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Introduction: Multimodal classification is increasingly common in

electrophysiology studies. Many studies use deep learning classifiers with

raw time-series data, which makes explainability difficult, and has resulted in

relatively few studies applying explainability methods. This is concerning because

explainability is vital to the development and implementation of clinical classifiers.

As such, new multimodal explainability methods are needed.

Methods: In this study, we train a convolutional neural network for automated

sleep stage classification with electroencephalogram (EEG), electrooculogram,

and electromyogram data. We then present a global explainability approach that

is uniquely adapted for electrophysiology analysis and compare it to an existing

approach. We present the first two local multimodal explainability approaches. We

look for subject-level differences in the local explanations that are obscured by

global methods and look for relationships between the explanations and clinical

and demographic variables in a novel analysis.

Results: We find a high level of agreement between methods. We find that EEG

is globally the most important modality for most sleep stages and that subject-

level differences in importance arise in local explanations that are not captured in

global explanations. We further show that sex, followed by medication and age,

had significant effects upon the patterns learned by the classifier.

Discussion: Our novel methods enhance explainability for the growing

field of multimodal electrophysiology classification, provide avenues for the

advancement of personalized medicine, yield unique insights into the effects of

demographic and clinical variables upon classifiers, and help pave the way for the

implementation of multimodal electrophysiology clinical classifiers.

KEYWORDS

multimodal classification, explainable deep learning, sleep stage classification,
electrophysiology, electroencephalography, electrooculography, electromyography
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1. Introduction

Biomedical informatics studies (Lin et al., 2019; Mellem
et al., 2020; Zhai et al., 2020), and electrophysiology studies
(Niroshana et al., 2019; Phan et al., 2019; Wang et al., 2020; Li
et al., 2021) in particular, have increasingly begun to incorporate
multimodal data when training machine learning classifiers. Using
complementary modalities can enable the extraction of better
features and improve classification performance (Wang et al.,
2020; Zhai et al., 2020). While multimodal data can improve
classifier performance, it can also make explaining models more
difficult. This is especially true for state-of-the-art deep learning
models. As a result, most studies have not used explainability
(Zhang et al., 2011; Kwon et al., 2018; Niroshana et al., 2019;
Phan et al., 2019; Wang et al., 2020; Li et al., 2021), which is
concerning because transparency is increasingly required to assist
with model development and physician decision making (Sullivan
and Schweikart, 2019). As such, more multimodal explainability
methods need to be developed (Lin et al., 2019; Mellem et al.,
2020; Ellis et al., 2021a,b,c,d). In this study, we use automated sleep
stage classification as a testbed for the development of multimodal
explainability methods. We further present 3 novel approaches
that offer significant improvements over existing approaches
for use with multimodal electrophysiology data. Specifically, we
present a global ablation approach that is uniquely adapted for
electrophysiology data. We further present two local methods that
can be used to identify personalized electrophysiology biomarkers
that would be obscured by global methods. Using the local
methods, we perform a novel analysis that illuminates the effects
of demographic and clinical variables upon the patterns learned by
the classifier.

1.1. Automated sleep stage classification
as testbed for multimodal explainability

Automated sleep stage classification offers a unique testbed
for the development of novel multimodal explainability methods.
Automated sleep stage classification has multiple noteworthy
characteristics. (1) In practice, clinicians rely on multiple modalities
instead of a single modality to manually score sleep stages (Iber
et al., 2007). (2) The features differentiating sleep stages and
the importance of modalities are well-characterized in a clinical
setting (Iber et al., 2007). (3) Multiple large sleep stage datasets
are publicly available (Quan et al., 1997; Kemp et al., 2000;
Khalighi et al., 2016). (4) A number of studies involving unimodal
and multimodal sleep stage classification have been conducted
(Rahman et al., 2018; Wang et al., 2020), which could enable
data scientists to develop their explainability methods alongside
established architectures. Because these characteristics can help
us validate our explainability methods and because there is a
clinical need for explainability in sleep stage classification, we
chose sleep stage classification as a use-case in this study. In
the following paragraphs, we briefly review the domain of sleep
stage classification and the explainability methods that have been
used within the domain, both for unimodal and multimodal
classification. A description of sleep stages can be found in

the Supplementary section, “Characteristic Features of Sleep
Stages.”

1.2. Unimodal sleep stage classification
and explainability

Typical sleep stage classification approaches involve the
classification of 5 stages: Awake, rapid eye movement (REM),
non-REM1 (NREM1), NREM2, and NREM3. Many sleep stage
classification studies have used unimodal EEG. Some studies have
used extracted features for sleep stage classification (Aboalayon
et al., 2015; Rojas et al., 2017; Rahman et al., 2018; Michielli
et al., 2019), but recent studies have begun to use deep learning
methods involving automated feature extraction from raw data
(Tsinalis et al., 2016a; Rojas et al., 2017; Supratak et al., 2017;
Sors et al., 2018; Mousavi et al., 2019; Eldele et al., 2021).
Multiple recent studies have involved explainability methods. In a
couple of studies, authors trained convolutional neural networks
(CNNs) to classify EEG spectrograms and applied sensitivity
or activation maximization (Simonyan et al., 2013) to identify
the important features (Vilamala et al., 2017; Ruffini et al.,
2019). In other studies, authors trained interpretable machine
learning models or deep learning models with layer-wise relevance
propagation (LRP) (Bach et al., 2015) to classify power spectral
density values and gain insight into the features learned by
the classifiers (Chen et al., 2019; Ellis et al., 2021e). A few
studies involving deep learning models with raw data have also
used explainability methods (Mousavi et al., 2019; Ellis et al.,
2021f,g,h). These studies typically seek to identify the spectral
features (Nahmias and Kontson, 2020; Barnes et al., 2021; Ellis
et al., 2021f,g,h,i) or waveforms (Ellis et al., 2021h,i) learned
by neural networks. However, multimodal classification poses
unique challenges for explainability that do not exist for unimodal
classification.

