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Introduction: The exorbitant cost of accurately annotating the large-scale serial

scanning electron microscope (SEM) images as the ground truth for training has

always been a great challenge for brain map reconstruction by deep learning

methods in neural connectome studies. The representation ability of the model

is strongly correlated with the number of such high-quality labels. Recently,

the masked autoencoder (MAE) has been shown to e�ectively pre-train Vision

Transformers (ViT) to improve their representational capabilities.

Methods: In this paper, we investigated a self-pre-training paradigm for serial

SEM images with MAE to implement downstream segmentation tasks. We

randomly masked voxels in three-dimensional brain image patches and trained

an autoencoder to reconstruct the neuronal structures.

Results and discussion: We tested di�erent pre-training and fine-tuning

configurations on three di�erent serial SEM datasets of mouse brains, including

two public ones, SNEMI3D and MitoEM-R, and one acquired in our lab. A series

of masking ratios were examined and the optimal ratio for pre-training e�ciency

was spotted for 3D segmentation. The MAE pre-training strategy significantly

outperformed the supervised learning from scratch. Our work shows that the

general framework of can be a unified approach for e�ective learning of the

representation of heterogeneous neural structural features in serial SEM images

to greatly facilitate brain connectome reconstruction.

KEYWORDS

neural segmentation, SEM image, masked autoencoder, image segmentation, self-

supervised learning

1 Introduction

Three-dimensional segmentation of neural structures in serial scanning electron

microscope (SEM) images is a fundamental task in brain connectomics studies (Kasthuri

et al., 2015; Eberle et al., 2018). Although supervised deep learning methods, such as U-Net

(Ronneberger et al., 2015), have become the preferred approach for image reconstruction,

they rely on annotated data, which can be costly and time-consuming for large-scale

image tasks.

As a feasible alternative, self-supervised learning acquires supervised information from

the data itself and has recently been shown to successfully address the need for data and

be able to learn dense representations of the input (Hung et al., 2018; Lin et al., 2020;

He et al., 2021; Mittal et al., 2021). For the pretext tasks, masked image modeling is such

a pre-training learning task to enhance the representation capability: mask part of the

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1118419
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1118419&domain=pdf&date_stamp=2023-06-08
mailto:wanglirong@suda.edu.cn
mailto:zhangrb@sibet.ac.cn
https://doi.org/10.3389/fninf.2023.1118419
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1118419/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Cheng et al. 10.3389/fninf.2023.1118419

input information and try to predict the masked information.

This paradigm has been very successful in NLP, as self-supervised

learning algorithms based onmasked languagemodeling tasks have

revolutionized the discipline. Methods such as BERT (Devlin et al.,

2019) and GPT (Radford et al., 2018, 2019) have demonstrated that

they can learn on unlabeled text data and are suitable for a variety of

applications. With the introduction of Vision Transformers (ViT)

(Vaswani et al., 2017), Masked autoencoder (MAE) (He et al., 2021)

is also used to enhance the representation ability of self-attention

mechanismmodels (He et al., 2021;Wei et al., 2022; Xie et al., 2022).

Following this philosophy, state-of-the-art methods based on MAE

have demonstrated their effectiveness in developing vision models.

Other common self-supervised methods on downstream tasks

aim to exploit existing labels for unlabeled domains. One approach

is to use discriminator constraints on the spatial distribution of

predictions on unlabeled images to improve model accuracy (Hung

et al., 2018). Another approach uses unpaired image-to-image

translation models, such as CycleGAN (You et al., 2020) on MRI

images, CySGAN (Lauenburg et al., 2022) on SEM images, to

domain-shift the dataset. However, regardless of the downstream

task, the segmentation relies on an optimized translation model,

these methods can increase the complexity of the pipeline and

require additional modules for domain adaptation.

