
TYPE Technology and Code

PUBLISHED 27 June 2023

DOI 10.3389/fninf.2023.1099510

OPEN ACCESS

EDITED BY

Matthias H. Hennig,

University of Edinburgh, United Kingdom

REVIEWED BY

Russell Jarvis,

Western Sydney University, Australia

Hans Ekkehard Plesser,

Norwegian University of Life Sciences, Norway

*CORRESPONDENCE

Benjamin J. Arthur

arthurb@janelia.hhmi.org

†PRESENT ADDRESS

Ran Darshan,

Department of Physiology and Pharmacology,

Sackler Faculty of Medicine, Tel Aviv University,

Tel Aviv, Israel;

Sagol School of Neuroscience, Tel Aviv

University, Tel Aviv, Israel;

The School of Physics and Astronomy, Tel Aviv

University, Tel Aviv, Israel

RECEIVED 15 November 2022

ACCEPTED 05 June 2023

PUBLISHED 27 June 2023

CITATION

Arthur BJ, Kim CM, Chen S, Preibisch S and

Darshan R (2023) A scalable implementation of

the recursive least-squares algorithm for

training spiking neural networks.

Front. Neuroinform. 17:1099510.

doi: 10.3389/fninf.2023.1099510

COPYRIGHT

© 2023 Arthur, Kim, Chen, Preibisch and

Darshan. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A scalable implementation of the
recursive least-squares algorithm
for training spiking neural
networks

Benjamin J. Arthur 1*, Christopher M. Kim 1,2, Susu Chen 1,

Stephan Preibisch 1 and Ran Darshan 1†

1Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States, 2Laboratory of

Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes

of Health, Bethesda, MD, United States

Training spiking recurrent neural networks on neuronal recordings or behavioral

tasks has become a popular way to study computations performed by the nervous

system. As the size and complexity of neural recordings increase, there is a need for

e�cient algorithms that can train models in a short period of time using minimal

resources. We present optimized CPU and GPU implementations of the recursive

least-squares algorithm in spiking neural networks. The GPU implementation can

train networks of one million neurons, with 100 million plastic synapses and a

billion static synapses, about 1,000 times faster than an unoptimized reference

CPU implementation. We demonstrate the code’s utility by training a network, in

less than an hour, to reproduce the activity of > 66, 000 recorded neurons of

a mouse performing a decision-making task. The fast implementation enables

a more interactive in-silico study of the dynamics and connectivity underlying

multi-area computations. It also admits the possibility to train models as in-vivo

experiments are being conducted, thus closing the loop between modeling and

experiments.

KEYWORDS

integrate and fire neuron, dynamical system, Neuropixels dense silicon probe, balanced

networks, excitation-inhibition

1. Introduction

Cognitive functions involve networks of interconnected neurons with complex dynamics

that are distributed over multiple brain areas. One of the fundamental missions of system

neuroscience is to understand how complex interactions between large numbers of neurons

underlie the basic processes of cognition.

An increasingly popular data-driven modeling approach for investigating the neural

mechanisms that support behavioral tasks is to train neurons in an artificial neural network

to reproduce the activity of recorded neurons in behaving animals (Hofer et al., 2011; Fisher

et al., 2013; Rajan et al., 2016; Andalman et al., 2019; Daie et al., 2021; Finkelstein et al.,

2021). Such network models can range from purely artificial networks that are far from

being biological (Sussillo and Abbott, 2009; Rajan et al., 2016; Daie et al., 2021; Finkelstein

et al., 2021), to biophysical neuronal networks that include spiking activity (Kim and Chow,

2018) of different cell types that operate in a brain-like dynamical state (Kim et al., 2023).

The neural dynamics and the connectivity structure of the trained network can then be

analyzed to gain insights into the underlying neural mechanisms. For instance, Rajan et al.