1.3. Multimodal explainability in sleep
stage classification and other domains

Most multimodal classification studies, regardless of whether
they used extracted features (Phan et al., 2019; Li et al., 2021)
or raw data (Niroshana et al., 2019; Wang et al., 2020), have
not used explainability methods. Among the few studies involving
explainability (Lajnef et al., 2015; Chambon et al., 2018; Pathak
et al., 2021), some have used extracted features and forward
feature selection (FFS) (Lajnef et al., 2015). Others have used raw
data and ablation for insight into modality importance (Pathak
et al., 2021). Additionally, some have shown the importance
of EEG spectra or performance increases after retraining a
model with additional modalities (Chambon et al., 2018). Some
multimodal explainability methods are also found in other domains
(Lin et al., 2019; Mellem et al., 2020; Porumb et al., 2020).
Similar to (Lajnef et al., 2015), one paper used FFS to find
key features from clinical scales and imaging features (Mellem
et al., 2020). One study used impurity and ablation (Lin et al.,
2019). Another study identified important time windows in one
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modality (Porumb et al., 2020) with Grad-CAM (Selvaraju et al.,
2020).

1.4. Existing multimodal explainability
methods

As previously described, multiple explainability methods
have been used with multimodal classifiers: FFS (Lajnef
et al., 2015; Mellem et al., 2020), impurity (Lin et al.,
2019), and ablation (Lin et al., 2019; Pathak et al., 2021).
FFS is applicable to most classifiers. However, it requires
retraining models many times, which is impractical for
computationally intensive deep learning frameworks. Impurity
is only applicable to tree-based classifiers. Lastly, ablation
is, like FFS, also applicable to nearly any classifier and
is easy to implement. In contrast to FFS, ablation is not
computationally intensive. As such, of existing approaches, it
is most useful for finding modality importance in deep learning
classifiers.

1.5. Limitations of existing ablation
approaches and novel alternatives

Ablation is related to perturbation-based methods like RISE
(Petsiuk et al., 2018) or LIME (Ribeiro et al., 2016) that are
frequently used in explainability for image classification and to
methods like those presented in Thoret et al. (2021) that have
been used in neuroscience applications. Importantly, ablation
has a key weakness like all perturbation-based explainability
methods. Specifically, perturbation methods can create out-of-
distribution samples that lead to a poor estimates of modality
importance (Molnar, 2018). Ablation involves (1) The substitution
of a modality with neutral values (i.e., that do not give evidence
for any one class) and (2) an examination of how that ablation
affects the classifier. As such, when translating ablation to a new
domain, it is important to consider how to set a modality to a
neutral state while minimizing the likelihood out-of-distribution
samples and features creation. Existing studies using ablation have
replaced each modality with zeros (Lin et al., 2019; Pathak et al.,
2021). However, zeroing out modalities creates samples that are
highly irregular within the electrophysiology domain. In contrast,
electrodes commonly return some line-related noise or, in instances
when an electrode is not working properly, only return line-
related noise. Line-related noise is found in electrophysiology
data at 50 or 60 Hz due to the presence of lights, power lines
and other electronics near recording devices. Because it is so
often found in electrophysiology data, a classifier should learn to
ignore it, and it should be neutral to the classifier. As such, line-
related noise could offer a more reliable, electrophysiology-specific
alternative to the zero-out ablation methods that have previously
been applied.

While line noise-based ablation would be less likely to
produce out-of-distribution samples and features than a zero-
out ablation approach, it would still be at risk of doing so.
Gradient-based feature attribution (GBFA) methods (Ancona
et al., 2018) like Grad-CAM (Selvaraju et al., 2020), saliency

(Simonyan et al., 2013), and LRP (Bach et al., 2015), in particular,
offer an alternative to ablation that does not risk producing
out-of-distribution samples. Additionally, local ablation methods,
similar to saliency (Simonyan et al., 2013), show what features
or time points make a sample more or less like the patterns
learned by the classifier for a particular class. LRP shows what
features or time points are actually used by the classifier for its
classification and indicates their importance (Montavon et al.,
2018).

1.6. Limitations of global explanations
and proposal of novel local explainability
approach

Global explainability methods identify the general importance
of each modality to the classifier. In contrast, local methods
provide higher resolution insight and indicate the importance of
each modality to the classification of individual samples (Molnar,
2018). Global methods have inherent limitations relative to local
methods, and existing multimodal explainability approaches have
mainly been global. Importantly, as shown in Figure 1, global
explanations obscure feature importance for individual samples
and can obscure the presence of subgroups. Local explanations
for many samples can be combined for higher level or global
importance estimates (Ellis et al., 2021e,f). Because of this, they
can also be analyzed on a subject-specific level that paves the way
for the identification of personalized biomarkers. Furthermore,
local explanations can be used to examine the degree to which
demographic and clinical variables affect the patterns learned by
a classifier for specific classes and features (Ellis et al., 2021c),
which is a capacity that has not previously been exploited in
multimodal classification. Local methods have been applied in a
couple multimodal classification studies. In one study, authors
ablated time points of an input sample and examined the effect
on the classification of the sample (Pathak et al., 2021). In another
study, authors used Grad-CAM to examine segments of a single
modality (Porumb et al., 2020). Neither study identified the
importance of each modality.

