it a leaf segment. The level of the

segment, SLevi , is calculated as the number of segments Si that must

be passed through to reach a leaf segment. For example, the leaf

segment’s level is 0, its parent segment’s level is 1, and so on. Note

that the segments are oriented, in the direction of reconstruction

outwards from the soma. SNAP aims to identify the erroneous extra

reconstruction segments in the segment set of {Si}.

FIGURE 2

SNAP reconstruction data structure: illustration of converted

reconstruction format of directed segments and node-based tree

structure.

Note also that SNAP targets single-neuron reconstruction, so if

there is more than one connected structure in the reconstruction

results, the tree associated with the soma understudy will be kept

and worked on, whereas the other parts (including some broken

reconstruction fragments) will be discarded.

Four major categories of erroneous extra reconstruction are

identified in the statistical analysis mentioned above. C1 are

segments caused by noise in the background. The other three

categories are segments caused by entanglement with dendrites

of other neurons (C2), axons of other neurons (C3), or the

same neuron (C4). The pipeline is designed to deal with all four
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FIGURE 3

SNAP step 1. (A) Histogram of leaf segment lengths from the training set. One percentile of the population is taken as TLen = 6.6 µm. (B) Histogram

of leaf segment linearity from the training set. One percentile of the population is taken as TLin = 1.4. (C) Example result of step 1. From left to right:

MIP of a neuron image overlaid with APP2 results shown in red, MIP overlaid with SNAP results shown in green, zoomed-in image of the small region

overlaid with SNAP results shown in green, with pruned segments shown in red.

categories. It starts with the relatively easier category C1 to simplify

the situation and then moves on to the harder cases. Thus, the

pipeline deals first with the C1 type in Step 1, then with C2 in Step

2, and finally with C3 and C4 in Step 3, as shown in Figure 1E.

2.1. Step 1: removal of noisy segments (C1)

Segments in C1 are usually caused by noise in the background,

including noise due to microscopy imaging, signals from irrelevant

particles, or the halo of a strong signal. In general, these noisy

segments are leaf segments and are relatively short. A key

observation is that the linearity of these segments is weak, whereas

the linearity of true neuron fiber segments is strong. Using a set of

gold-standard manual annotations, statistical analysis of the length

of leaf segments SLenG is performed, as shown in Figure 3A. One

percentile of the population is set as a reasonable threshold (TLen)

to identify such short segments. Furthermore, the linearity feature

of each segment is calculated. The “anisotropy” values of each node

in the segments, λ1, λ2, and λ3 (λ1 > λ2 > λ3), are the eigenvalues

of the node; hence, the linearity feature is calculated as SLini =
1
Ni

∑Ni
j=1 λ

j
1/λ

j
2, where Ni is the number of the node in Si. Based

on the histogram of SLinG of the training data set, a valid segment

usually has a SLin value greater than TLin (as in Figure 3B), which

is one percentile of the population. In applications, leaf segments

are removed using rules based on TLen and TLin. This process is

repeated until no further leaf segments can be removed. Figure 3C

shows an example of Step 1.

Removing C1 is a simple procedure and does not involve much

of the neuron structure. Part of the purpose of Step 1 is to avoid

artifacts caused by these short and noisy segments from persisting

into Steps 2 and 3. Steps 2 and 3, which deal with the remaining

wrong segments C2, C3, and C4, are much more closely related to

the dendrite structure and represent the main contribution of our

proposed pipeline.

2.2. Step 2: separation of entangled
dendrites (C2)

For the pruning of segments involving nearby neurons, which

usually have their dendrites entangled with the dendrites of the

current neuron, we need to define locations to separate the

reconstruction into multiple neurons.

Without loss of generality, we assume a pair of neurons with

soma A and soma A′ that need to be separated. The path linking A

and A′ has bifurcation point set Bi, for i = 1, 2, ...NB, where NB is

the total number of the bifurcation points on this path (Figure 4A).