To address these challenges, we propose to use masked

autoencoders (MAE) (He et al., 2021) as a pre-training strategy

FIGURE 1

Illustration of the masked autoencoder. Firstly, we randomly sample a sub-volume from the volume dataset as training data. Next, we randomly mask

voxels with a specific masking ratio after the patch embedding operation. Afterward, the encoder processes all the unmasked voxels. A smaller

decoder operates the full set of voxels, which includes the masked voxels as well, outputs the final reconstruction result. Note that the value of

masked voxels here is given the value 0 because our goal is to predict those masked voxels by encoded voxels.

that is utilized for downstream 3D SEM image tasks. MAE

has not yet been thoroughly investigated for 3D electron

microscope images, and its feasibility in this domain is still

unknown. Therefore, our objective is to explore the applicability

of MAE as a unified pre-training paradigm for various 3D

electron microscope image tasks and evaluate its effectiveness

compared to training from scratch. Our experiments will also

include an evaluation of the proposed method on publicly

available datasets.

2 Related work

Self-supervised learning approaches focus on learning

representations from unlabeled data to achieve high precision,

high accuracy, and rich representations. Transfer learning from

natural images is used for medical image processing regardless

of differences in image scale, and task-related features. Wen

et al. (2021) used medical images datasets to initialize the

network, and subsequently fine-tuned the network for various

medical datasets. Raghu et al. (2019a,b) showed that transfer

learning from imageNet can accelerate the convergence of

medical images, which is particularly useful when medical

image training data is limited. In electron microscope images,

transfer learning using domain-specific data can also help address
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FIGURE 2

Demonstration of mask sampling strategies. In this illustration, our embedded dimension (Z×X×Y) is 6×6×6. Blue cubes represent embedded tokens.

Random sampling is an agnostic spatial-wise sampling strategy. Space-only random sampling masks the tokens to all sections, and section-only

random sampling masks random sections.

FIGURE 3

Demonstration of masked results on the SNEMI3D dataset (Lee et al., 2017). Each row represents the image volume (top), masked volume (middle),

and the final prediction (bottom). The image volume has a size of 6×96×96 and is embedded with patch size 1×16×16. After patch embedding, we

obtain 216 tokens in total with the shape of 6×6×6. Since the masking ratio is up to 90%, there are only 21 visible tokens for further encoding.
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TABLE 1 Demonstration of mask sampling strategy.

Mask Ratio (%) Voi-S Voi-M A-Rand

Random 90 0.234 0.129 0.071

Space 89 0.271 0.140 0.079

Section 83 0.313 0.156 0.103

Random 50 0.253 0.131 0.081

Random 75 0.243 0.116 0.073

Random 90 0.234 0.129 0.071

Random 95 0.249 0.131 0.077

Figure 2 shows the random mask sampling results as well. Right hand side is the

demonstration of masking ratios with randommask sampling. In this table, the masking ratio

is increased from 50% up to 95%, and the parameters of the decoder remain unchanged.

TABLE 2 Demonstration of decoder depth and dimension with random

sampling strategy.

Depth Dimension Voi-S Voi-M A-Rand

2 512 0.264 0.157 0.083

4 512 0.234 0.129 0.071

8 512 0.256 0.143 0.079

4 128 0.325 0.173 0.089

4 256 0.317 0.166 0.085

Left and right hand side is the demonstration of decoder depth with fixed dimension 512.

Right hand side is the demonstration of decoder dimension with fixed depth 4. An overlay

decoder degrades the accuracy.

domain differences and reduce labeling costs (Januszewski and

Jain, 2019; Lauenburg et al., 2022). Januszewski and Jain (2019)

migrated the pre-trained segmentation model to the target data

without labels so that the more accurate pseudo labels of the

new dataset can be obtained directly. Lauenburg et al. (2022)

proposed additional self-supervised and segmentation-based

adversarial objectives in addition to the two steps of domain

translation and image segmentation. Although this strategy

effectively improves the representation ability of the model,

it requires a part of the label as a constraint, and this data is

expensive and time-consuming to collect. Besides, these domain-

based self-supervised learning are difficult to combine with

each other. Recent improvements in self-supervised learning

offer a feasible alternative, allowing specific representations to

be learned to use unlabeled data, which is massive and often

more accessible.

The masked autoencoder is a self-supervised learning

method that learns representations from the image itself.

DAE (Vincent et al., 2008, 2010) is a pioneering work in this

field that presents masking as a type of noise. It develops

with the MLM task in NLP, the most representative is

BERT (Devlin et al., 2019). In the field of CV, such methods

continue to develop and have proven effective (Pathak

et al., 2016; Dosovitskiy et al., 2021; He et al., 2021; Wei

et al., 2022; Xie et al., 2022). Recent methods are based on

the transformer (Vaswani et al., 2017) structure, which is

a self-attention-based model capable of solving image and

language tasks.