In the present study, we train a CNN for automated sleep
stage classification using a publicly available dataset. We introduce
a global ablation approach that is uniquely adapted for the
electrophysiology domain (Ellis et al., 2021b). We then present a
local ablation approach (Ellis et al., 2021c) and show how GBFA
methods can be used for local insight into multimodal classifiers
(Ellis et al., 2021a). With our local methods, we identify subject-
level differences in modality importance that support the viability
of the methods for personalized biomarker identification. We then
use the local explanations in a novel analysis that provides insight
into the patterns learned by the classifier related to the age, sex, and
state of medication of subjects in our dataset (Ellis et al., 2021c,d).

2. Materials and methods

In this section, we describe our data, preprocessing, model
architecture and training approach, and explainability methods.
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FIGURE 1

Example of global versus local importance with dummy data. From left to right, are 4 importance metrics: the importance for an atypical sample, the
importance for two generic samples, and the global importance estimate that is formed by averaging the importance values for the individual
samples. Note that modality two is very important for the atypical subject but not for the generic subject, so the presence of the atypical sample is
hidden in the global importance. When thousands of samples from dozens of subjects are being analyzed, the presence of subgroups is easily
obscured.

2.1. Description of data

We utilized Sleep Telemetry data from the Sleep-EDF
Expanded Database (Kemp et al., 2000) on Physionet (Goldberger
et al., 2000). The database has been used in previous studies
(Vilamala et al., 2017; Rahman et al., 2018; Mousavi et al., 2019;
Phan et al., 2019). Because the dataset was publicly available, no
Internal Review Board approval was needed. The dataset has 44
approximately 9-h recordings from 22 subjects (15 female and
7 male) with primary sleep onset insomnia (Tuk et al., 1997).
Subject age had a mean of 40.18 years and a standard deviation
of 18.09 years. Figure 2 shows subject demographics. All subjects
had two recordings–one following placebo administration and one
following temazepam administration. Temazepam belongs to a
class of drugs called benzodiazepines which amplify the effects
of the neurotransmitter y-aminobutyric acid (GABA). GABA is
inhibitory in nature and produces a calming effect on the brain
(Griffin et al., 2013). It is often used to treat insomnia and
affects electrophysiology activity. Each recording had data from
4 electrodes: 2 EEG, 1 EOG, and 1 EMG. Data was recorded at
a 100 Hertz (Hz) sampling frequency. The EEG electrodes were
FPz-Cz and Pz-Oz (Van Sweden et al., 1990), but like previous
studies (Tsinalis et al., 2016b; Vilamala et al., 2017; Michielli et al.,
2019; Mousavi et al., 2019; Phan et al., 2019), we used only Fpz-Cz.
A 1-Hz marker indicated the presence of recording errors. Using
the Rechtschaffen and Kales standard (Rechtschaffen and Kales,
1968), experts assigned 30-s epochs to seven categories: Movement,
Awake, REM, NREM1, NREM2, NREM3, and NREM4. We merged
NREM3 and NREM4 into a single NREM3 class (Iber et al., 2007),
and we removed all samples containing movement or recording
errors.

2.2. Description of data preprocessing

Based on the data annotation, we segmented the data into
30-s samples. Within each recording, we separately z-scored each
electrode to improve cross-subject pattern identification. Our final
dataset had 42,218 samples. The dataset was highly imbalanced
with Awake, NREM1, NREM2, NREM3, and REM classes having
9.97, 8.53, 46.8, 14.92, and 19.78% of the dataset, respectively.
We did not perform any filtering or reject data due to quality
or noise issues.

2.3. Description of 1D-CNN

2.3.1. Model architecture and training
We adapted a CNN architecture initially developed for EEG

classification (Youness, 2020). The architecture is shown in
Figure 3. We implemented the architecture in Keras (Chollet,
2015) with a TensorFlow (Abadi et al., 2016) backend. We used
10-fold cross-validation with a random 17-2-3 subject training-
validation-test split each fold. We used class-weighted categorical
cross entropy loss to account for class imbalances. We used a batch
size of 100 with shuffling after each epoch. We used the Adam
optimizer (Kingma and Ba, 2015) with an adaptive learning rate.
Starting at a learning rate of 0.001, the step size decreased by a
factor of 10 if validation accuracy did not improve within a 5-
epoch window. We used early stopping to end training if validation
accuracy plateaued for 20 epochs with a maximum of 100 epochs
and used model checkpoints to select the model from each fold that
obtained the best validation accuracy. We used the selected models
for testing and explainability.
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FIGURE 2

Distribution of samples and subject demographics. Panels (A,B) show the distributions of temazepam and placebo samples, respectively, for each
subject. Panel (C) shows the age and sex of each subject, with the subjects arranged from youngest to oldest. Each panel shares the same x-axis.

2.3.2. Model performance evaluation
When evaluating model test performance, we sought to account

for class imbalances. We calculated the precision, recall, and F1
score for each class. We calculated the mean and standard deviation
of the metrics across folds.