Each bifurcation point is a candidate separation site, and we need

to identify the bifurcation point that best separates the path. After

the separation, there are two reconstructions on the path: RA for

the neuron with soma A, and RA′ for the neuron with soma A′

(Figure 4B). Using this bifurcation point to separate the path should

be beneficial to the reconstruction of both neurons. The goal of Step

2 is to maximize the sum of the likelihood of branching patterns in

RA andR′A. Here, weightWXBi is introduced to reflect the likelihood
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FIGURE 4

SNAP step 2 for separating neurons. (A, B) Illustrate the separating

process, where somata, bifurcation points, and segments are

represented by triangles, dots, and lines, respectively. (A) The original

path linking the two somata, A and A’. The blue segments construct

the main path, and the yellow segments are the child segments. The

blue arrow points to the identified best dividing bifurcation point. (B)

The resultant divided parts. (C) An example of separation. From left

to right: MIP of the original image block overlaid with APP2 results

shown in red, overlaid with SNAP results shown in green, and a

zoomed-in view of the small region around the entanglement.

of Bi belonging to the neuron with soma X (where X is either A or

A′). The summation of weights for each bifurcation is used to reflect

the joint likelihood. Thus, the best bifurcation point for separation,

Bs, can be identified by:

argmax
s

Ws =

s∑

i=1

WABi +

NB∑

j=s

WA′Bj . (1)

Using statistical analysis of the branching pattern in

training data sets, the weight is defined based on the angle of

main path segments and child segments and on the distance

between bifurcation points and the soma location (details in

Supplementary material, Section 2). Putting this weight into the

argmax target Ws above, the best separation point Bs can be

identified. Then, the two neurons are separated at this point into

two reconstructions, RA and RA′ .

This process is applied to all paths linking neuron pairs;

thus, they can all be separated. When applying pruning to the

neuron of interest, reconstructions are separated, and the resulting

reconstructions belonging to other neurons are removed.

Note that in the process above, the soma locations are known.

In addition, most of the abnormally long paths also have the

problem of entanglement with other neurons, evenwhen no somata

of other neurons are close by. In such cases, a patch is added

that uses the endpoints of those paths as “fake” soma locations

for purposes of the separation. Figure 4C shows an example of

separation.

2.3. Step 3: pruning for “crossings” (C3 and
C4)

Finally, C3 and C4 are pruned. In both these categories, the

“wrong” segments are caused by local entanglement, involving

either passing fibers of other neurons (C3) or fibers of the neuron of

interest itself (C4). Crossings due to entanglements are commonly

found in automated reconstruction results and contribute to

the majority of wrong reconstructions that are troublesome to

manually correct. The removal of these two types is important and

a key target of SNAP.

All branching structures in the reconstruction are checked.

Based on the bifurcation number in the local neighborhood

of “crossings”, there are two main types of structures: (1) one

bifurcation without nearby bifurcations; and (2) more than one

bifurcation nearby.

One bifurcation structure can be modeled as Y or T, as in

Figures 5A, B. For Y, the two segments that are best aligned are

termed S1 and S2, and the other segment as S3, and S2 is assigned

to the segment with a smaller angle with S3. Different situations

of parent–child segment relationships are examined. When the

parent segment is S1, we have a typical bifurcation; otherwise, the

child segments could represent an error involving other dendrites

or axons and thus a wrong segment due to “crossing.” When the

parent segment is S3, S1, and S2 are considered wrong and will be

removed. When the parent segment is S2, then S3 is suspicious;

the determination of S3 will be solved in the degenerated X case

as described later. When the angle θ
S3
S1

and θ
S3
S2

are both close to 90

degrees, theY type becomes aT type, which is processed in a similar

way to the Y type.

The multiple bifurcation types are generally double or more

Y with bifurcation points very close to each other. We define the

confusing types with two bifurcation points as models of X and H

as in Figures 5C, D, based on whether the short segment S5 linking

the two bifurcations is correct or not, where it is correct in X and

wrong in H. The child–child segment angle β plays a major part

in H and X pruning. The angle threshold Tβ is defined as 99% of

the child–child segment angle population in the training data set,

as in Figure 5E, to define outliers. The H model is prioritized for

pruning. We identify the pair of child segments that are both leaf

segments in this structure (S3 and S4 as in Figure 5D). If the angle

β between them is larger than Tβ , these segments and their parent

segment are pruned away. This process continues recursively until

no further H can be identified. Then, for Xmodels, we identify the

segment linking the two bifurcations; the angles between its child

segments and “brother” segments (e.g., S3 and S4 as in Figure 5C)

are all calculated, and the two segments with the maximum angle,

if larger than Tβ , are pruned away. More details of the XH model-

based method are described in Supplementary material, Section 3.