3 Proposed method

As shown in Figure 1, our method is an extension of MAE (He

et al., 2021) to 3D electron microscopy image data. Our objective

is to develop methods that are applicable to electron microscopy

images under a general and unified framework. Masked Image

Modeling typically masks parts of the input image or encoded

image tokens and promotes the model to reconstruct the masked

regions. Many existing Masked Image Modeling methods employ

an encoder-decoder design followed by a prediction head, such as

BEiT (Bao et al., 2021) and MAE (He et al., 2021). The encoder

helps to pattern the latent feature representation, while the decoder

helps to process the latent features to the original image. Moreover,

designing the decoder components in a lightweight size minimizes

training time. In our experience, lightweight decoders not only

reduce computational complexity, but also maximize the ability

of the encoders to learn more general representations. In this

work, we thoroughly investigate the effectiveness of different MAE

models on 3D SEM image data. The following components provide

more details:

3.1 Patch embedding

Following the original ViT (Dosovitskiy et al., 2021), given a

patch, we divide it into a regular grid of non-overlapping blocks

in space. These patches are flattened and embedded by linear

projection (Dosovitskiy et al., 2021). The positional embedding

(Vaswani et al., 2017) is added to the embedded token. The token

and position embedding process is the only voxel-wise aware

process. Unlike the 2D MAE (He et al., 2021) design, due to the

different spatial resolutions during imaging, we do not use down-

sampling in the z-direction, which ensures the 3D resolution of the

voxel is close to a cube.

3.2 Masking

We randomly sample patches from the embedded patch set

without replacement. This random sampling is independent of

spatial structure. As shown in Figure 2, the structure-independent

random sampling strategy is similar to the one-dimensional

(Devlin et al., 2019) and two-dimensional (He et al., 2021;Wei et al.,

2022) methods. In He et al. (2021), it is assumed that the optimal

masking ratio is related to the information redundancy of the data.

For unstructured random masks, BERT (Devlin et al., 2019) uses

a masking ratio of 15% for languages, while MAE (He et al., 2021)

uses a masking ratio of 75% for images, indicating that images are

more information redundancy. Our experimental results on patch

data support this hypothesis. The best masking ratio we observed

for 3D MAE (He et al., 2021) on SEM images can reach 90%. This

is consistent with the general assumption that the 3D SEM data are

spatially coherent and more informative.

Figure 3 shows the results of our MAE reconstructing the

masked data, with amasking ratio of 90%. Spatial random sampling

may be more efficient than structure-aware sampling strategies.
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TABLE 3 Evaluation results of SNEMI3D (Lee et al., 2017). Time and params are measured in millisecond (ms) and million (m).

Target Method Backbone Voi-S Voi-M A-Rand Time Params

Affinity

Scratch Vit-B 0.431 0.334 0.109

Pre-train Vit-B 0.234 0.129 0.071 138 154

Scratch Vit-L 0.379 0.318 0.092

Pre-train Vit-L 0.211 0.106 0.063 195 455

BCD

Scratch Vit-B 0.482 0.341 0.116

Pre-train Vit-B 0.331 0.215 0.084 142 154

Scratch Vit-L 0.415 0.301 0.095

Pre-train Vit-L 0.281 0.185 0.079 200 455

FIGURE 4

Illustration of the segmentation results on scratched and pre-trained Vit-Large. The first row is consecutive EM images from SNEMI3D (Lee et al.,

2017). The second and fourth row represents the segmentation results of the model that is training from scratch, and the pre-training method results

are shown in the third and fifth row. We use zwatershed as the post-processing step to generate segmentation results from the predicted a�nity

map. The post-processing algorithm of BCD (Binary maps, contours, distance) predictions are following the configuration from Lin et al. (2021).