(2016) demonstrated that memory-related sequential activity can be produced in highly

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1099510
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1099510&domain=pdf&date_stamp=2023-06-27
mailto:arthurb@janelia.hhmi.org
https://doi.org/10.3389/fninf.2023.1099510
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1099510/full
https://orcid.org/0000-0003-3545-8807
https://orcid.org/0000-0002-1322-6207
https://orcid.org/0000-0002-5065-1157
https://orcid.org/0000-0002-0276-494X
https://orcid.org/0000-0003-3078-4857
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Arthur et al. 10.3389/fninf.2023.1099510

heterogeneous but partially structured recurrent neural networks,

Finkelstein et al. (2021) showed that decision-related information

can be gated from distracting inputs by forming increasingly stable

fixed points that move away from the decision boundary, and Kim

et al. (2023) provided general circuit mechanisms for spreading

task-related neural activities from a small subset of trained neurons

to the rest of neurons in the network.

With the increase in the size of experimentally recorded neural

data sets, the ability to fit the activity of neurons in model

networks is becoming a challenge. For example, the number

of simultaneously recorded neurons in behaving animals has

been increasing in the last few years at an exponential rate

(Stevenson and Kording, 2011). At present, it is possible to

simultaneously record in a single session about 1,000 neurons

using electrophysiology, and up to 100,000 neurons using calcium

imaging in behaving animals (Urai et al., 2022). When combining

several sessions of recordings, the amount of data becomes huge

and will likely grow to millions of recorded neurons in the near

future.

Here, we developed a scalable implementation of the recursive

least-squares algorithm (RLS) to train spiking neural networks

of tens to hundreds of thousands of neurons to reproduce the

activity of neural data. RLS (Haykin, 1996) was initially applied

to train the outputs of a recurrent neural network for performing

complex tasks, such as implementing 3-bit memory or generating

motor movements (also known as FORCE; Sussillo and Abbott,

2009). Subsequently, RLS was adopted for training the individual

neurons within a recurrent neural network to reproduce target

neural activities. Examples of target activities include activity of

neurons recorded from the brain (Rajan et al., 2016; Daie et al.,

2021; Finkelstein et al., 2021), chaotic activity of a random network

(Laje and Buonomano, 2013), teacher networks (DePasquale et al.,

2018) and arbitrary functions (Kim and Chow, 2018). Although

most existing studies apply RLS to rate-based networks, it can

also be implemented in spiking neural networks for performing

complex tasks (Nicola and Clopath, 2017) and reproducing neural

activities (Kim and Chow, 2018, 2021; Kim et al., 2023).

Starting with the code in Kim et al. (2023), we generalized it to

include different models of single cell dynamics, as well as extended

it to account for external noise. We then optimized it for run-time

speed. Finally, we demonstrated its performance by training more

than 66,000 spiking neurons to reproduce the activity of recordings

from multiple brain areas of mice using Neuropixels probes (Jun

et al., 2017) in a decision making task (Inagaki et al., 2022; Chen

et al., 2023). Fitting these data, which were sampled at 20 ms for 3

s, takes about 10 h on a multi-core CPU and less than an hour on a

GPU. The code is freely available.

2. Results

We implemented the RLS algorithm to train individual

neurons within a large spiking recurrent neural network to

reproduce a pre-determined target activity (Figure 1A). Specifically,

we considered networks of integrate-and-fire spiking neurons

connected by synapses with varying spike-filtering time scales but

no explicit spike-propagation delays, in which the neurons could

fire irregularly due either to recurrent interactions, known as the

fluctuation-driven regime (Van Vreeswijk and Sompolinsky, 1996;

Brunel, 2000; Amsalem et al., 2022), or to external noise, or both.

We chose the standard leaky integrate-and-fire neuron as our

model neuron. In the code, the cell model is a plugin, making it

easy for users to customize, and we provide code that implements

all five of the Generalized Leak Integrate and Fire (GLIF) models

described in Teeter et al. (2018).