In real data, there are many X and H structures with missing

segments. As above, a suspicious Y or T model can be such a X or

H model with missing segments. When the Y cases are considered

suspicious, they are treated as degenerated cases of X. The pipeline

has a local “re-tracing” process to help determine the removal. For

a suspicious segment, the node with a distance of LenR from the

bifurcation point is used as the starting point, and the rest of the

segment is masked out from the image. FastMarching is run to
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FIGURE 5

SNAP step 3 models and examples. (A) Y models. (B) T models. (C) X model. (D) H model. (E) Histogram of βGT in the training data set. (F)

Reconstruction for suspicious Y models as degenerated X models. (G) An example of a pruned X structure. (H) An example of a pruned H structure.

Red arrows for wrong segments, orange arrows for suspicious segments, yellow dots for bifurcation points, and a blue triangle for the reconstruction

direction.

see whether reconstruction grows out to the two other segments

(Figure 5F). If so, the segment is considered correct; if not, we

believe it can be attributed to the “crossing” that this segment

belongs to and hence this segment is pruned away. Figures 5G, H

show examples pruned X and H structures.

Note that when the models have even more missing segments,

there will be no bifurcation points left, and the segments become

single segments. Therefore, single segments need to be checked if

they are degenerated cases of YTXH structures. “Inflection” points

are identified and pseudo-X structures are pruned as described in

Supplementary material, Section 4.

3. Data set and results

3.1. Data set

This study was based on three-dimensional images of single

neurons acquired from 28 mouse brains with two-photon

fluorescence imaging system fMOST (Gong et al., 2016). In this

fMOST dataset, the whole-brain image at the second-highest

resolution level (with pixel resolution around 0.6 µm × 0.6 µm ×

1 µm in the x-y-z axes) was cropped into image blocks of fixed

size (512 px × 512 px × 256 px in the x, y, and z dimensions),

each covering the dendritic region of a neuron with the cell

body (soma) in the block center. We obtained gold-standard

manual annotations from SEU-Allen Joint Center and identified

the corresponding dendrite reconstruction results in the cropped

images. Six hundred of them were randomly selected as the

training data set for the statistical analysis throughout this

work. Another 1,000 neurons constituted the testing data set,

independent of the training data set. SNAP can be applied to

reconstruction results from many different algorithms, e.g., ENT,

ST, MST, etc. In our experiments here, the original automated

neuron reconstruction results were obtained using the Vaa3D-

APP2 platform with adaptive intensity threshold and default

parameters for the algorithm. We opted for APP2 since it produces

high-quality results on the data set we used.

3.2. Qualitative evaluation

SNAP was applied to the reconstruction results for the

1,000 images in fMOST testing data set. The pruning results

were satisfactory. Visual examples are shown in Figure 6.
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FIGURE 6

Example SNAP results on fMOST data set. The columns from left to right are as follows: MIP of original image block; overlaid with APP2 results shown

in red; overlaid with SNAP results shown in green; overlaid with BP shown in yellow; overlaid with GT shown in magenta. Red arrows point to

locations of pruned segments. Examples show pruning results of (A) noisy segments (with inset of zoom-in region in light blue boundary boxes);

(B–F) entanglements with close-by dendrites; (G) local entanglement; and (H) passing fiber entanglement.

The pruning of C1 performed effectively, as exemplified by

Figure 6A, which includes zoom-in inset regions highlighting

the removal of noisy segments. Multiple-neuron entanglements

C2 were successfully resolved as in Figures 6B–F, where the

reconstruction for single target neurons is separated out from

the entangled multi-neuron reconstructions. The pruning of

C3 & C4 entanglement segments was also effective as in

Figures 6G, H, where local and passing fiber entanglements were

pruned away.

