
TYPE Opinion

PUBLISHED 24 March 2023

DOI 10.3389/fninf.2023.1150157

OPEN ACCESS

EDITED BY

Peter A. Tass,

Stanford University, United States

REVIEWED BY

Mojtaba Madadi Asl,

Institute for Research in Fundamental Sciences

(IPM), Iran

Justus Alfred Kromer,

Stanford University, United States

*CORRESPONDENCE

J. Luis Lujan

lujan.luis@mayo.edu

RECEIVED 23 January 2023

ACCEPTED 06 March 2023

PUBLISHED 24 March 2023

CITATION

Asp AJ, Chintaluru Y, Hillan S and Lujan JL

(2023) Targeted neuroplasticity in

spatiotemporally patterned invasive

neuromodulation therapies for improving

clinical outcomes.

Front. Neuroinform. 17:1150157.

doi: 10.3389/fninf.2023.1150157

COPYRIGHT

© 2023 Asp, Chintaluru, Hillan and Lujan. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Targeted neuroplasticity in
spatiotemporally patterned
invasive neuromodulation
therapies for improving clinical
outcomes

Anders J. Asp1, Yaswanth Chintaluru2,3, Sydney Hillan1 and

J. Luis Lujan2,4*

1Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States,
2Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States, 3Department of

Neurology and Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, CO,

United States, 4Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN,

United States

KEYWORDS

neuroplasticity, spike timing dependant plasticity, deep brain stimulation

(DBS), biofeedback, network control, transcranial magnetic stimulation (TMS),

neuromodulation, neurosurgery

Introduction

Invasive neuromodulation is routinely used to effectively treat the symptoms of

movement (Dallapiazza et al., 2019; Limousin and Foltynie, 2019) and psychiatric

(Visser-Vandewalle et al., 2022) disorders with high success despite a limited understanding

of their mechanisms of action.While the distinct neuroanatomical targets that are stimulated

vary depending on the condition being treated and any existing comorbidities, the

predominant neuromodulation strategy is to apply a fixed-frequency electrical current to

the corresponding neural targets for symptom relief. In the case of movement disorders

such as Parkinson’s disease (PD), symptom reduction manifests within seconds or minutes

following stimulation onset and disappears within a similar time course following the

cessation of stimulation (Hristova et al., 2000; Temperli et al., 2003; Ducharme et al.,

2011; Pugh, 2019). Maladaptive neuroplasticity, defined as plasticity underlying a disruption

in normal neural network function, contributes to numerous neurologic and psychiatric

conditions such as chronic pain (Kuner and Flor, 2017), mood disorders (Duman, 2002),

movement disorders (McPherson et al., 2015; Li, 2017; Seeman et al., 2017; Peng et al.,

2018; Versace et al., 2018; Madadi Asl et al., 2022), tinnitus (Engineer et al., 2011), addiction

(Kauer and Malenka, 2007; Kalivas and O’Brien, 2008; Famitafreshi and Karimian, 2019),

and depression (Duman et al., 2016). While some invasive neuromodulation approaches

treat this underlying neuroplasticity (Creed et al., 2015; McPherson et al., 2015; Seeman

et al., 2017; Peng et al., 2018; Versace et al., 2018; Asl et al., 2023), most do not. Thus,

the neuromodulation community must consider well-characterized biophysical phenomena

such as synaptic plasticity as inspiration when developing next-generation neuromodulation

therapies rather than re-applying stimulation paradigms designed for movement disorders
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to improve treatment outcomes in all conditions, such as

psychiatric disorders.

Targeted neuroplasticity as a tool to treat
neurologic and psychiatric indications

Targeted neuroplasticity encompasses neuromodulation

approaches designed to induce and maintain a long-term

influence over nervous system function through long-term

potentiation (LTP) or long-term depression (LTD) such that

symptom improvement persists after stimulation cessation.

Examples of non-invasive neuromodulation approaches that

maintain targeted neuroplasticity include transcranial magnetic

stimulation (TMS) (Horvath et al., 2010; Valero-Cabré et al.,

2017) and vibrotactile coordinated reset (CR) (Syrkin-Nikolau

et al., 2018; Pfeifer et al., 2021). These approaches contrast

with some conventional invasive neuromodulation approaches

such as fixed-frequency deep brain stimulation (DBS), in

which acute symptoms are managed only during stimulation

(Herrington et al., 2015; Ashkan et al., 2017; Pugh, 2019).

Here, we postulate that targeted neuroplasticity through

spatiotemporally patterned stimulation may improve clinical

outcomes and enhance invasive therapies such as DBS by

reversing maladaptive plasticity rather than treating symptoms. To

this end, we propose four considerations for incorporating

targeted neuroplasticity into invasive neuromodulation

therapies (Figure 1).

