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Absence seizures—generalized rhythmic spike-and-wave discharges (SWDs) are

the defining property of childhood (CAE) and juvenile (JAE) absence epilepsies.

Such seizures are the most compelling examples of pathological neuronal

hypersynchrony. All the absence detection algorithms proposed so far have been

derived from the properties of individual SWDs. In this work, we investigate EEG

phase synchronization in patients with CAE/JAE and healthy subjects to explore

the possibility of using the wavelet phase synchronization index to detect seizures

and quantify their disorganization (fragmentation). The overlap of the ictal and

interictal probability density functions was high enough to preclude e�ective

seizure detection based solely on changes in EEG synchronization. We used a

machine learning classifier with the phase synchronization index (calculated for

1 s data segments with 0.5 s overlap) and the normalized amplitude as features

to detect generalized SWDs. Using 19 channels (10-20 setup), we identified

99.2% of absences. However, the overlap of the segments classified as ictal with

seizures was only 83%. The analysis showed that seizures were disorganized

in approximately half of the 65 subjects. On average, generalized SWDs lasted

about 80% of the duration of abnormal EEG activity. The disruption of the ictal

rhythm can manifest itself as the disappearance of epileptic spikes (with high-

amplitude delta waves persisting), transient cessation of epileptic discharges, or

loss of global synchronization. The detector can analyze a real-time data stream.

Its performance is good for a six-channel setup (Fp1, Fp2, F7, F8, O1, O2), which

can be implemented as an unobtrusive EEG headband. False detections are rare

for controls and young adults (0.03% and 0.02%, respectively). In patients, they

are more frequent (0.5%), but in approximately 82% cases, classification errors

are caused by short epileptiform discharges. Most importantly, the proposed

detector can be applied to parts of EEGwith abnormal EEG activity to quantitatively

determine seizure fragmentation. This property is important because a previous

study reported that the probability of disorganized discharges is eight times

higher in JAE than in CAE. Future research must establish whether seizure

properties (frequency, length, fragmentation, etc.) and clinical characteristics can

help distinguish CAE and JAE.
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1. Introduction

Idiopathic generalized epilepsies (IGEs) are a subgroup

of genetic generalized epilepsies (GGEs), composed of four

syndromes: childhood absence epilepsy (CAE), juvenile absence

epilepsy (JAE), juvenile myoclonic epilepsy (JME), and epilepsy

with generalized tonic-clonic seizures alone (GTCA) (Hirsch et al.,

2022). Absence seizures—generalized rhythmic (2.5–5.5 Hz) spike-

and-wave discharges are the defining property of CAE and JAE.

They can also be observed in about 33% of patients with JME.

CAE starts in otherwise normal children between 4 and 10 years

of age and is more common in girls (60 to 75% of cases). It accounts

for approximately 18% of epilepsy in school-aged children. Typical

absence seizures begin suddenly and, in most children, lead to a

deep loss of awareness and interruption of previously conducted

activity. Seizures can be accompanied by staring, loss of facial

expression, oral/manual automatism, blinking, or eye opening.

Return to regular activity seems immediate, although children may

initially be confused as they reorient themselves. The duration of

seizures, which can occur multiple times a day, typically varies

between 3 and 20 s, with a median of 10 s. CAE relapses in early

adolescence in 60% of patients. In the rest, the disease can evolve

into other IGE syndromes.

JAE is less common than CAE, accounting for 2.4–3.1% of

new-onset epilepsy in children and adolescents, with a nearly

equal distribution between men and women. However, it may be

underdiagnosed as absences are less frequent (less than daily) and

more subtle (less complete impairment of awareness). The age of

onset is 12 ± 3 years (Asadi-Pooya et al., 2013). The ictal EEG

is similar in CAE and JAE. However, disorganized (fragmented)

discharges, defined as brief (<1 s) and transient interruptions in

the ictal rhythm, are eight times more frequent in JAE (Sadleir

et al., 2009). In most patients with JAE, lifelong seizure control

pharmacotherapy is required.