Since voxels are coherent, with a very high masking ratio, space-

only or slice-only sampling may retain less information and

produce an overly difficult pre-training task. For example, 83.3%

masking ratio with the slice-only sampling of embedded dimension

6×6×6 means that only one slice is maintained, which presents an

extremely challenging task of predicting other sections. We observe

that the optimal masking ratio for structure-aware sampling is

generally lower. In contrast, spatial random sampling has higher

efficiency on the limited number of visible patches, thus allowing

the use of a higher masking ratio.
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3.3 Autoencoding

Our encoder is a vanilla ViT (Vaswani et al., 2017), applied only

to visible embedded patches, following He et al. (2021). This design

greatly reduces time and memory complexity and leads to a more

practical solution. A masking ratio of 90% reduces the encoder

complexity to 1/10. Unlike SimMIM (Xie et al., 2022), MAE’s

decoder is an encoded patch set and a set of masked tokens (He

et al., 2021) concatenated with another set of vanilla ViT. Decoder-

specific position embeddings are added to this set (He et al., 2021).

Although both are Vit structures, the size of the decoder is designed

to be smaller than the encoder (He et al., 2021). Moreover, the

decoder handles the complete set, but it is originally less complex

than the encoder. In addition, unlike the 2D MAE, we utilize 3D

sin-cos similarity as our 3DMAE’s positional embedding to provide

information about the spatial location.

We use the decoder to predict patches in the voxel space.

We follow (He et al., 2021), predicting full spatial voxels (e.g.,

Z × 16 × 16) and the normalized value of each block of the

original voxel. The training loss function is the mean-squared

error (MSE) between the prediction and its target, averaged over

unknown blocks (Devlin et al., 2019). This method relies on global

self-attention to learn useful knowledge from the data, following

Dosovitskiy et al. (2021).

4 Experiment results

4.1 Implementation

Our encoder and decoder are the vanilla ViT architectures

(Vaswani et al., 2017). We use a patch size of 1 for the z-direction’s

patch embedding, which follows the features of the SEM dataset.

And we implement a space patch size of 16× 16 (Dosovitskiy et al.,

2021), denoted as 1×16×16. We use the same patch size for ViT-

B/L (Dosovitskiy et al., 2021) for simplicity. For a 6 × 96 × 96

input, this patch embedding size produces 6 × 6 × 6 tokens and

is embedded with 3D positional embeddings for further encoding.

The 3D MAE pre-training configuration on SNEMI3D (Lee

et al., 2017) is shown in Table 6. We use the AdamW optimizer

(Kingma and Ba, 2014) with a batch size of 128 on 6 NVIDIA

RTX3090 GPUs. We evaluate the pre-training quality by end-to-

end fine-tuning. Furthermore, we remove the pre-trained decoder

and implement UNETR (Hatamizadeh et al., 2022) as our model’s

architecture. In the experiments of fine-tuning, we compare the

different predicting targets, affinity maps (Lee et al., 2017), and

multi-task predictions (Wei et al., 2020). The loss function of

predicting affinity map follows the proposed configurations from

Lee et al. (2017) and Lin et al. (2021). And the loss function

for multi-task predictions following the configurations from Wei

et al. (2020) and Lin et al. (2021). In addition, the following post-

processing step for affinity maps and multi-task predictions are

using the default configuration (Lin et al., 2021).

The SNEMI3D (Lee et al., 2017) leaderboard use adapted Rand

F-score (A-Rand) (Rand, 1971; Nunez-Iglesias et al., 2013) as

evaluation metrics. To show the significance of different methods,

we demonstrated segmentation accuracy through variation of

TABLE 4 MitoEM-R (Wei et al., 2020) fine-tuning configuration.

Config Value

Optimizer SGD

Weight decay 0.0001

Base learning rate 4e-3

Learning rate schedule (Loshchilov and

Hutter, 2016)

Cosine decay

Warmup iteration (Goyal et al., 2017) 10,000

Dropout (Srivastava et al., 2014) 0.3

Dropout path (Huang et al., 2016) 0.1

Total iteration 300,000

Augmentation Default by Lin et al. (2021)

Scales [1, 0.5, 0.5]

Batch size 8

Input size 6 * 96 * 96

TABLE 5 MitoEM-R (Wei et al., 2020) evaluation results of AP-50 and

AP-75.