FIGURE 1

Targeted neuroplasticity approaches for invasive neuromodulation therapies. Figure created with Biorender.com.

Control of complex networks requires
spatiotemporally precise stimulation at
multiple network locations to improve
clinically significant long-term symptom
reduction

Neurologic conditions are often associated with neural network

dysfunction (Spencer, 2002; Palop et al., 2006; Rosin et al.,

2007), and as such, clinically-effective outcomes require timely

interventions at multiple network locations (Tu et al., 2018). While

initial studies suggested neural activity could be altered from a

single node (Gu et al., 2015), the interconnected topology of

neural networks complicates selection of a single control node

from which to apply stimulation. Furthermore, multiple studies

using functional magnetic resonance imaging (fMRI) and other

techniques have demonstrated that stimulation at multiple nodes

enhances network control (Capotosto et al., 2014; Fox et al., 2014;

Pasqualetti et al., 2014; Tu et al., 2018). More importantly, studies

have shown that enhanced multi-node network controllability

can be achieved via paired stimulation of multiple connected

brain regions such as inter-hemispheric dPM-M1 cortex (Lafleur

et al., 2016). A clear example of this concept is the use of dual-

site DBS placed in the centromedian-parafascicular complex and

ventral capsule/ventral striatum to effectively treat motor and

non-motor symptoms of severe, medication-resistant Tourette

syndrome (Kakusa et al., 2019). Studies thus suggest that multi-

location stimulation may improve control of pathological network

function underlying symptoms.
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Spatiotemporally patterned stimulation enables
long-lasting desynchronization of pathological
network activity and sustained symptom
reduction

Spatiotemporally patterned stimulation has distinct advantages

over traditional high-frequency (>100Hz) stimulation such

as facilitation of long-lasting targeted neuroplasticity and

desynchronization of pathological network activity leading to

symptom reduction. The relative timing between presynaptic and

postsynaptic activation influences synaptic strength through a

mechanism known as spike-timing dependent plasticity (STDP),

is known to profoundly influence brain network function

through changes in the direction and magnitude of synaptic

strength (Markram et al., 1997; Bi and Poo, 1998; Dan and Poo,

2004; Caporale and Dan, 2008; Brzosko et al., 2019). STDP

mechanisms are leveraged by emerging spatiotemporally patterned

neuromodulation approaches such as decoupling time-shifted

stimulation (Kromer and Tass, 2020; Asl et al., 2023) periodic

multichannel stimulation (Kromer and Tass, 2022), and CR

(Pfister et al., 2010). These therapies facilitate long-lasting

desynchronization of pathologically coherent network activity

underlying conditions like Parkinson’s Disease (PD) by applying

spatiotemporally patterned electric stimulation across subcortical

targets such as the STN (Tass, 2003; Tass andMajtanik, 2006; Pfister

et al., 2010; Adamchic et al., 2014; Ebert et al., 2014; Wang et al.,

2016; Madadi Asl et al., 2018). From a therapeutic standpoint,

a major benefit of spatiotemporally patterned therapies is that

discontinuous and lower frequency stimulation may reduce the

risk of side effects attributable to chronic continuous stimulation

(Ferraye et al., 2008; Xie et al., 2012). Furthermore, therapies such

as CR demonstrate sustained symptom reduction after stimulation

cessation (Tass et al., 2012; Adamchic et al., 2017; Syrkin-Nikolau

et al., 2018; Ho et al., 2021; Pfeifer et al., 2021; Wang et al., 2022).

Similarly, paired phase-locked stimulation of the infralimbic cortex

and basolateral amygdala alters synaptic strength and theta band

coherence in a manner that that persists after stimulation cessation

(Lo et al., 2020).

Numerous studies achieve targeted neuroplasticity with

spatiotemporally patterned stimulation delivered across multiple

stimulation modalities. For example, repeated pairing of

low frequency (0.1Hz) DBS with TMS of M1-cortex alters

corticostriatal plasticity in humans (Udupa et al., 2016).

Similarly, the application of transcranial direct or alternating

current stimulation prior to TMS has been shown to alter the

effectiveness of the TMS-based plasticity induction protocol

(Cosentino et al., 2012; Guerra et al., 2018; Nakazono et al.,

2021). Additionally, pairing DBS of midbrain locomotor

regions with epidural stimulation of the lumbar spinal cord

improves motor function in a rat model of spinal cord injury

(Bonizzato et al., 2021). One clinical case report found improved

motor function in a patient with multiple system atrophy

and predominant parkinsonism when bilateral subthalamic

nucleus (STN) DBS and spinal cord stimulation were combined

(Li et al., 2022). Taken together, these examples demonstrate

that spatiotemporally patterned simulation may enable long-

lasting reductions in symptoms and side effects and expand

invasive neuromodulation indications while improving power

consumption efficiency.