The diagnosis of IGE requires the analysis of long video EEGs

(on average about 30 min long) to detect seizures, their clinical

manifestations (consciousness impairment, motor symptoms) and

abnormal features in the interictal EEG. The 2010 Childhood

Absence Epilepsy Study (Glauser et al., 2013) showed that after 1

year, the initial seizure-control pharmacotherapy was effective only

in 37% of patients with CAE and JAE. Therefore, follow-up EEG

recordings are necessary to ensure treatment efficacy and minimize

potential side effects. It should be noted that parents notice only a

small fraction (approximately 6%) of absences (Keilson et al., 1987),

the estimate corroborated by a more recent study (Akman et al.,

2009).

Low-cost portable EEG devices connected to the Internet

(Krigolson et al., 2017) can be instrumental in personalizing

pediatric epilepsy management. Children and adolescents may be

more willing to tolerate regular EEGmeasurements if incorporated

into daily routines, such as watching cartoons, playing mobile

games, or listening to music. The potential benefits of remote long-

termEEGmonitoring include facilitation of diagnosis, personalized

drug titration, and determining the duration of pharmacotherapy.

Consequently, there is a strong demand for fast and accurate

computer seizure detection that can be used on devices with

as few EEG channels as possible. Global synchronization is the

most conspicuous property of EEG dynamics during absence

seizure. However, all the absence detection algorithms proposed

so far (Adeli et al., 2003; Subasi, 2007; Sitnikova et al., 2009;

Ovchinnikov et al., 2010; Xanthopoulos et al., 2010; Petersen et al.,

2011; Duun-Henriksen et al., 2012; Bauquier et al., 2015; Zeng

et al., 2016; Grubov et al., 2017; Kjaer et al., 2017; Tenneti and

Vaidyanathan, 2018; Dan et al., 2020; Glaba et al., 2021; Japaridze

et al., 2022) exploit only the properties of SWD complexes. In

this work, we investigate EEG phase synchronization in patients

with CAE/JAE and healthy subjects to explore the possibility

of using the phase synchronization index to detect seizures and

characterize their disorganization. The qualitative assessment of

absence fragmentation could be used to discriminate between CAE

and JAE, an important clinical problem.

2. Materials and methods

2.1. EEG recordings

The data set used in our previous study (Glaba et al., 2021) was

slightly modified and expanded by routine EEG of healthy young

adults (12 women and 7 men, mean age 22 years, range 20–24

years). For these adults, the EEG was recorded for 8 min, the first

half in closed eyes and the second in open eyes condition. The

recordings were made with Elmiko Digitrack (BRAINTRONICS

B.V. ISO-1032CE amplifier, 250Hz sampling frequency, impedance

below 5k�). The ethics committee of the Warsaw Institute of

Psychiatry and Neurology approved the reanalysis of the data.

Subjects gave their informed consent.

The ethics committee ofWroclawMedical University approved

a retrospective analysis of routine anonymized video EEG

recordings of patients (36 with CAE and 29 with JAE) as well as

30 EEGs of controls of the same age (Glaba et al., 2021). Epilepsy

syndrome was established based on age of onset, the properties of

the first video-EEG, and neuroimaging. Consequently, diagnosis

should be considered as preliminary. EEGs were acquired with

Elmiko Digitrack (BRAINTRONICS B.V. ISO-1032CE amplifier)

or Grass Comet Plus EEG (AS40-PLUS amplifier) using a sampling

frequency of 200 or 250 Hz. The international 10-20 standard was

used to arrange 19 Ag/AgCl electrodes (impedance below 5k�).

The total duration of the EEG was equal to 37 and 9 h for the

patients and controls, respectively.

All EEGs were acquired with the reference electrode mounted

on the subject’s forehead.

We used two filters for EEG preprocessing: a second-

order infinite impulse response (IIR) and a 6th-order high-pass

Butterworth with a cutoff frequency of 0.5 Hz. These filters remove

50-Hz power line noise and EEG baseline drift, respectively.

2.2. Synchronization matrix

We quantify the EEG synchronization using a matrix made

up of pairwise frequency-dependent synchronization coefficients

γ (k, l) calculated for EEG channels k and l (k, l = 1..19). γ (k, l)

can be defined with the help of the complex continuous wavelet
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transform (CWT) (Lachaux et al., 1999):

T[s](a, t0) =
1√
a

∫ +∞

−∞
s(t)ψ∗

(

t − t0

a

)

dt (1)

which is the convolution of the signal s(t) with waveletsψ(a, t0).