Precision =
TruePositive

TruePositive+FalsePositive

Recall =
TruePositive

TruePositive+FalseNegative

F1 = 2∗
Precision∗Recall
Precision+Recall

2.4. Description of global ablation
approaches

We applied two global ablation approaches to estimate class-
specific modality importance. We presented a novel global ablation
approach that is uniquely adapted to the electrophysiology domain
(Ellis et al., 2021b) and compared our approach to a standard
approach that has been used in previous studies (Lin et al., 2019;
Pathak et al., 2021).

Generally, ablation takes place after model training. It involves
replacing a feature or modality with zeros during model evaluation
and examining the change in model performance following the loss
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FIGURE 3

CNN architecture. Layers (i) of the diagram repeat 3 times. In (i) there are 6 1D-convolutional (conv1d) layers in total. The first two conv1d layers
(number of filters = 16, kernel size = 5) are followed by max pooling (pool size = 2) and spatial dropout (rate = 0.01). The second two conv1d layers
(number of filters = 32, kernel size = 3) are followed by max pooling (pool size = 2) and a spatial dropout (rate = 0.01). The third pair of conv1d layers
(number of filters = 32, kernel size = 3) are followed by max pooling (pool size = 2) and spatial dropout (rate = 0.01). In (ii), the last two conv1d layers
(number of filters = 256, kernel size = 3) are followed by global max pooling, dropout (rate = 0.01), and a flatten layer. The first two dense layers
(number of nodes = 64) have dropout rates of 0.1 and 0.05, respectively. The last dense layer has 5 nodes. The inputs sample shape was 3,000 time
points × 3 modalities, and no layers used zero padding during convolution. An “R” or an “S” indicates that a layer is followed by ReLU or Softmax
activation functions, respectively.

of the information in that modality or feature. The importance of
the replaced feature or modality to the model is directly related
to the decrease in model performance associated with its loss.
A feature f1 is more important to a model than a feature f2 if the
effect of ablating f1 is greater than the effect of ablating f2. Our
standard ablation approach had several key steps (1). We calculated
a confusion matrix (i.e., a model performance estimate) for the test
data in a fold (2). We replaced a modality m with zeros across
all test samples in the fold (i.e., ablation) (3). We calculated a
confusion matrix for the classifier on the test data with the replaced
modality m (4). We calculated the percent change (PCG) in samples
assigned to each classification group following ablation (i.e., effect
of ablation). Example classification groups include NREM1 samples
classified as REM, NREM2 samples classified as NREM3, and REM
samples classified as REM (5). We repeated steps 2 through 4 for
each modality m (6). We repeated steps 1 through 5 for each fold.

PCG =

100∗
Numberof ModifiedSamples−Numberof UnmodifiedSamples

Numberof UnmodifiedSamples

We propose an ablation approach for multimodal
electrophysiology analysis that involves replacing modalities
in a way that mimics line-related noise. This approach involves
all of the steps detailed previously. However, we modify Step 2 of
the ablation process. Instead of replacing modality m with zeros,
we replace modality m with a combination of a sinusoid and
Gaussian noise. We use a sinusoid with a frequency of 50 Hz and
an amplitude of 0.1, and the Gaussian noise had a mean of 0 and
standard deviation of 0.1. To determine whether our line-related
noise approach yielded results significantly different from standard
ablation, we performed a series of two-tailed t-tests. Within each
modality, we compared the importance values in each classification
group for each method across folds.

2.5. Description of novel local ablation
approach

We developed a local ablation approach for insight into
modality importance (Ellis et al., 2021c). Our novel ablation
approach is similar to the global approach described in the previous
section (1). We obtained the top-class probability for a sample

(2). We ablated a modality in that sample (3). We obtained the
classification probability of the modified sample for the original
top class (4). We computed the percent change in classification
probability (5). We repeated steps 2 through 4 for each modality
(6). We repeated steps 2 through 5 for each sample (7). We repeated
steps 2 through 6 for each fold.

PCG =

100∗
ModifiedSampleProbability−UnmodifiedSampleProbability

UnmodifiedSampleProbability

Because there were no preexisting local approaches, we
compared our local ablation results to the global ablation results.
In addition to generating local visualizations of our results, we
estimated global importance by calculating the mean absolute
percent change in classification probability for each fold.

2.6. Description of layer-wise relevance
propagation analysis

Layer-wise relevance propagation (LRP) (Bach et al., 2015)
was first developed for image analysis but has since been used
in electrophysiology (Sturm et al., 2016) and other neuroscience
domains (Yan et al., 2017; Thomas et al., 2018; Ellis et al., 2021e).
We implemented LRP with the Innvestigate library (Alber et al.,
2019). LRP is a local explainability method but has can be used
for global importance estimates (Ellis et al., 2021a,e). LRP involves
several steps (1). A sample is passed through a network and
assigned a class (2). A total relevance of 1 is placed at the output
node of the assigned class (3). The relevance is propagated through
the network to the input sample space with relevance rules.
Importantly, the total relevance is conserved when propagated
through the network such that the total relevance assigned to the
sample space should equal the original total relevance. LRP can
output both negative and positive relevance. Negative relevance
indicates features that support a sample being classified as a class
other than that which it was assigned. Positive relevance indicates
features that support a sample being classified as its assigned class.
In our study, we used the ε-rule and αβ-rule. The equation below
shows the ε-rule.