In order to test SNAP’s capability to automatically prune

reconstruction obtained by a variety of algorithms from images

other than the fMOST dataset above, we checked into BigNeuron

(Manubens-Gil et al., 2023), which contains various neuron images

with benchmarking reconstruction. SNAP with default parameters

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2023.1174049
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Ding et al. 10.3389/fninf.2023.1174049

FIGURE 7

Example SNAP results on BigNeuron data set. The columns from left to right are as follows: MIP of original image block; overlaid with APP2 results

shown in red; overlaid with SNAP results shown in green; overlaid with GT shown in magenta. (A–C) and (D–F) are two sets of examples, where (A,

D) are full image; (B, C) are zoomed-in regions as in the light-blue and orange bounding boxes overlaid on (A), displaying pruning of wrong crossings

within the same neuron; (E, F) are zoomed-in regions as in the yellow and green bounding boxes overlaid on (B) (with slightly di�erent viewing

angle), displaying pruning of entanglements with passing fibers.

was applied to the high-rank automated reconstructions of mouse

neuron images. Two examples are shown in Figure 7. In the first

example as in Figure 7A, the input automated reconstruction was

obtained with 3D Tubular Models (Santamaría-Pang et al., 2015),

and pruning of wrong crossings within the same neuron was

successful (see the zoom-in regions in Figures 7B, C). In the second

example, as in Figure 7D, the input automated reconstruction result

was obtained with NeuroGPS-Tree and pruning of entanglements

with passing fibers was effective (see the zoom-in regions in

Figures 7E, F).

3.3. Quantitative performance evaluation

To demonstrate the performance of SNAP, we provide a

quantitative evaluation. As gold-standard manual annotation

results were available, we could compare the output to this “ground

truth” (GT) to determine the accuracy. However, since we start with

the automated reconstruction results, and the algorithm prunes but

does not add any missing segments, a direct comparison is not an

appropriate choice. Hence, the “best possible pruned” result (BP)

is calculated by removing all the segments from APP2 results that

are not present in the GT based on their distance to GT segments

(see Supplementary material, Section 5 for the BP calculation). As

BP keeps some short segments due to noise that are very close

to ground truth segments, we evaluate step 1 separately and then

evaluate steps 2 and 3 (without the involvement of the short

segments in step 1).

In the first experiment, the performance of step 1 (pruning C1

segments) was checked. One hundred dendrites were randomly

chosen from the testing data. The original reconstruction and

pruned results were presented to human annotators, who were

asked to label the correctly pruned segments and also the wrongly

pruned ones. The results showed that out of the 48, 793 segments,
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FIGURE 8

Performance comparison. (A–E) Visual examples. From left to right: the original image (displayed as MIP, same for the other sub-figures) overlaid

with input APP2 results (red), SNAP (green), G-Cut (blue), TREES Toolbox (orange), NeuroGPS-Tree (purple), and BP results (yellow). The arrows point

to locations of some di�erences between the algorithms: yellow arrows for correct removal, red arrows for unsuccessful removal, orange arrows for

over-pruning, and blue arrows for under-pruning. (F) The four quantitative metrics based on segments for the four algorithms are shown with box

plots. (G) Length-based metrics. In (F, G), “N-GPS-T” is used as the abbreviation for “NeuroGPS Tree.”
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TABLE 1 Tables of performance comparison results for SNAP and G-Cut.

Segment-based

Metric SNAP is
better (%)

SNAP =
G-Cut (%)

G-Cut is
better (%)

Precision 33 19 48

Sensitivity 60 2 39

F1-score 55 1 44

MES 47 11 42

Length-based

Metric SNAP is
better (%)

SNAP =
G-Cut (%)

G-Cut is
better (%)

Precision 38 8 54

Sensitivity 61 1 38

F1-score 54 0 46

MES 45 11 45

Both segment-based metrics (top) and length-based metrics (bottom) are presented. The bold

numbers indicate the superior algorithm in the comparison.

NS1
total

= 10, 400 segments were pruned away, of which NS1
TP =

10, 233 were true noisy segments, and NS1
FP = 165 were correct

segments that were mistakenly removed. In the analog to a

detection problem (where a true positive corresponds to correctly

pruned segments), SNAP step 1 was quantitatively evaluated as

follows.

Precision of step 1: PPVS1 =
NS1
TP

NS1
TP + NS1

FP

= 98.4%.

False discovery rate of step 1: FDRS1 =
NS1
FP

NS1
TP + NS1

FP

= 1.6%.

Note that we did not ask annotators to determine false

negatives, owing to the heavy manual labor cost of this task. Hence,

no sensitivity or miss rate is given here. However, such segments

would go through later steps and possibly be included in the

evaluation of steps 2 and 3.