Such wavelets are generated from the mother function ψ by

translation and scaling: ψ(a, t0) = ψ(t − t0/a) (Mallat, 1999).

Motivated by the results of the previous study (Glaba et al., 2021),

we used the complex Morlet wavelet (Addison, 2017, 2018):

ψ(t) = 1

π1/4
e2π ifcte−t2/2 (2)

whose Fourier transform ψ̂(f ) is given by

ψ̂(f ) =
√
2 4
√
πe−2π2(f−fc)2 . (3)

The real parameter fc is called the center frequency, since it

equals themaximumpoint of the wavelet’s Fourier power spectrum.

The scale a corresponds to the following pseudo-frequency:

fa =
fc

a
. (4)

The instantaneous phase of a signal s can be defined as

φ(t0, fa) = −i log

[

T[s](a, t0)

|T[s](a, t0)|

]

, (5)

where i is an imaginary number. The distribution P[1φ(k, l)] of

the phase difference1φ(k, l) = φk − φl can be used to characterize

the synchronization between two EEG channels. A uniform

distribution corresponds to the absence of synchronization

(two signals are statistically independent). In contrast, a well-

pronounced peak in the distribution is a manifestation of phase

locking, which means that one time series tracks the dynamics of

the other. The stability of the phase difference1φ is quantified with

the index γ (k, l) (Quiroga et al., 2002; Latka et al., 2005)

γ (k, l) = 〈sin1φ(k, l)〉2 + 〈cos1φ(k, l)〉2. (6)

The angle brackets in the above equation denote the temporal

average of the phase-difference fluctuations. The synchronization

index can have values between 0 and 1, and in the case of

human EEG, it is frequency dependent. When the distribution

of phase differences is uniform, the time averages of both

trigonometric functions in Equation (6) are zero which in

turn makes the synchronization index equal to zero. From the

trigonometric identity, it follows that γ = 1 corresponds to perfect

synchronization (phase locking of two EEG channels).

The average synchronization index γ is the average value of the

non-diagonal elements of the synchronization matrix:

γ =
∑

k∈SN

∑

l∈SN ,k>l
γ (k, l), (7)

where SN denotes subsets of 10-20 channels. We calculate γ for

all 19 channels (N = 19) and for three subsets (N < 19):

• S4 (Fp1, Fp2, T5, T6)

• S6 (Fp1, Fp2, F7, F8, O1, O2)

• S12 (Fp1, Fp2, F7, F8, F3, F4, P3, P4, T5, T6, O1, O2).

The electrode arrangement in the above subsets is similar,

but not always identical, to the low-cost EEG headsets currently

available on the market (Pu et al., 2021). The applicability of such

headsets to home monitoring of pediatric patients was the main

reason for testing different SN .

The channel synchronization index is defined as follows:

γ (k) =
∑

k,l∈SN ,k>l
γ (k, l). (8)

We calculate phase synchronization for 1-s intervals using

a half-second overlap. We use the overlap to simulate live data

stream analysis. For patients, there were 7,270 ictal and 266,653

interictal data segments. 1,540 windows partially overlapped

absence seizures. The partitioning of the controls’ EEG yielded

58,460 segments. For students, we obtained the 9,064 and 9,121

intervals for closed and open eyes, respectively.

The value of the synchronization index γ depends on the center

frequency of the Morlet wavelet fc and the pseudofrequency fa. We

use a grid search to determine optimal values for absence detection.

In particular, we search for fc and fa that maximize the difference

between ictal and interictal synchronization.

Wewould like to emphasize that the synchronization properties

depend on the choice of reference electrode (Dominguez et al.,

2005).

In this work, we used short EEG data segments. Consequently,

when calculating the CWTwith the help of a fast Fourier transform,

boundary effects must be considered.

2.3. Absence seizure classifier

Prominent SWD and global EEG synchronization are

hallmarks of absence seizures (Figure 1). Therefore, we decided to

detect seizures using the normalized amplitude of the EEG A
(n)
m

and the synchronization index γm as machine learning features.

The former is defined as

A(n)
m = Am

Aref
, (9)

where Am is the average absolute value of the EEG signal

in segment m (we average across all channels). Aref is the mean

absolute value calculated for the 30 s segment taken from the

interictal beginning of the EEG recording. Normalization by Aref

was necessary because the amplitude of EEG in children can

decrease significantly with age and depends on the impedance of

the electrodes.