Rj =
∑

k

ajwjk

ε+
∑

0,j ajwjk
Rk

Frontiers in Neuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.1123376
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1123376 March 9, 2023 Time: 18:13 # 7

Ellis et al. 10.3389/fninf.2023.1123376

TABLE 1 Classification performance results.

Awake NREM1 NREM2 NREM3 REM

F1 71.25± 05.15 39.86± 07.19 73.28± 04.76 64.15± 15.25 65.92± 06.28

Precision 72.25± 07.12 36.20± 03.98 79.35± 03.92 56.78± 18.35 69.04± 07.14

Recall 70.90± 07.02 46.28± 13.52 68.71± 08.51 78.22± 10.24 63.26± 06.69

FIGURE 4

Global ablation results for correctly classified samples. The leftmost and rightmost plots show the results for zero-out and noise-related ablation,
respectively. Horizontal dashed lines separate importance for each sleep stage. The x-axis indicates the mean percent change in samples across
folds. Blue and red bars indicate a negative and positive percent change, respectively. Bolded modalities have significant differences (p < 0.05)
between results for the two methods. Across methods, EEG was most important for all classes except NREM1.

where k indicates a node that is one of k nodes in a layer deeper
in a network and j indicates a node in the layer to which relevance
is being propagated. Rk indicates the total relevance assigned to a
node in a deeper layer, and Rj indicates the total relevance that
will be assigned to a node in a shallower layer. The variables aj
and wjk indicate the activation output of the layer j and the value
of the weight connecting the node in layer j and node in layer
k. The numerator indicates a portion of the effect that the node
in layer j has upon the node in layer k, and the denominator
indicates the total effect of all nodes in layer j upon the node in
layer k. This combined with the summation 6k indicates that the
relevance assigned to the node in layer j is the sum of the fraction
of the effect of the node in layer j upon all of the nodes in layer
k multiplied by their respective relevance. The term “ε” enables
relevance to be filtered when propagated through the network.
A larger ε shrinks the amount of relevance propagated backward
for nodes that would otherwise be assigned low relevance. In effect,
this reduces the noisiness of the explanations. We used the ε-rule
with an ε of 0.01 and 100.

The αβ-rule is shown in the equation below,

Rj =
∑

k

(
α

(
ajwjk

)+∑
0,j
(
ajwjk

)+−β

(
ajwjk

)−∑
0,j
(
ajwjk

)−
)

Rk

where the relevance is split into positive and negative portions.
The variables α and β control how much positive and negative

relevance are propagated backward, respectively. In our study, we
only propagated positive relevance (i.e., α = 1, β = 0).

In our analysis, we generated a global estimation of importance
by calculating the percent of absolute relevance assigned to each
modality. We computed this value for each classification group
in each fold. We also visualized how the percent of relevance
varied over time.

2.7. Description of statistical analyses

We performed a series of statistical analyses with the local
ablation and LRP (ε-rule with ε = 100) explanations for insight
into the effects of demographic and clinical variables upon the
classifier. To account for interaction effects, we trained an ordinary
least squares regression model with age, medication, and sex as
the independent variables and with the absolute importance (i.e.,
percent change in activation for local ablation and relevance for
LRP) for a modality and classification group as the dependent
variable. For LRP, we used the percent of absolute relevance
assigned to each modality for each sample. After training the
model, we obtained the resulting coefficients and p-values for each
class. The sign of the coefficients identified the direction of the
importance difference. After obtaining p-values, we performed false
discovery rate (FDR) correction (α = 0.05) with the 25 p-values (i.e.,
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5 classes × 5 classes) associated with each clinical or demographic
variable to account for multiple comparisons.

3. Results

Here, we describe our model performance, explainability, and
statistical analysis results.

3.1. Model performance results

Table 1 shows the mean and standard deviation of the
precision, recall, and F1 score for each class. The model had highest
F1 scores for NREM2 and Awake. Possibly because of its smaller
sample size, NREM1 had the lowest classification performance
across all metrics. While performance for NREM3 and REM was
not as high as for NREM2 and Awake for most metrics, the classifier
still performed well for both classes.

3.2. Global explainability results

Figure 4 and Supplementary Figure 1 show the results
comparing noise-related global ablation with the typical zero-out
global ablation approach for correct classification groups and
all classification groups, respectively. Interestingly, the methods
generally agreed upon the relative importance of each modality.
However, there were multiple significant differences in which
our method seemed to amplify the effect of perturbation more
than the typical zero-out approach. Figure 5 and Supplementary
Figure 2 show our local ablation results estimating global
modality importance for correct classification groups and all
classification groups, respectively. Figure 6 and Supplementary
Figure 3 show the LRP results for correct classification groups
and all groups, respectively. We compared the relative magnitude
of the estimates across methods. Across methods, EEG was
generally most important. For Awake/Awake, all three methods
found that EEG was most important, though LRP magnified
the importance of EOG and EMG relative to EEG more than
local ablation. For NREM1/NREM1, two LRP rules and local
and global ablation found that EOG was most important,
followed by EEG. NREM2/NREM2 and NREM3/NREM3
results were similar across methods. EEG was most important,
followed by EOG and EMG. For REM/REM, only LRP ε-rule
(ε = 0.1) agreed with local and global ablation regarding the
relative modality importance. They identified the order of
importance as EEG, EOG, and EMG. Many incorrect classification
groups had similar distributions of relative importance across
methods. However, some groups had different importance
distributions. NREM1/Awake generally had greater EOG than
EEG relevance for LRP but not for ablation. NREM2/NREM1
had less EOG than EEG relevance for LRP but not for ablation.
Awake/REM and NREM1/REM had more EEG than EOG
importance for local ablation but not for LRP. Global ablation
found that EEG and EOG importance for Awake/REM varied
according to the global ablation approach. Additionally, global
ablation found that EEG had greater importance than EOG for
NREM1/REM.