The learning objective was to train the synaptic current ui(t)

of each neuron i = 1, ...,N such that it followed a target activity

pattern fi(t) on a time interval t ∈ [0,T] (see Appendix: recursive

least squares in Supplementary material). These activity patterns

were extracted from the peri-stimulus time histograms (PSTHs)

of recorded neurons in the brain (see Appendix: generating

target trajectories in Supplementary material). To trigger a target

response, each neuron in the network was stimulated by a constant

input with random amplitude for a short duration. These external

stimuli were applied to all neurons simultaneously, such that the

network was set to a specific state at the end of stimulus duration.

The synaptic weights were trained with this stimulated network

state as the initial state, which allowed the trained network to

produce the target response whenever the stimulus was applied

to reset the network state. We treated every neuron’s synaptic

current as a read-out, which made our task equivalent to training

N recurrently connected read-outs. For the current-based synapses

considered in this study, neuron i’s synaptic current ui can be

expressed in terms of the spiking activities of other neurons rj, j =
1, ...,N through the exact relationship ui =

∑
j Wijrj (see Equations

A9 and A10 in Supplementary material for details). Therefore, we

adjusted the incoming synaptic connections Wij, j = 1, ...,N to

neuron i by the RLS algorithm in order to generate the target

activity. Specifically, we randomly chose L plastic connections per

neuron and trained only these connections. This training scheme

allowed us to set up independent objective functions for each

neuron and update them in parallel (see Appendix: recursive least-

squares in Supplementary material). The linearity of u in terms

of r makes it possible to directly apply the RLS algorithm to

train the synaptic activity. Alternatively, the firing rates of neurons

can also be trained if an appropriate F-I curve (Equation A1

in Supplementary material) for the neuron model is used in the

RLS algorithm. This procedure, however, involves differentiating

the non-linear F-I curve, which can slow down learning during

subthreshold activity, as shown previously (Kim and Chow, 2018).

Besides the plastic connections, each neuron can also receive

an average of K pre-synaptic static inputs. These connections are

referred to as “static” because they remain unchanged during the

learning process. The average static synaptic weights were chosen

such that the network was in the balanced state (see Appendix in

Supplementary material and Kim et al., 2023 for further details).

In addition, an external noise was optionally injected into each

neuron, with a variance of σ 2.

In the case where the neurons are driven by external noise and

there are no static connections (K = 0, σ > 0), the number of

plastic weights (L) is only bounded by N (and memory). However,

in the presence of static weights, we follow our previous work (Kim

et al., 2023) and choose them such that L = O(
√
K). As discussed

in Kim et al. (2023), this relationship, along with the scaling of 1/L

Frontiers inNeuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2023.1099510
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Arthur et al. 10.3389/fninf.2023.1099510

for each plastic synapse, which is comparable to the static synapses

(i.e., 1/
√
(K)), facilitates learning without disturbing the balanced

state of the network.

Starting with a working implementation of the algorithm (Kim

et al., 2023), we profiled the code to find slow sections, optimized

those lines for performance using the strategies below, and iterated

until there were no further easy gains to be had. We achieved

almost two orders of magnitude improvement in run times for

large networks using the CPU alone compared to the reference

code (Figure 1B), and another order of magnitude or two by

refactoring to use a GPU. These trends held true when random

static connections were replaced with a Gaussian noise model

(Figure 1C). The advantage of this noise model is that run times

are relatively independent of firing rates (Figure 1F).

2.1. Optimization strategies

We used the Julia programming language (Bezanson et al.,

2017) since rapid prototyping and fine-grained performance

optimizations, including custom GPU kernels, can be done in the

same language. Several strategies and techniques were used to make

the code performant, both in terms of run time as well as memory

use. Benchmarking was performed on synthetic data consisting of

sinusoidal target functions with random phases.

2.1.1. Parallel updates of the state variables
Pre-synaptic weights and neuronal voltages can be updated in

parallel as they are independent of each other. Synaptic currents can

also be updated in parallel, except during an action potential, when

different threads might overwrite each others updates to a post-

synaptic neuron’s current if multiple of its pre-synaptic neurons

spike simultaneously. In the CPU code, we used multiple threads

to loop over the neurons to update the weights, voltages, and the

exponential decay of currents. As Julia does not support atomic

operations on elements of a vector, and locking mechanisms can

be slow, a subsequent non-threaded loop was used to update the

post-synaptic currents to avoid the race condition when a spike

occurred.