We use the k-nearest neighbor (k-NN) classifier implemented

in Matlab R2022a (MATLAB, 2022) Machine Learning Toolbox

for absence detection. We accept the default values of the

model parameters (10 neighbors, the Euclidean distance, data

point scaling, and no weighting function). We employ leave-one-

out cross-validation (LOOCV)—the number of folds equals the

number of patients (65). For each patient, k-NN is built using the

features extracted from the other 64 patients and applied to their
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FIGURE 1

(A) Archetype of high-amplitude, continuous generalized spike and wave discharges with prominent epileptic spikes. The absence seizure in (B) is

briefly interrupted two times. Panels (C, D) show the EEG from Cz channel (top panel) as well as the corresponding time series of the wavelet power

(middle panel) and the global synchronization index (bottom panel). The wavelet power and synchronization index were calculated using fc = 1 Hz

and fa = 12 Hz. These case studies demonstrate that global synchronization decreases when epileptic activity subsides.

segmented EEG (1 s windows with 0.5 s overlap). We prepare the

training set as follows. We select only those ictal windows whose

mean γ is greater than a threshold determined from the interictal

synchronization distribution. In particular, for this threshold, 95%

of interictal segments have a smaller mean γ . We disregard all data

windows that partially overlap absence seizures. The sets of ictal

and interictal segments are highly unbalanced (7,270 vs. 266,653).

Therefore, we randomly select only a small fraction of the interictal

segments for the training set. We use the 1:3 ratio of the ictal and

interictal windows.

We evaluated the performance of the detector in the same way

as in our previous article (Glaba et al., 2021) using the relative

overlap (OVR) of segments classified as ictal with absence seizures

and relative duration of false positives (PERR). During the PERR

computation, we apply the logical OR function to determine the

status of the common part of two consecutive EEG data segments.

In other words, the common part is ictal if any segment is ictal. We

also report the number of false positives (FP) and the number of

different trains of misclassified segments (MT).

Supplementary Figure 1 elucidates the relationship between

the number of erroneously classified EEG segments and PERR.

For overlapping segments, this relationship can sometimes be

counterintuitive.

Short (<2 s) epileptiform discharges, quite common in patients

with CAE/JAE, usually do not produce clinical manifestations

(Szaflarski et al., 2010). Therefore, we also tested the possibility

of reducing the number of false positives by post-processing

the k-NN classification results. In particular, we labeled any

isolated ictal segment as non-ictal. In other words, the shortest

possible ictal interval can have a length of 1.5 s (two consecutive

segments).

2.4. Seizure fragmentation

We apply the absence detector described in Section

2.3 (with the post-processing turned off) to the parts of

the EEG marked by neurologists as abnormal activity.

Then, we calculate the percentage overlap of the segments

classified as ictal with the analyzed fragment. As before, the

common part of the adjacent segments is considered ictal if

at least one of the segments is ictal. Seizure fragmentation
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is defined as

SFRAG = 100%− OVR. (10)

3. Results

3.1. Synchronization

When calculating γ , we used fc = 1 Hz and fa = 12

Hz. For these values, the percentage difference between ictal and

interictal synchronization was highest (168%). In the same vein, we

determined these parameters for each patient. The median values

were similar: fc = 0.8 Hz and fa = 13 Hz. Supplementary Figures 2,

3 elucidate the determination of the wavelet parameters.

Figure 1A shows an archetypal absence seizure with continuous

high-amplitude generalized SWDs. In contrast, the seizure in

Figure 1B was briefly interrupted twice. For both absences, for the

chosen fc and fa, the power |T|2 peaks at the location of epileptic

spikes (Figures 1C, D). It is apparent that wavelet power and

global synchronization are low when epileptic activity subsides. In

Figure 2, we compare the ictal synchronization matrices calculated

for the EEG segments presented in Figures 1A, B.

Figures 3A, B show that γ increases at the beginning and on

average gradually subsides towards the end of the seizure. For the

eight types of data segments (labeled from 0 to 7) presented in these

figures, the average γ was equal to 0.28± 0.09, 0.46± 0.17, 0.62±
0.19, 0.79±0.18, 0.75±0.19, 0.58±0.19, 0.44±0.16, 0.36±0.12. γ

in ictal segments (1 to 7) was significantly higher than the interictal

baseline 0.28± 0.09 (p < 0.0001 for the Mann–Whitney test).