FIGURE 5

Local ablation results showing estimation of global importance for
correct classification groups. Within each fold, we calculated the
mean absolute percent change in activation for the perturbation of
samples in each classification group. We then calculated the
median value across folds. The x-axis indicates the values
associated with that percent change in activation. The bar plots
show the results for the correct classification group. EEG, EOG, and
EMG importance values are shown in red, green, and blue,
respectively. EEG was most important for all classes except NREM 1.

3.3. Subject-level local explainability
results over time

Figure 7 shows both the local ablation and LRP results over
the first 2 h of a recording from Subject 12. Both methods
showed similar trends in modality importance over time. They
both showed lower levels of EEG and higher levels of EOG
importance during Awake and NREM1 periods and showed
a transition to higher EEG and lower EOG importance for
NREM2, NREM3, and REM. However, LRP often seemed to more
closely correspond with changes in electrophysiology activity. For
example, between 60 and 80 min, EMG activity spiked, and a
misclassification resulted. In this case, LRP more clearly indicated
that the change affected the classification. Additionally, for NREM
periods from 30 to 100 min, EEG relevance had greater variation
relative to the that of other modalities than the local ablation
results.

3.4. Statistical analysis of effects of
clinical and demographic variables upon
local explanations

Figures 8A–C and Supplementary Figure 4 show the results
for the statistical analysis examining the effects of medication,
sex, and age upon the local ablation explanations for correct
classification groups and all groups, respectively. Figures 8D–F and
Supplementary Figure 5 show the results for the analysis applied
to the LRP relevance. Many effects were consistent between the
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two methods. Across both methods, subject sex had relationships
with more correct classification group modality pairs than either
medication or age. The importance of EEG for Awake/Awake
was less in temazepam than placebo samples and was more
in temazepam than placebo samples for REM/REM. Samples
assigned to NREM3 also generally had more EEG importance for
temazepam than placebo samples. For EOG, most groups with
significant relationships with medication had more importance
across both methods in placebo than in temazepam samples.
In REM/REM, EOG importance was higher in placebo than
temazepam samples. NREM2/NREM1 and NREM3/NREM2 had
more EMG importance in temazepam than placebo samples
for both methods. REM/NREM2 had less EMG importance in
temazepam than placebo samples for both methods.

For the effects of sex on EEG importance, the two methods
provided similar results in a couple cases: (1) NREM1/NREM2
and (2) NREM2/NREM1. However, different effects occurred
in many cases: (1) NREM2/NREM2, NREM2/NREM3, and
NREM2/REM, (2) NREM3/NREM3 and NREM3/NREM2, and
(3) REM/REM and REM/NREM2. For EOG, correctly classified
Awake, NREM2, NREM3, and REM had similar differences in
importance between males and females, and the changes in
importance for many classification groups were similar across
methods. For EMG and sex, the differences in importance between
male and female were similar in a few cases (e.g., Awake/REM,
NREM1/NREM3, and REM/NREM3).

Across methods, age affected the importance assigned to
modalities. For EEG, there were similar effects of age: (1)
Awake/NREM3, (2) NREM2/NREM1 and NREM2/REM, and
(3) REM/REM and REM/Awake. Many groups with different
results across methods were insignificant for local ablation. For
EOG, there were differences between many classification groups.
However, NREM1/REM and NREM2/REM, and NREM3/NREM1
had similar results across methods. For EMG, there were
many similarities in the effect of age upon the explanations
of the methods: (1) NREM1/NREM2, (2) NREM2/NREM2 and
NREM2/Awake, (3) NREM3/NREM3, and (4) REM/NREM3.

4. Discussion

In this section, we discuss the broader implications of our
methods. We then discuss our results within the context of sleep
literature and discuss future research directions.

4.1. Implications of novel explainability
methods beyond sleep stage
classification

In this study, we present a series of novel multimodal
explainability methods. Our global ablation method is uniquely
adapted to multimodal electrophysiology data. Additionally, its
finding of enhanced effects relative to a zero-out approach
highlights the utility of using domain-specific perturbations. Our
local ablation approach is the first local multimodal explainability
method that provides insight into the importance of each modality.
By examining the change in output activation following ablation,
it also shows how ablation or perturbation could be used to