We benchmarked CPU multi-threading on a machine with

48 physical cores and found that performance plateaued after 16

threads for a large model (Figure 1D). For small network models

there was an optimal number of threads, and using more threads

was actually slower. As there is no communication between threads,

the optimum number is presumably determined by the balance

between the overhead in launching each thread and the time spent

performing computations therein. There is also a dependence of

loop times on spike rate, due to the second non-threaded loop, the

slope of which is proportional to K + L (Figure 1F).

Given that GPUs are purpose-built to thread well, we

investigated whether the RLS algorithm would scale better with

them. Since accessing individual elements in a vector is very slow on

a GPU, due to each kernel call incurring a large overhead, we made

a functionally equivalent copy of the CPU code and refactored

it to use vector operations instead of for-loops over elements.

Specifically, to reset the membrane potential in a performant way

FIGURE 1

Training speed for models of various sizes. (A) Cartoon of a

recurrent spiking neural network. Excitatory (green circles) and

inhibitory (yellow circles) neurons have plastic (magenta lines) and,

optionally, static (gray lines) connections to each other. Each

neuron receives, on average, K static and L plastic connections.

Associated with each neuron are the target activity patterns (blue

insets; only three shown). For models with no static connections

(K = 0) we injected into each neuron a white noise with variance σ 2

(black insets; only two shown). (B) The time taken by each training

iteration for models with static connections vs. the number of

neurons (N; left) or the number of static connections (K; right).

Compared are the single-threaded CPU code used by Kim et al.

(2023), our optimization of the same CPU code (CPU), and our

refactoring of the same algorithm for GPUs using a consumer grade

card (2080Ti) and an enterprise grade board (A100). In each case we

tested the model sizes up to the largest that would fit in memory:

(Continued)

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2023.1099510
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Arthur et al. 10.3389/fninf.2023.1099510

FIGURE 1 (Continued)

768 GB for the CPU, 11 GB for the 2080Ti, and 80 GB for the A100.

The reference code used 64-bit floating point numbers and a full

dense array for the large P matrix; all new code presented here uses

32-bit floating point numbers and a packed symmetric array for P.

(C) Similar to (B) but with a Gaussian noise model instead of static

connections (K = 0, σ > 0), when varying the number of neurons

(left) or the number of plastic connections (L; right). (D) Strong

scaling of the optimized CPU code for large (left) and small (right)

models. Purple: code stores the P matrix in a full dense matrix. Red:

symmetric matrix. Cyan: packed symmetric matrix. (E) The e�ect of

the matrix storage format on the GPU code as a function of the

number of neurons (left) or plastic synapses (right). (F) The time

taken for each training iteration as a function of spike rate. The latter

was varied with the external input to neurons (Xbal in Equation A7 in

Supplementary material). Solid lines indicate GPU code and dotted

are the CPU code. (G) The e�ect of storage precision on learning.

The first column in the legend indicates the bit precision of all state

variables except P, which is indicated in the second column. For

integer types, P was scaled by 2nbits−2.

when a spike occurs, we replaced the for-loops in the CPU

code, and the if-statements therein, with a broadcasted ifelse

statement that inputs a boolean vector indicating which neurons

spiked. Doing so results in the membrane potential of all of the

neurons which do not spike being “reset” to its current value, but

this is still faster even for low spike rates. To update the post-

synaptic neurons, we moved the for-loop to be inside a custom

GPU kernel where CUDA atomic instructions are available to

handle the race condition. Just one kernel call is hence made,

thereby minimizing the overhead. A dependency of loop time

on spike rate also exists, just like in the CPU code, due to the

atomic locking.