The probability density function (PDF) of γ for the interictal

and ictal segments strongly overlaps. In Figure 3C, PDF was

calculated using global synchronization for the 19 channels (S19)

while Figure 3D shows PDF for the four-channel subset S4 (Fp1,

Fp2, T5, T6). The cut-off value for which 95% of the interictal

segments had smaller synchronization was equal to 0.49, 0.65, 0.45,

and 0.48 for S19, S12, S6, and S4, respectively.

3.2. Seizure detection

We detected absences with the k-NN classifier using

synchronization and normalized amplitude as features.

Supplementary Table 1 shows that the accuracy of other classifiers,

such as neural networks or decision trees, is comparable. In actual

implementations, these classifiers would be preferable because they

do not require the attachment of training samples (feature vectors

with the corresponding labels). We chose k-NN because of its short

training time, which speeds up cross-validation.

Figure 4 elucidates the building of a seizure detector for patient

P1, who had six absences with a mean duration of 10.5 s. One

of the absences of P1 is presented in Figure 1A. The training set

was created using data from the other 64 patients using the 19

channels (S19) or the four-channel subset S4. The scatter plots

in Figures 4A, C show the spread of the synchronization and the

normalized amplitude for S19 and S4, respectively. Patient P1’s EEG

was partitioned into 3,598 windows. 108 were fully embedded in

the seizures, while 24 partially overlapped them. Please note that for

testing purposes, we consider any data segment that even partially

overlaps a seizure as ictal. Of the 132 ictal windows, 14 (FN =

10.6%) and 17 (FN = 12.9%) were misclassified for S19 and S4,

respectively. For both subsets, all 3,464 interictal segments were

correctly labeled.

Supplementary Figure 4 shows the construction of a seizure

detector for patient P18. One of his absences is presented in

Figure 1B.

The overlap OVR was the largest for S19 (82.90 ± 20.83%) and

the smallest for S4 (69.31 ± 25.09%) (Table 1). For S19, PERR was

equal to 0.87 ± 1.23%, 0.12 ± 0.26%, 0.07 ± 0.14% for patients,

controls, and young adults, respectively. The corresponding values

for S4 were 0.68± 1.32%, 0.03± 0.07%, and 0.02± 0.06%.

The false detection rate of the patients was five times higher

than that of controls (0.5 vs. 0.1%) for S19 setup (Table 1). For

smaller subsets, the detector performance was markedly better.

For S6, the false detection rate was equal to 0.5, 0.03, and 0.04%

for patients, controls, and young adults, respectively. Comparison

of the number of distinct trains of misclassified segments with

the number of false positives reveals that parts of the EEG

marked incorrectly as ictal are, on average, shorter than 2 s. We

found by visual inspection that about 82% of the false positives

were caused by short epileptiform discharges, which are quite

common in epilepsy patients and rare in controls and young

adults. The EEG artifacts comprise the rest: 7% were caused

by spike-like high-amplitude artifacts and 7% by artifacts of

more complicated morphology. The seizure detection performance

for each patient is presented in Supplementary Table 2. The

post-processing cuts approximately in half the number of FP

(Table 1).

For two patients, P1 and P18, we built the detector for different

combinations of wavelet parameters fc and fa. OVR, PERR, and FP

for these calculations are presented in Supplementary Tables 3, 4.

The results show that the detector performance is weakly affected

by small changes in the wavelet parameters. For example, for P1,

the grid search yielded fc = 0.8 Hz and fa = 10 Hz. For these values

OVR = 99.17%, PERR = 0.30%, and FP = 1. For the standard

parameters fc = 1.0 Hz and fa = 12 Hz (used for all subjects),

we obtained OVR = 99.15%, PERR = 0.22%, and FP = 0. For

P1, for 10 runs, we obtained the following average values: OVR =
99.16± 0.00%, PERR = 0.22± 0.01, and FP = 1± 0. For P18, the

corresponding values were equal to 98.38± 0.15%, 1.25± 0.02, and

FP = 33± 1.