obtain local explanations across a variety of explainability problems
beyond multimodal explainability. It is, in its current state, only
applicable to electrophysiology data, but it could be easily adapted
to other domains. We also show, for the first time, how gradient-
based methods can be used to find modality importance both
locally and globally. Because they do not perturb data, GBFA
methods could offer a more reliable approach than ablation.
Importantly, our ablation and gradient-based methods could each
be better suited to different models. Unlike gradient methods,
ablation is easily applicable to all deep learning classification
frameworks. For example, our ablation methods would be more
effective for long short-term memory (LSTM) networks than
our LRP approach. While LRP can be applied to long short-
term memory networks (Arras et al., 2017), doing so can be
challenging, especially given that LSTMs are not supported in the
Innvestigate library, and problems can arise with model gradients.
As such, it is generally easier to implement for most CNN or
multilayer perceptron architectures (Ellis et al., 2021e). It is also
important to note that the insights provided by ablation and LRP
are slightly different. Ablation gives a quantitative estimate of the
sensitivity of the model to the loss of information in a modality.
In contrast, LRP gives an estimate of the reliance of the model
upon a given modality in the classification of a specific sample. Our
local methods could help identify subject-specific electrophysiology
biomarkers for personalized medicine. Additionally, our analysis
of the relationship between local explanations and demographic
and clinical variables offers a way to gain insight into the effects of
variables that are not explicitly included in the training data and has
implications beyond multimodal explainability. Model developers
could use it to better understand how aspects of data are affecting
their models. Additionally, it could increase physicians’ and other
relevant decision-makers’ trust of deep learning-based systems and
jointly increase the likelihood of clinical adoption. It could also help
scientists develop hypotheses for novel biomarkers.

4.2. Classification performance

Our classifier performed well but slightly below state-of-the-
art classifiers (Chambon et al., 2017). Performance was worst on
NREM1. This makes sense given that NREM1 is the smallest class
and can be similar to Awake and REM (Iber et al., 2007; Tsinalis
et al., 2016a). NREM1 classification has often been relatively poor
in previous studies (Tsinalis et al., 2016a; Supratak et al., 2017;
Chambon et al., 2018; Michielli et al., 2019). Although Awake and
NREM1 had similar numbers of samples, the classifier performed
much better on Awake. Given that Awake EEG and EOG have
features that are very different from those of NREM and that Awake
EMG is different from REM EMG (Iber et al., 2007), it makes
sense that it would be easier to classify Awake samples. Similar to
previous studies (Chambon et al., 2017; Supratak et al., 2017), the
precision and F1 score, but not recall, were highest for NREM2.

4.3. Global results

Across methods, EEG was most important for identifying
Awake, NREM2, NREM3, and REM. In contrast, EOG played a
greater role in the correct classification of NREM1 samples. EMG
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FIGURE 6

LRP global modality importance results for correct classification groups. We calculated the percent of absolute relevance for each modality across
samples within each classification group. We then calculated the median value across folds. Panels (A–C) show results for the αβ-, ε- (ε = 100), and
ε-rules (ε = 0.01), respectively. Red, green, and blue bars are for EEG, EOG, and EMG, respectively. EEG was generally most important.

FIGURE 7

Local explanations over a 2-H sleep cycle from subject 12. The first, second, third, and fourth panels show the actual and predicted classes,
electrophysiology activity, local ablation results, LRP results (ε = 100). Unlike the global results, EOG is more important for Awake than EEG from 0 to
20 min.

was not very important to the classification of any stage. This result
is not atypical, as previous studies have shown that using EEG
and EMG does not greatly improve classification performance for
Awake, NREM2, and NREM3 relative to only using EEG (Kim and
Choi, 2018). While global explanations for correct classification
groups were similar across methods, explanations for incorrect
groups tended to differ across methods.

4.4. Subject-level local ablation and LRP
results over time

The two local approaches had similar results for the 2-h
period of explanations that we output. In contrast to the global

explanations, EOG was particularly important during Awake
periods. This suggests that subject or subgroup-specific patterns
of EOG activity exist within the Awake class that are obscured
by global methods. It also supports existing findings that EEG
alone did not discriminate between Awake, NREM1, and REM
as effectively as EEG with EOG and EMG (Estrada et al.,
2006). Additionally, previous studies have found that EOG is
particularly important for identifying Awake (Pettersson et al.,
2019) and can yield comparable classification performance to
EEG (Ganesan and Jain, 2020). In contrast, EEG was important
for discriminating NREM and REM samples, which makes sense
given that NREM and REM EEG differ greatly (Iber et al., 2007).
It is interesting that the subject had higher Awake EOG than
EEG importance. Globally, EEG tended to be more important
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FIGURE 8

Effects of clinical and demographic variables for correct classification groups. Panels (A–C) show effects of medication, sex, and age, respectively,
on the local ablation results. Panels (D–F) show effects of medication, sex, and age, respectively, on the LRP results. The x- and y-axes indicate the
predicted class and modality, respectively. The heatmaps show the regression coefficient values. Bolded boxes show significant effects (p < 0.05).
A positive medication coefficient indicates that temazepam samples had more importance than placebo samples. A positive subject sex coefficient
indicates that female samples had more importance than male samples, and a positive age coefficient indicates that importance increased with age.
Note that sex had more significant relationships than the other variables.

for Awake than EOG. Moreover, visualizing the results over
time enabled us to obtain higher resolution insight into the
classifier than global visualization. For example, EMG importance
for the subject spiked for incorrectly classified samples, which
suggests that EMG adversely affected model performance for some
subjects.