Whereas, the CPU run times were linear with model size,

GPU performance was flat below a certain size. This is likely

because models that are sufficiently small don’t use all the

parallelism that the GPUprovides. TheNVIDIAA100, for example,

has 108 multiprocessors and each one can execute 32 threads

simultaneously, yielding a total of 3,456 threads.

2.1.2. Symmetric and packed arrays
The RLS algorithm uses the running estimate of the inverse

of the correlation matrix of the activity of the pre-synaptic

neurons (plus regularization terms), which for each of the N

neurons is a symmetric matrix of size L × L that we denote

as P (see Equation A18 in Supplementary material). To perform

mathematical operations on P, as well as other state variables,

we utilized Basic Linear Algebra Subprograms (BLAS), a highly-

engineered library of mathematical operations commonly used

in high-performance computing. While some BLAS routines

specialized to operate on symmetric matrices are faster, others are

slower. Consider the function syr, for example, which computes

A = αxxT + A, where A is a symmetric matrix, x is a vector, and

α is a scalar. Here, A is being updated, and since it is symmetric,

there are only half as many elements to update compared to

ger which computes the non-symmetric counterpart. syr is

hence typically faster than ger. Conversely, symv computes y =
αAx + βy, where A is a symmetric matrix, x and y are vectors

and α and β are scalars. Here, every element of A must be

accessed to update y. Since extra logic must be used to ensure

that indexing operations only access a particular triangle, symv

is typically slower than gemv. We found that on balance it was

slightly faster to use routines which operate on the symmetric P

matrices (Figures 1D, E), particularly for models with large number

of plastic synapses.

Further, P consumes by far more memory than any other

variable since its footprint scales as N × L2. All other state

variables are only one or two dimensional. Packing the columns

of just the upper or lower triangle by concatenating them into

a vector saves close to half the memory, thereby permitting

models to be proportionately larger. Though a bit slower on the

GPU overall compared to their unpacked counterparts (symv

and syr; Figure 1E), BLAS routines specialized for packed

symmetric matrices (spmv and spr) are much faster on the CPU

(Figure 1D) for large models. We speculate that this performance

difference is due to the sophisticated hierarchical caches on

a CPU being better utilized with packed matrices, compared

to a GPU.

2.1.3. BLAS, pre-allocated memory, and
pre-computed division

We found that simple refactorings of our CPU code to directly

use BLAS resulted in substantial performance gains. For example,

the RLS algorithm computes k = Pr, which is a product of

the symmetric matrix, P, and the presynaptically filtered spike

trains, r (see Equations A9 and A18 in Supplementary material).

Preallocating and reusing k and then calling mul!(k,P, r), which is

a thin wrapper around BLAS’ gemv matrix-vector multiplication

function, is faster and uses less memory than doing the dot product

directly.

A further performance improvement was realized by using

Intel’s Math Kernel Library (MKL: https://software.intel.com/en-

us/intel-mkl) for the CPU, which is a superset of BLAS hand-crafted

for the x86 architecture, instead of the default cross-platform

OpenBLAS. Decrements in loop times were most pronounced for

models with K > 0. Specifically, for a model withN = 32, 768,K =
1, 638, L = 81 we saw a 59% reduction using MKL, whereas for

N = 32, 768,K = 0, L = 128 there was only a 5.8% improvement,

about 10-fold less.

BLAS functions frequently input multiplicative constants,

forcing the user to manually do a division ahead of time if

the constant is in the denominator. Following this lead for the

sections of code that do not use BLAS directly, we precomputed,

just once, the inverse of the synaptic currents and membrane

voltage time constants as they are in the denominator of the

equations that govern the neural dynamics. Loop times were

about 2% quicker performing this multiplication, instead of the

corresponding division, for the CPU code.

For the GPU version of our code we wrote our own GPU

kernels which batched several BLAS routines, specifically gemv

and ger plus their symmetric (symv, syr) and packed symmetric

equivalents (spmv, spr). Such batched GPU kernels are critical

to our learning algorithm since we apply the RLS algorithm to

each of the N trained neurons, and calling a non-batched kernel N

Frontiers inNeuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2023.1099510
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Arthur et al. 10.3389/fninf.2023.1099510

times would incur a huge performance penalty due to the overhead

of calling functions on GPUs. The solution was to write new

BLAS kernels that internally iterate over N, which was necessary as

NVIDIA only provides batched implementations of gemm, gemv,

and trsm.