Biofeedback may facilitate induction of targeted
neuroplasticity

Closed-loop neuromodulation approaches leverage

biofeedback to guide stimulation parameter selection in a wide

range of circuitopathies underlying conditions such as epilepsy

(Seitz, 2013), PD (Kühn et al., 2009; Weinberger et al., 2012),

essential tremor (Thompson et al., 2014), and dystonia (Barow

et al., 2014), in which oscillation frequency abnormalities serve

as biomarkers that can inform stimulation parameter selection to

improve symptom reduction (Thompson et al., 2014). For example,

electrophysiological activity recorded during electrographic

seizures can trigger DBS to interrupt seizure progression (Thomas

and Jobst, 2015; Razavi et al., 2020). Furthermore, studies indicate

that phase-aligned stimulation triggered by local field potentials

can alter pathological cortical-striatal-pallidal activity and cortico-

amygdalar coherence, reducing symptoms of obsessive-compulsive

disorder (OCD) (Olsen et al., 2020) and anxiety (Lo et al., 2020),

respectively. Stimulation of the ventrolateral (VL) thalamus aligned

to patients’ limb tremor reduces tremor severity in essential tremor

patients through a mechanism involving STDP (Cagnan et al.,

2017). Thus, initial exploration of closed-loop stimulation as a

mechanism to achieve targeted neuroplasticity promises to be a

versatile tool in the treatment of neurologic disease and injury. As

such, an expanded investigation of targeted neuroplasticity that

incorporates biofeedback measurements may expand this powerful

technique into a readily translatable clinical treatment.

Insights from non-invasive neuromodulation and
basic neuroscience may inform novel invasive
targeted neuroplasticity approaches

Non-invasive neuromodulation therapies such as TMS or

focused ultrasound have embraced the targeted neuroplasticity

philosophy out of necessity. The immobile nature of non-invasive

systems, frequently due to large size and cost of the necessary

hardware (Horvath et al., 2010; Anderson et al., 2012; Santarnecchi

et al., 2018; Carmi et al., 2019; Mehta et al., 2019; Sabbagh et al.,

2020), has necessitated the development of stimulation protocols

designed to induce long-term plastic changes in brain function.

Consequently, numerous non-invasive stimulation protocols have

been designed to facilitate long-term changes in neuroplasticity

(Todd et al., 2010; Bunday and Perez, 2012; Jacobs et al., 2012;

Urbin et al., 2017; Aftanas et al., 2018; Kozyrev et al., 2018). Despite

being limited to engaging cortical targets at a poor spatial specificity

on the order of 1,000mm2 (van de Ruit and Grey, 2016), TMS has

succeeded where more precise invasive approaches such as DBS

have failed (e.g., treatment-resistant major depressive disorder). It

is thus surprising that few studies are seeking to translate FDA-

approved non-invasive plasticity-inducing stimulation protocols to

invasive techniques such as DBS, which offer a more selective target

engagement and, therefore, fewer side effects (Ni et al., 2019).

Adapting classical neuroplasticity induction protocols rooted

in basic neuroscience may form the foundation for novel therapies

for treatment-resistant clinical indications. An example where DBS

has produced less-than-satisfactory results is in the treatment

of Alzheimer’s disease. A randomized, sham-controlled, double-

blinded clinical trial of patients with Alzheimer’s disease found
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continuous high frequency (130Hz) DBS of the fornix, a brain

region implicated in learning and memory (Douet and Chang,

2015), does not improve cognitive function (Lozano et al., 2016).

Theta burst microstimulation (5 pulses separated by 200ms,

100Hz) is a well-described plasticity induction protocol established

ex vivo to cause LTP in neural circuits (Abrahamsson et al., 2016).

Theta burst stimulation of the right entorhinal cortex significantly

increased performance on pattern separation and memory recall,

suggesting utility for the treatment of Alzheimer’s disease (Titiz

et al., 2017). Moreover, intermittent theta-burst stimulation results

in safe and reliable changes in dorsolateral prefrontal cortex

electrophysiology (Bentley et al., 2020) and may improve treatment

of neurological conditions with historically poor success rates.

Emerging optogenetics-inspired DBS protocols consisting of 1Hz

electrical stimulation of the Nucleus Accumbens paired with a D1-

Dopamine receptor antagonist reverse behavioral adaptations in

a rodent model of addiction (Creed et al., 2015). Similarly, brief

bursts of electrical stimulation in the external Globus Pallidus

enables control of distinct neuronal subpopulations and produces

long-lasting therapeutic benefits in dopamine depleted mice (Spix

et al., 2021). Taken together, targeted neuroplasticity induction

protocols should be considered as an alternative to high-frequency

stimulation to treat neurological conditions in which disease

symptomology is predicated on maladaptive neuroplasticity.