Method Backbone AP-50 AP-75

Scratch Vit-B 0.549 0.174

Pre-train Vit-B 0.895 0.514

Scratch Vit-L 0.797 0.431

Pre-train Vit-L 0.923 0.679

information (VI) (Bogovic et al., 2013) and adapted Rand F-score

(Rand, 1971; Nunez-Iglesias et al., 2013). VI is defined as:

VI(S,T) = H(S | T)+ H(T | S) (1)

Where S and T represents segmentation results and its related

ground truth. Then the conditional entropy H(S|T) measures

oversegmentation errors (split error), and H(T|S) measures

undersegmentation errors (merger error). We defined split error

and merge error as Voi-S and Voi-M, respectively.

4.2 Ablation study

In this section, we assessed the model’s pre-training

performance across four aspects: sampling strategy, masking

ratio, decoding depth, and decoding dimension. The ultimate

fine-tuned models with different sampling methods are evaluated

on the SNEMI3D dataset (Lee et al., 2017). Furthermore, we

exclusively used Vit-Base for all ablation experiments and the

pre-training dataset is the training dataset from SNEMI3D.

Table 1 shows the masking strategy between random, space-

only, and section-only sampling. For a fair comparison of the

masking strategy and masking ratio, we set the decoder depth

and decoder dimension to 4 and 512, respectively. Moreover,

in the experiment of the masking strategy, we decided to make
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FIGURE 5

Illustration of the segmentation results on the MitoEM-R dataset (Wei et al., 2020). The first row is consecutive EM images, and the second row is its

related labels. The third and fifth row represents the segmentation results of the model that is training from scratch, and the pre-training method

results are shown in the fourth and sixth row. We use the watershed algorithm as the post-processing step to generate segmentation results from the

predicted binary maps and contours, following the configuration from Lin et al. (2021).

the masking ratio as close as possible. We demonstrate different

sampling strategies in Table 1. Random sampling strategy has the

best performance with the highest 90% masking ratio, which gains

0.071 of A-Rand. For the space-only sampling, we reserved 4×6

= 24 tokens, leading to a masking ratio up to 89%. This strategy

performs close to random sampling. The masking ratio for the

section-only sampling strategy is 83%, it processes one section’s

voxels. As shown in Table 1, the section-only sampling has the

worst performance. Since this sampling strategy needs to predict

the other 5 sections, It is hard to learn a general representation with

the lack of information.

To have a more comprehensive look at the random sampling

strategy, we analyzed the impact on the mask ratio. In this part,

we only change the masking ratio and keep the decoder depth

and dimension into 4 and 512. Table 1 shows the influence of the

masking ratio jointly with the pre-training length. The ratio of 90%

works the best. Because of the information redundancy of the data,

the masking ratio of the random sampling strategy can increase

to 90%. Furthermore, a higher masking ratio conducts in fewer

tokens encoded by the encoder, which means the training speed

is faster.

Table 2 reports the influence of the decoder depth and

dimension. The best decoder depth and dimension are determined

to 4 and 512 respectively. As shown in this table, the accuracy

is degraded by large margins when using an overly decoding

architecture. In 2D MAE (He et al., 2021), the proposed decoding
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TABLE 6 SNEMI3D (Lee et al., 2017) pre-training and fine-tuning

configuration.

Config (pre-training) Value

Optimizer AdamW (Loshchilov and Hutter, 2017)

Optimizer momentum β1 , β2 = 0.9, 0.95 (Mark et al., 2020)

Weight decay 0.005

Base learning rate 1e-4

Learning rate schedule (Loshchilov

and Hutter, 2016)

Cosine decay

Warmup iteration (Goyal et al., 2017) 50,000

Total iteration 400,000

Batch size 128

Input size 6 * 96 * 96

Config (fine-tuning) Value

Optimizer AdamW (Loshchilov and Hutter, 2017)

Optimizer momentum β1 , β2 = 0.9, 0.95 (Mark et al., 2020)

Weight decay 0.05

Base learning rate 1e-4

Learning rate schedule (Loshchilov

and Hutter, 2016)

Cosine decay

Warmup iteration (Goyal et al., 2017) 5,000

Dropout (Srivastava et al., 2014) 0.3

Dropout path (Huang et al., 2016) 0.1

Total iteration 200,000

Augmentation Default by Lin et al. (2021)

Batch size 8

Input size 6 * 96 * 96

TABLE 7 Evaluation results on the dataset of corpus callosum, which is

the region of the gray matter.