Having validated step 1, we used the current pruned results to

calculate the BP results. Examples of the BP results and also the GT

are shown in Figure 6. BP was not identical to GT, since BP results

are the biggest matching subset of APP2 results. Note that although

there has been research involving further post-processing to rescue

missing segments, this is beyond the scope of this paper.

In the second experiment, steps 2 and 3 were evaluated

together. The SNAP results are compared with the “ground truth”

given by BP. For the 1,000 neurons in the testing data set, there were

NS23
total

= 398, 846 segments, and NS23
P = 248, 378 segments were

removed, of which NS23
TP = 238, 537 were true wrong segments and

NS23
FP = 9, 841 were mistakenly removed correct segments. There

were also NS23
FN = 58, 132 segments that should have been pruned

but were not. In the analog to a detection problem, SNAP steps 2

and 3 were quantitatively evaluated as follows.

Precision of steps 2 and 3: PPVS23 =
NS23
TP

NS23
TP + NS23

FP

= 96.0%.

Sensitivity of steps 2 and 3: TPRS23 =
NS23
TP

NS23
TP + NS23

FN

= 80.4%.

To reflect the differences in length among segments, we further

evaluated SNAP steps 2 and 3 using segment length. Altogether,

LS23
total

= 36273284.5 pixels; we removed LS23P = 22429289.5

pixels, where LS23TP = 1262893.0 pixels were true positives, LS23FP =

1166393.8 pixels were false positives, and LS23FN = 4393361.0 pixels

were false negatives. The evaluation above could be re-done as

PPVS23
L = 94.8% and TPRS23L = 82.9%.

3.4. Comparisons with other approaches

To fully evaluate the proposed algorithm, we compared the

performance of SNAP with that of other approaches. G-Cut (Li

R. et al., 2019), NeuroGPS-Tree (Quan et al., 2016), and TREES

toolbox (Cuntz et al., 2010) are post-processing algorithms that

can deal with the dissembling of multiple neuron entanglement by

“separating” the neuron reconstruction results. From a single-cell

perspective, these methods also prune away wrong segments that

do not belong to the cell of interest. Hence we evaluate the pruning

performance of these software tools and compare them. To ensure

a fair comparison of pruning performance, we would like to rule

out effects from different automated reconstruction methods. So

the same input reconstruction should be provided to them. Here

APP2 reconstruction results were used as the base reconstruction

results for all of these tools.

Of the 1,000 testing neurons, 598 involved multiple-neuron

involved. The four tools were applied to all these samples with

given soma locations and used to quantitatively evaluate each

result for the neuron of interest. Specifically, when there were

several dendrites close to the neuron of interest, the result

was the separated and processed reconstruction of this neuron,

disregarding the results for other neurons; this evaluation was

done for 454 neurons (samples not included are: ones with

multiple neuron, but APP2 results don’t involve entanglements

with multiple neurons; ones with no pruning happened thus

precision is not defined). Three commonly used metrics, precision,

sensitivity, and F1-score, were calculated for each neuron. For this

specific separation problem, we adopted Miss-Extra-Score (MES;

Xie et al., 2011) as used in the evaluation of G-Cut (Li R. et al.,

2019), as MES provides a global view for neuron reconstruction

based on accuracy and undesired components. MES was originally

defined as (SG−Smiss)
(SG+Sextra)

, where SG is the total length of all segments in

the GT trace, and Smiss and Sextra are the total lengths of missing

and extra segments in the automated trace, respectively (compared

with the GT). In our pruning setting, MES was reformulated as

MES = (TN+FP)−FP
(TN+FP)+FN

. Both segment-based and length-basedmetrics

are presented.

Figures 8A–E show several visual examples of results. All four

algorithms performed reasonably well in separating the target

neuron from entangled reconstructions. Some detailed differences

are: (1) SNAP and NeuroGPS-Tree are both capable of removing

entanglement segments of close-by neurons even when their soma

locations are not within the image region. G-Cut and TREES

Toolbox rely on the clear definition of all nearby soma locations(as

in Figures 8B, C with yellow arrows pointing to the correct removal
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FIGURE 9

A multiple neurons separating and pruning example. MIPs are displayed and overlaid with reconstruction. Di�erent neurons are shown in di�erent

colors that are consistent across the results of all algorithms and manual annotation. (A) APP2 results as input. (B) SNAP results. (C) G-Cut results. (D)

NeuroGPS-Tree results. (E) TREES Toolbox results. (F) Best Possible results of the two neurons with manual annotation. The red arrows point to

locations with entanglements between neurons which some algorithms can remove and some cannot. Orange arrows point to locations of

over-pruning.

of these segments in SNAP and NeuroGPS-Tree and red arrows

pointing to unsuccessful removal in G-Cut and TREES Toolbox).