Supplementary Table 5 shows the group average characteristics

of seizure detection for different combinations of wavelet

parameters. There are a number of combinations (e.g., fa = 11

Hz and fc = 1 Hz or fa = 14 Hz and fc = 1.4 Hz) for which

the detection performance is comparable (the trade-off between

the overlap and the number of false positives) with fa = 12

Hz and fc = 1 Hz used in this study. We chose the latter

parameters because they have a clear physical interpretation (the

difference between interictal and ictal synchronization is highest)

and the number of false positives for the controls is acceptable

(Supplementary Table 6).
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FIGURE 2

Synchronization matrices for the regular (A) and disorganized (B) seizure. These seizures are shown in Figure 1.

3.3. Seizure fragmentation

In Figure 5, we compare the EEG dynamics with the classifier

output (detection function). SWDs do not emerge simultaneously

from the background EEG in all channels. At the end of the

seizure, ictal activity gradually subsides: epileptic spikes disappear,

the amplitude of the EEG decreases, and global synchronization is

lost. However, the initial and final transients were very short (< 0.5

s), and consequently, the first and last segments were classified as

ictal. Two segments during which the ictal rhythm was interrupted

were correctly identified. For the absence seizure presented, SFRAG

was equal to 6.4%. Two EEG intervals in Figure 5 were marked

blue to draw attention to the limitations of fragmentation analysis.

First, seizure disorganizations shorter than 0.5 s are, in most cases,

undetected. Second, the duration of the disorganization can be

underestimated because of the size of the data window used to

calculate the synchronization.

We analyzed all EEG segments classified as noictal that were

fully embedded in seizures to find that in approximately 98% of

these segments, seizure activity was disorganized or SWDs were

simply absent. The other 2% contained artifacts.

For S19 set-up, the group-averaged SFRAG was equal to 20 ±
24%. For 46 patients (71%), the average fragmentation of seizures

was less than 25% (Figure 6A). Of the 385 absences, 280 (73%)

had SFRAG smaller than 25% (Figure 6B). Disorganization did not

occur in 120 cases. For such seizures, SFRAG < 5%.

SFRAG was equal to 18± 24%, 24± 26%, and 30± 29% for S12,

S6, and S4, respectively.

4. Discussion

An epileptic seizure is “a transient occurrence of signs and/or

symptoms due to abnormal excessive or synchronous neuronal

activity in the brain” (Fisher et al., 2005). Childhood and

juvenile absences are the most compelling examples of pathological

neuronal synchrony. Interestingly enough, all the absence detection

algorithms proposed so far (Adeli et al., 2003; Subasi, 2007;

Sitnikova et al., 2009; Ovchinnikov et al., 2010; Xanthopoulos et al.,

2010; Petersen et al., 2011; Duun-Henriksen et al., 2012; Bauquier

et al., 2015; Zeng et al., 2016; Grubov et al., 2017; Kjaer et al.,

2017; Tenneti and Vaidyanathan, 2018; Dan et al., 2020; Glaba

et al., 2021; Japaridze et al., 2022) have been derived from the

properties of individual SWD complexes. Figures 3C, D provide

an explanation, the overlap of the ictal and interictal probability

density functions is so large that it precludes seizure detection based

solely on changes in EEG synchronization. This conclusion agrees

with previous studies on epileptic synchronization (Altenburg et al.,

2003; Slooter et al., 2006).

This paper used the phase-synchronization index and the

normalized amplitude as classification features. False detections

are rare in controls and young adults. Although the PERR for the

patients (0.55% for S6) was even lower than that of the detector

we had presented earlier (Glaba et al., 2021), the false detection

rate per hour (8/h) was an order of magnitude higher. However,

visual inspection of the EEG showed that 82% of the false positives

corresponded to epileptiform discharges.

Of 385 absences, all but three were identified (accuracy (99.2%).

Misclassified seizures were highly disorganized. The group-average

overlap of EEG segments classified as ictal with seizures never

exceeded 83%. There are two reasons for such a low value. The first

is trivial, since we calculate γ for 1-s sliding windows. For windows

that only partially cover the absences, γ is inevitably lower, which

can lead to errors. The second reason is more fundamental and

can be traced back to the disorganization of absences. Non-ictal

classification within abnormal EEG activity was always associated

with such disorganization. Apart from the segments that partially

overlap seizures, we did not find a convincing example of a false

negative.