Target Method Backbone Voi-S Voi-M A-Rand

Scratch Vit-B 4.122 0.884 0.600

Pre-train Vit-B 1.407 0.378 0.214

Scratch Vit-L 3.426 0.678 0.316

Affinity

Pre-train Vit-L 0.974 0.205 0.197

Scratch Vit-B 1.270 1.116 0.388

Pre-train Vit-B 1.098 1.320 0.326

Scratch Vit-L 0.898 0.921 0.278

BCD

Pre-train Vit-L 0.775 0.826 0.241

depth from the ablation study is 8. In our 3D task, the optimal

decoder depth is 4 which is lower than the proposed depth on 2D

MAE (He et al., 2021). This part is also related to the differences in

information redundancy between the 2D and 3D data.

4.3 Evaluation results

4.3.1 SNEMI3D
Table 3 studies the differences between the pre-training strategy

and training from scratch on the SNEMI3D dataset (Lee et al.,

2017). Moreover, it shows the difference between predicting targets.

In Table 3, for the prediction of the target, BCD prediction

represents the multi-task learning method (Wei et al., 2020), which

includes predicting binary maps, contours, and distance (BCD).

As shown in Figure 4, we find that predicting the affinity maps

presents a more accurate result on small objects, regardless of

whether it is pre-trained. Moreover, evaluate metric also shows that

predicting affinity maps performs better than predicting BCD. For

the training method, as shown in Table 3, the pre-trained model

gains comprehensive improvement on both predicting targets

compared with the scratched model. The pre-trained Vit-Base and

Vit-Large gain 0.071 and 0.063 of the A-Rand value, respectively.

Moreover, as shown in Figure 3, regardless of the failure of high-

frequency information reconstruction inMAE (He et al., 2021) pre-

training, the pre-trained models outperform the scratched models.

We also profile the parameters of the models and inferencing

times in Table 3. Time and parameters are measured in millisecond

(ms) and million (m). We measure the inference time of a

single batch with batch size 1. Moreover, we observe that

predicting the affinity map has the fastest inference time.

Furthermore, the theoretical computational complexity (FLOPs)

for the model with backbone of Vit-Base and Vit-Large is 154.1G

and 221.1G, respectively.

4.3.2 MitoEM-R
The task of this dataset (Wei et al., 2020) is the instance

segmentation of mitochondria. Following the same experiment

settings fromWei et al. (2020), we use the binary maps and instance

contours as our targets to fine-tune the models. The configurations

are shown in Table 4. The post-processing steps for all the models

are following the default configuration from Wei et al. (2020)

and Lin et al. (2021). Moreover, we calculate the value of mAP

on the validation dataset of MitoEM-R. Table 5 demonstrates the

differences between the pre-training strategy and the training

from scratch on the MitoEM-R dataset (Lee et al., 2017). As

shown in Table 5, pre-trained Vit-Large obtains best results on

both AP-75 and AP-50. Moreover, the Vit-Large with training

from scratch performs worse than the pre-trained Vit-Base. It

proves the MAE’s (He et al., 2021) capability of representation

learning on small objects such as mitochondria. Furthermore, we

notice the value of AP-75 from Vit-Large has a giant improvement

compared with Vit-Base. Higher AP-75 means the accurate shape

and contour predictions from the model, see Figure 5, pre-trained

Vit-large present the best segmentation results compared with

other methods.

4.3.3 A white matter dataset
In this part, we demonstrate the generalization of the model

that was pre-trained on SNEMI3D (Lee et al., 2017), a gray

matter dataset, to fine-tune on a white matter dataset containing

very different structural patterns. The fine-tuning dataset is on
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FIGURE 6

Illustration of the corpus callosum dataset segmentation results on the scratched and pre-trained Vit-Large. The first row is consecutive EM images,

and the second row is its related labels. The third and fifth row represents the segmentation results of the model that is training from scratch, and the

pre-training method results are shown in the fourth and sixth row. We use zwatershed as the post-processing step to generate segmentation results

from the predicted a�nity map. The post-processing algorithm of BCD (binary maps, contours, distances) predictions are following the configuration

from Lin et al. (2021).