(2) Similar to (1), SNAP and NeuroGPS-Tree could be on the strict

side in pruning(see in Figures 8C–E with orange arrows pointing

to over-pruning). (3) In some cases, SNAP, G-cut, and TREES

Toolbox have difficulty removing segments in conjunction region

of two neurons (see in Figure 8D with blue arrows pointing to

under-pruning).

Figures 8F, G show box plots of precision, sensitivity, F1-score,

and MES for SNAP, G-Cut, NeuroGPS-Tree and TREES Toolbox.

We can see G-Cut has best precision, and SNAP has the best

sensitivity, F1-score, and MES scores. Since SNAP and G-Cut

perform relatively comparable, we further counted how often SNAP

or G-Cut algorithms performed better than the other for each

neuron, and how often they performed equally well, based on these

four metrics (Table 1). Overall, SNAP had relatively lower precision

but better sensitivity, F1-score, and MES; hence, in general, SNAP

outperformed the rest of the algorithms.

With the ability of separating target neuron from entangled

reconstruction, SNAP natural achieved multiple neuron separation

functionality in dense and entangled neuron reconstruction

problems by pruning w.r.t. each of the neuron. One example

was shown for its multiple neuron separation performance and

compare it with that of G-Cut, NeuroGPS-Tree, and TREES

toolbox. An image block with nine neurons (mostly dendrite

portions) was reconstructed with APP2. As shown in Figure 9, all

nine neurons were entangled as one reconstruction.We applied the

four algorithms in separating the nine neurons with soma locations

given. Figures 9B–E show the SNAP results, the G-Cut results, the

NeuroGPS-Tree results, and the TREES Toolbox. We can see that

all algorithms could separate the neurons reasonably well. There

are some differences within these results, and similar to examples in

Figure 8 there are some over pruning and under pruning involved

along the separation. Figure 9F provides the Best Possible pruned

results from APP2 results with manual annotation of the two

neurons visible in this field of view (the rest of the neurons don’t

have manual annotations). From the visual comparison, we can

see SNAP achieved good separation and pruning for this group

of neurons.

4. Software availability

This study was conducted with the support of the Vaa3D

platform (v.3.601). The released binary and the source code

for the Vaa3D platform are available through the GitHub

release page of vaa3d.org (https://github.com/Vaa3D). The

software implementation of the method presented here

was developed in C++ and built as a plugin in the Vaa3D

framework (Peng et al., 2014) with Qt-4.7.2 installed. SNAP
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implementation was tested using both CentOS and Windows

operating systems. It is available for download at https://git

hub.com/Vaa3D/vaa3d_tools/tree/master/hackathon/XuanZhao/S

NAP. Guidance for use of the plugin is included in the

README.txt file.

5. Conclusion and discussion

In this paper, we present SNAP, a structure-based neuron

morphology reconstruction automated pruning pipeline.

It incorporates statistical analysis and structure modeling

into rules for removing erroneous extra segments, thereby

improving neuron reconstruction workflow throughput.

Experimental results, especially for quantitative evaluation

with high precision and recall, demonstrate the effectiveness

of SNAP. SNAP also achieved neuron separation in entangled

neuron problems.

Note that the methods in SNAP depend on statistical

priors and use empirical values as thresholds. Here, it is

important to point out that the prior knowledge drawn from

careful study of gold-standard manual annotation data is on

the different types of errors and structural models, which are

independent of the choice of the automated reconstruction

algorithm. SNAP can be applied to the results of any automated

reconstruction algorithm.

As SNAP reduces the number of wrong segments, manual

curation can be speeded up. The results obtained with SNAP could

serve as an improved basis for further post-processing algorithms,

e.g., repair algorithms to make up the missing branches. SNAP

could also be applied to manual annotation as a QC tool to identify

segments that are possibly wrong. Hence, it is a powerful tool

facilitating high-through neuron morphology reconstruction.
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