Discussion

A strong feature of traditional DBS is its reversibility, which

led it to become a favorable alternative to lesioning procedures for

treatment of neurologic and psychiatric disorders (Pugh, 2019).

While targeted plasticity can be viewed as a shift away from a

reversible surgical procedure, it must be noted that traditional DBS,

such as STN DBS also causes changes in plasticity (Herrington

et al., 2015; Melon et al., 2015; Chassain et al., 2016). However,

high-frequency STN DBS does not create long-lasting neuroplastic

changes that may support symptom reduction after cessation of

stimulation, supporting the reversibility of DBS therapies (Pugh,

2019).

Interventions that provide long-term changes in targeted

neuroplasticity through spatiotemporally patterned stimulation

offer distinct advantages over traditional high-frequency invasive

neuromodulation, chiefly the ability to manipulate underlying

disease pathophysiology, persistent symptom improvement after

stimulation cessation, reduced power consumption from lower

stimulation frequencies, amplitudes, and duty cycles, and improved

circuit specificity that minimizes off-target effects. Thus, targeted

neuroplasticity approaches may enable expanded avenues for

treatment of disorders associated with maladaptive plasticity,

such as Tourette’s syndrome (Nespoli et al., 2018), OCD

(Kreitzer and Malenka, 2008; Maia et al., 2008), Schizophrenia

(McCutcheon et al., 2019), PD (Shen et al., 2008; Kravitz et al.,

2010; Parker et al., 2018), and Manic Depression (Lee et al.,

2018).

Despite the advantages of leveraging targeted neuroplasticity

in spatiotemporally patterned invasive neuromodulation therapies,

there remain numerous barriers to clinical implementation.

When considering the need for multi-nodal circuit control,

it is paramount to consider that additional hardware may

incur additional surgical risks (Chiong et al., 2018). However,

multi-lead DBS procedures are safe and routinely performed

(Dallapiazza et al., 2019). Non-invasive options such as

TMS can be paired with invasive stimulation to decrease

surgical risk of additional implants while enabling additional

therapeutic approaches.

There remains a real risk that preclinical findings do

not translate between species, particularly to humans (de

Oliveira et al., 2021). Consequently, caution must be taken

when applying plasticity induction protocols clinically.

While application of any novel stimulation paradigm comes

with risk, a reasonable starting point for translating a novel

neuroplasticity induction protocol to humans is to test plasticity

induction protocols in individuals with existing implanted

pulse generators, particularly if the system is capable of

electrophysiological monitoring. An example of this strategy

is evident in the previously mentioned multi-modal approach,

where TMS pulses were paired with electrical stimulation

of previously indwelling STN DBS electrodes (Udupa et al.,

2016). Testing plasticity protocols in such a manner enables

feasibility testing in humans without risks inherent in de novo

surgical procedures.

Considering the advantages of invasive over non-invasive

neuromodulation approaches, we must ask the question, “Why

is it that targeted neuroplasticity-inducing protocols such as

those used by non-invasive therapies are not widely used invasive

neuromodulation therapies?” Perhaps the immediately effective

therapeutic benefits of invasive neuromodulation approaches

unnecessarily constrain parameter selection. Rather than treat

stimulation-induced synaptic plasticity as an obstacle that

interferes with long-term efficacy of traditional high-frequency

stimulation, stimulation-induced neuroplasticity should be

considered as a therapeutic mechanism. This mechanism may

be sensitive to numerous parameters, including the type of

underlying synaptic plasticity, synaptic transmission delays,

the spatiotemporal stimulation pattern, the stimuli shape, and

stimulation context. Borrowing inspiration from the protocols

of non-invasive neuromodulation like TMS, vibrotactile CR, and

basic neuroscience may help improve the clinical outcomes of DBS

by creating lasting symptom benefit while broadening the clinical

indications that can be treated with invasive therapies.

Clinical invasive neuromodulation approaches have remained

largely unchanged since their inception. For example, high-

frequency DBS is still the gold standard for treating medically

refractory movement disorders. However, neuromodulation is

limited in its ability to relieve disease symptoms after stimulation

cessation. Re-designing stimulation protocols to address the

underlying pathophysiology of disease circuitopathies may

improve the current treatment of disorders and expand clinical

applications. Integrating this approach into stimulation protocols

may require control of complex networks through input at

multiple nodes, long-lasting desynchronization of pathologically

coherent network activity for long-lasting symptom reduction,

and insight from non-invasive neuromodulation and basic

neuroscience. Thus, targeted neuroplasticity may pave new paths
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in neuromodulation, expanding indications and improving

disease pathophysiology.
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