the region of the corpus callosum, which contains amounts

of myelinated axons and some blurry sections. We manually

annotated two different volumes from this dataset for further

segmentation experiments. The shape of training and testing

volume is 50 × 3000 × 3000 and 59 × 3000 × 3000 with the

resolution of 4 nanometers per pixel, respectively. The fine-tuning

process is following the same configuration for SNEMI3D (Lee

et al., 2017) in Table 6. As shown in Table 7, the pre-trained

model outperforms the model that trains from scratch in terms of

different predicted targets. The pre-trained Vit-Large gains 0.197

of A-Rand. The visual results are shown in Figure 6. It proves

the representation learning from 3D MAE (He et al., 2021) can

promote model performance even when the pre-training dataset

and fine-tuning dataset are enormously different. Moreover, in

Figure 6, we notice the model that predicting BCD performs better

than affinity prediction. Empirically, because of the additional

constraining of contour prediction, it allows the model overcomes

the impact of blur affections. In addition, the contours of themyelin

sheath are thicker than the cell’s membrane, which degrades the

challenge of predicting boundaries.

5 Discussion

This paper proposes the paradigm of implementing MAE (He

et al., 2021) to the SEM dataset, which the pre-trained Vit (Vaswani
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FIGURE 7

Illustration of pre-training method with fine-tuning and training from scratch. The evaluation is under the Vit-Base with predicting a�nity map on

SNEMI3D dataset (Lee et al., 2017). Here, x-axis is the training iterations and y-axis is value of A-Rand (Nunez-Iglesias et al., 2013). The training

configuration is shown at Table 6. The pre-training method outperforms the training from scratch and more pre-training iterations prompt better

representation learning even the loss is almost converged.

et al., 2017) can be implemented as the backbone of the UNETR

(Hatamizadeh et al., 2022) for downstream tasks. We optimized

the best configuration of three-dimensional MAE (He et al., 2021)

pre-training for the SEM dataset. In Table 1, empirically show

the efficient representation learning with the 90% random mask

sampling strategy. Moreover, Table 2 proves the overlay decoder

design can cause the degradation of accuracy.

As shown in Table 5, the experiment results on public dataset

SNEMI3D (Lee et al., 2017) illustrate the performance, parameters,

and inference time of using 3D MAE (He et al., 2021) in

downstream tasks. By predicting affinity map, the pre-trained Vit-

Large gains 0.063 of the A-Rand, while the training from scratch

method achieves 0.092 of the A-Rand. We reflect the impact of

pre-training iterations, pre-training method plus fine-tuning and

training from scratch in Figure 7. As shown in this figure, the

pre-training with fine-tuning is much more accurate than the

random initialization. Moreover, from Table 5, the experiments

on MitoEM-R (Wei et al., 2020) demonstrate that pre-training

on SNEMI3D (Lee et al., 2017) can also significantly enhance

the performance of the tasks on MitoEM-R dataset, while pre-

trained Vit-Large obtains 0.679 of AP-75. Note that the pre-

training of the backbone was on SNEMI3D (Lee et al., 2017).

We also discovered that the pre-trained backbone has a positive

impact on the corpus callosum dataset, which is the region of

the gray matter. As shown in Table 7, the pre-trained Vit-Large

gains 0.197 of A-Rand compared with 0.316 of A-Rand by the

training from scratch. Such enormous improvement proves the

difference across datasets does not constrain the representation

learning from 3D MAE (He et al., 2021). In addition, the

experiments demonstrate the potential of implementing pre-

trained vit (Vaswani et al., 2017) as the backbone to solve the

downstream tasks.

6 Conclusion

We explored the paradigm of implementing MAE (He et al.,

2021) to the SEM dataset. We found that representation learning

for neural structure heterogeneity is possible with minimal domain

knowledge. Similar to the MAE (He et al., 2021) and BERT (Devlin

et al., 2019), the masking ratio is strongly related to the information

redundancy of the data. Therefore, we found the time cost of the

MAE pre-training paradigm for the SEM volume dataset can be

tremendously reduced. We reported encouraging results of using

pre-trained vit (Vaswani et al., 2017) as the backbone on two public

white matter datasets, and a gray matter dataset. The pre-training

method achieves strong performance and shows the capability of

efficient representation learning across different structure patterns.
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