The detection algorithm employs short data segments, making

it suitable for real-time EEG analysis as several algorithms

described previously (Xanthopoulos et al., 2010; Petersen et al.,

2011; Duun-Henriksen et al., 2012; Kjaer et al., 2017; Dan et al.,

2020; Japaridze et al., 2022). It is computationally more expensive
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FIGURE 3

EEG synchronization during absence seizures. (A) Topographic map of channel synchronization (cohort average) for all interictal segments (0), the

first window that partially overlaps seizures (1), the second partially overlapping (2), the first fully embedded in the seizure (3), all embedded without

the first and last (4), the last embedded (5), the last but one overlapping (6) and last overlapping (7). (B) Global synchronization boxplots for data

segments 0–7 (segments from all patients were used). (C, D) Probability density function (PDF) of the average synchronization index for the 19

channels (S19) and the four-channel subset S4 (Fp1, Fp2, T5, T6), respectively. One can see that global synchronization is high during seizures and

that there is a strong overlap of the interictal and ictal distributions of the synchronization index.

than those derived from the properties of SWDs. This drawback

is largely irrelevant today, except for portable EEGs with severely

limited computing power. It should be noted that while the

spectral and amplitude properties of EEG change significantly

during maturation (Schomer and da Silva, 2018), the detector

works equally well in children, juveniles, and young adults. The

classification accuracy is good for a six-channel setup (Fp1, Fp2,

F7, F8, O1, O2), which can be implemented as an unobtrusive

EEG headband—a crucial requirement from the point of view of

pediatric applications.

In the previous paper (Glaba et al., 2021), we used a delta

frequency envelope to identify abnormal EEG activity. However,

to detect absence seizures, we had to use two arbitrarily chosen

heuristic criteria. First, we checked whether there were epileptic

spikes in the envelope by calculating the percentage of EEG samples

for which the beta wavelet power was greater than the threshold

value. Second, if the envelope was shorter than 5 s, we also

calculated the variance of the beta wavelet power. Although this

algorithm was very fast and worked well, the approach presented

here is not only more elegant, but it also allows quantifying seizure

fragmentation.

The proposed detector cannot determine the fragmentation

of the seizure in the live data stream. This can only be

accomplished retrospectively when the detector (with post-

processing turned off) is applied to EEG segments with abnormal

EEG activity. Such segments can be marked by a neurologist

or by building a delta wave envelope as demonstrated in Glaba

et al. (2021). To our knowledge, we present the first qualitative

characterization of absence seizure fragmentation. The analysis

showed that seizures were disorganized in approximately half
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FIGURE 4

Example of building a k-NN seizure detector with the leave-one-out cross-validation (LOOCV) for patient P1. We used the global synchronization

index and mean normalized EEG amplitude as the features. The learning set comprised randomly chosen interictal and segments fully embedded in

absences with average synchronization greater than the cut-o� value. We used 3:1 ratio of interictal to ictal windows. Panels (A, C) show the spread

of the data generated for all 19 channels of 10-20 EEG setup (S19) and the subset S4 (channels Fp1, Fp2, T5, and T6), respectively. The confusion

matrices in (B, D) show the results of 10-fold cross-validation. The classifiers were applied to the segmented EEG of patient P1 (1 s windows with 0.5

s overlap). Panels (E, F) show P1’s confusion matrices for S19 and S4, respectively.
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TABLE 1 Seizure detection characteristics for the 19 channels (S19) and three subsets with a smaller number of electrodes.

EEG SETUP OVR [%] PERR (FP, MT) [%, -, -]

P C Y T

Synchronization and normalized amplitude

S19 82.9 0.87 (1437, 832) 0.12 (44, 32) 0.07 (7, 6) 0.36 (1488, 870)

S12 78.01 0.71 (1147, 735) 0.23 (77, 58) 0.13 (13, 11) 0.36 (1237, 804)

S6 79.36 0.86 (1282, 775) 0.05 (18, 14) 0.04 (4, 4) 0.32 (1304, 793)

S4 69.31 0.68 (1196, 743) 0.03 (11, 9) 0.02 (2, 2) 0.25 (1209, 754)