4.5. Statistical analysis of effects of
clinical and demographic variables upon
local explanations

Interestingly, sex has relationships with more modality correct
classification group pairs than either medication or age, which
could indicate that subject sex had stronger effects on the
patterns learned by the classifier than the other variables. This
is potentially attributable to the imbalance of male and female
subjects. Subject sex seemed to affect the NREM2 EEG patterns
learned by the classifier. This reflects established sleep science.
Namely, adult women can have greater slow-wave EEG activity
in NREM sleep stages than men (Mourtazaev et al., 1995; Ehlers
and Kupfer, 1997), and, in general, there are differences in the
EEG activity of men and women (Armitage and Hoffmann,
2001; Bučková et al., 2020). While sex was associated with the
correct classification of NREM1, sex may have adversely affected
the EEG patterns learned by the classifier for Awake, NREM1,
NREM2, and REM. Whereas the effects of sex on EEG was
more associated with incorrect classification, both explainability
methods indicated that sex likely affected the EOG patterns
learned by the classifier for the correct classification of Awake,
NREM2, NREM3, and REM. This highlights the possibility of
EOG sex differences across most sleep stages. Our literature
review has uncovered no studies on the effects of sex upon
EOG in sleep, so our results could prompt future studies on
this topic. Both methods indicated that sex affected the EMG
patterns learned for incorrectly classified samples. Medication
affected the EEG of Awake, NREM3, and REM similarly, with

both methods. Previous studies have shown that benzodiazepines
like temazepam (Bastien et al., 2003) and other medications
(Chalon et al., 2005) can have significant effects on EEG sleep
stages and that temazepam, in particular, can greatly affect REM
(Pagel and Farnes, 2001). Other studies have shown similar
effects in monkey EEG (Authier et al., 2014). Our results also
showed that medication significantly affected the patterns learned
for REM EOG. Interestingly, medication may have been related
to the learning of EMG patterns that contributed to incorrect
NREM classification. The inconsistent effects of medication upon
EMG could fit with previous studies that purportedly analyzed
EMG sleep data in monkeys but did not report any effects
of medication (Authier et al., 2014). The effects of age on
sleep are well characterized (Mourtazaev et al., 1995; Ehlers and
Kupfer, 1997; Boselli et al., 1998; Chinoy Frey et al., 2014;
Luca et al., 2015). In our study, age seemed to affect the
EEG patterns learned for REM like in Landolt and Borbély
(2001). However, age was also related to the learning of EEG
patterns for multiple incorrect classification groups. This suggests
that the model did not fully learn to address the underlying
effects of age upon EEG across sleep stages. Interestingly, age
had inconsistent effects upon the EOG patterns learned by the
classifier. Age seemed to affect EMG patterns for NREM1 and
NREM2.

4.6. Limitations and next steps

Future studies might compare differences in importance across
more subjects, which could help identify personalized sleep
stage biomarkers (Porumb et al., 2020). For our line-related
noise global ablation approach, we used a combination of a
50-Hz sinusoid and Gaussian noise. This approach provided a
useful proof-of-concept and is viable for use in future studies.
However, it only provides a simple simulation of line noise.
Line noise can, in practice, have a more complex power spectral
density around 50 Hz. In this study, we used a simple CNN
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classifier, which made the implementation of LRP straightforward.
However, using a simple CNN classifier also contributed to
classification performance that was high but below the state
of the art. Future studies with advanced classifiers might use
the analyses that we employed to assist with the discovery of
biomarkers and formulation of novel hypotheses related to sleep
and other domains. Our classifier was originally developed for
EEG sleep stage classification. As such, the architecture may not
be optimized for EOG and EMG feature extraction. While this
does not adversely affect the quality of our explainability results,
it prevents generalizable claims regarding the importance of one
modality over another. Additionally, other GBFA methods could
potentially replace LRP for multimodal explainability. Metrics like
those presented in Samek et al. (2017a), Petsiuk et al. (2018)
could help rate the quality of each explainability method, and
future studies might enhance LRP explanation quality by applying
different relevance rules to different parts of a network (Samek
et al., 2017b). Additionally, while our analysis of relationships
between local explanations and clinical and demographic variables
was insightful, future studies might perform a variety of other
analyses on local explanations (Thoret et al., 2022). For example,
they might cluster local explanations to identify subtypes of
individuals or compute measures that quantify aspects of the
temporal distribution of importance. Lastly, our dataset was only
composed of data from 22 participants. As such, the generalizability
of the conclusions that can be drawn from our analysis of
the relationship between the local explanations and clinical
and demographic variables is somewhat limited. Nevertheless,
the analysis represents a novel approach for the domain and
offers inspiration as a starting point for future studies in the
field.

5. Conclusion

In this study, we use sleep stage classification as a testbed
for developing multimodal explainability methods. After training
a classifier for multimodal sleep stage classification, we present
a series of novel multimodal explainability methods. Up to
this point, relatively few studies in the domain of multimodal
classification have involved explainability, which is particularly
concerning for clinical settings. Our global ablation method is
uniquely adapted to electrophysiology classification. Our local
ablation approach is the first local multimodal ablation method,
and our GBFA approach offers an alternative to ablation that
has not previously been used for modality importance. We find
that EEG was most important to the identification of most sleep
stages while EOG was most important to the identification of
NREM1. We show how local methods can help identify differences
in subject-level explanations that could potentially be used to
identify personalized biomarkers in future studies. Importantly, we
also developed a novel analysis approach and found that subject
sex had more significant relationships with patterns learned by
the classifier relative to other clinical and demographic variables.
More broadly, the approach could help illuminate the effects
of those variables upon different classes (e.g., sleep stages or
disease conditions). Our study enhances the level of insight that
can be obtained from the typically black-box models of the

growing field of multimodal classification and has implications
for personalized medicine and the eventual development of
multimodal clinical classifiers.
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