Synchronization and normalized amplitude with post-processing

S19 80.93 0.57 (985, 381) 0.13 (21, 9) 0.03 (4, 2) 0.24 (1010, 392)

S12 75.56 0.40 (652, 267) 0.22 (35, 15) 0.03 (4, 2) 0.22 (691, 284)

S6 76.85 0.55 (868, 311) 0.06 (5, 2) 0.00 (0, 0) 0.21 (873, 313)

S4 65.10 0.38 (746, 278) 0.03 (4, 2) 0.00 (0, 0) 0.13 (750, 280)

We used a k-nearest neighbor classifier with the synchronization index and normalized amplitude as the features. The overlap (OVR) of segments classified as ictal with absence seizures and

relative duration of false positives (PERR) are presented for patients (P), controls (C), young adults (Y), and for segments from all cohorts (T). In parentheses, we give the number of distinct

trains of misclassified windows (MT) and false positives (FP). In patients, false detections are predominantly caused by short (< 2 s) epileptiform discharges. Therefore, we also tested the

possibility of reducing the number of false positives by post-processing the k-nearest neighbors classification. In particular, any isolated ictal segment was labeled non-ictal.

FIGURE 5

(A) Seizure from Figure 1B is shown with the leading and trailing interictal segments. (B) The output of the seizure detector. The detection function

equals 1 for the segments classified as ictal and 0 otherwise. The red vertical lines in both subplots delineate the abnormal EEG activity marked by a

neurologist. Note that SWDs do not simultaneously emerge from the background EEG in all channels. At the end of the seizure, ictal activity gradually

subsides: epileptic spikes disappear, the amplitude of the EEG decreases, and global synchronization is lost. The initial and final transients are shorter

than 0.5 s. The detector correctly identified the two interruptions in the ictal rhythm, marked in (A) in red. Two EEG intervals were marked blue to

draw attention to the limitations of fragmentation analysis. Seizure disorganization shorter than about 0.5 s are, in most cases, undetected. Due to

the finite size of the data window used to calculate phase synchronization, the fragmentation can be underestimated.

of the 65 subjects. On average, generalized SWDs lasted about

80% of the duration of abnormal EEG activity. The disruption

of the ictal rhythm can manifest itself as the disappearance

of epileptic spikes (with high-amplitude delta waves persisting),

transient (about 1 s) cessation of epileptic discharges, or loss of

global synchronization.

Although CAE and JAE are distinct epilepsy syndromes,

there is considerable age overlap between them. Consequently,

the diagnosis is not always obvious. This is an important

clinical problem, as JAE is a lifelong disease. Sadleir et al.

reported that disorganized discharges are eight times more

frequent in JAE (Sadleir et al., 2009). For most patients, we
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FIGURE 6

Histograms of (A) average fragmentation of the patient’s seizures and (B) fragmentation of individual seizures. Seizure fragmentation is defined as the

duration of segments classified as non-ictal embedded in the abnormal EEG activity interval divided by the length of such an interval.

only had the electroencephalogram recorded before the onset

of pharmacotherapy. Therefore, future research must establish

whether seizure properties (frequency, length, fragmentation, etc.)

and clinical characteristics can distinguish CAE and JAE.

It should be noted that some EEG synchronization properties

are unique to absence seizures. Figure 3B shows that γ peaks

at the beginning of the seizure and is approximately twice the

mean interictal value, in agreement with the recent study of

(Zhong et al., 2022). However, Majmundar et al. argue that

for most focal-onset seizures, synchronization occurs toward the

end of the seizure rather than at the time of onset (Majumdar

et al., 2014). Absence seizures exhibit longer-range synchrony

than generalized tonic motor seizures of secondary (symptomatic)

generalized epilepsy or frontal lobe epilepsy (Dominguez et al.,

2005).

Epilepsy has historically been perceived as a functional brain

disorder associated with hypersynchronization. Interestingly,

desynchronization can precede seizures (Aarabi et al.,

2008; Jiruska et al., 2013; Zeng et al., 2016). Figure 3C

shows that the peak of the interictal distribution of γ is

shifted to low values relative to the controls. Therefore, the

question arises of whether this shift is a manifestation of

desynchronization in patients with CAE / JAE. We will present

a detailed analysis of interictal EEG synchronization properties

elsewhere.
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