2.1.4. Reduced precision number formats
Our original reference code in Kim et al. (2023) used 64-

bit floating point precision for all variables, which can represent

numbers up to 1.8 × 10308 with a machine epsilon of 2.2 × 10−16

around 1.0. We found that the correlations between target activity

patterns and learned synaptic currents, whichmeasure the accuracy

of the training, are just as high and require the same number of

iterations using 32-bit floats, whose range is only 3.4 × 1038 and

machine epsilon is 1.2 × 10−7 (Figure 1G). Doing so not only

permits models twice as large to be trained, but also yields quicker

loop times on CPUs and consumer grade GPUs (data not shown).

Our custom batched BLAS kernels for the GPU can operate on

floating point numbers of any precision, and even integers, unlike

the CPU BLAS libraries. To further reduce memory consumption,

and hence increase model size, we tried Float16, whose range is

only 6.5 × 104 and machine epsilon is 9.7 × 10−4, and found that

models can be trained almost as accurately as with 64 and 32 bits.

To see if the small decrement in correlation could be recovered with

a different partitioning of the bits between the exponent and the

fraction, we tried BFloat16, which uses eight bits for the exponent,

just like Float32, and hence has the same range, instead of Float16’s

five. Correlation coefficients for BFloat16 were worse. As there are

no hardware-supported 16-bit floating point formats that allocate

more bits to the fraction, we tried scaling P by 214 and storing it

in a 16-bit integer, effectively giving us 14 fractional bits. There is

no overflow with this scheme, as P typically ranges from -1 to 2.

Scaled 16-bit integers had correlations that were indistinguishable

from Float32 and Float64. Furthermore, there is no speed penalty

with 16-bit integers.

Modern hardware does not support 8-bit floats (though see the

forthcoming NVIDIA H100 GPU), but they can be simulated in

software with, for example, MicroFloatingPoint.jl. We tried 8-bit

floats with two, three, four, or five exponential bits and found that

correlations were best with four and reached a peak around half

that of 32 and 64 bits and then declined. Scaling P by 26 and storing

it in an Int8 resulted in a correlation peak of similar height. While

Int8 requiredmore iterations to reach the peak than Float8, the wall

clock time was actually less as the loop times weremuch shorter due

to native hardware support.

There is also no direct hardware support for 12-bits, but given

the large difference between our 8 and 16 bit results, we simulated

them in software by using an Int16 [sic] scaled by 210. Since the

magnitude of P is less than two, the four most significant bits here

are entirely unused, and the 10 least significant are used as the

fraction. As with scaled Int8, we observed a peak in the correlation

coefficient, this time a bit larger at about two-thirds that of 32 and

64 bits, followed by decline. A 12-bit integer is not an unreasonable

type to imagine using to reducememory consumption, as two Int12

will pack into three bytes. In fact, UInt12Arrays.jl is a Julia package

which does precisely this for unsigned 12-bit integers.

In summary, we recommend using Float32 unless the model

does not fit in memory, in which case Int16 can be used. If it

still does not fit and a drop in correlation can be tolerated, we

recommend using Int8, or, time permitting, developing a proper

Int12 package.

2.2. Application

With a fast RLS codebase in hand, we next demonstrated

that large models can be successfully trained to recapitulate the

dynamics in real-world big data sets. We used 66,002 peri-

stimulus time histograms (PSTHs) of neurons, recorded using

Neuropixels probes (Jun et al., 2017) from multiple brain areas

of mice performing a delayed-response task (Figure 2A; Guo

et al., 2014; Chen et al., 2023). We first converted the PSTHs

to the corresponding underlying synaptic currents by inverting

the activation function of leaky integrate-and-fire neurons in the

presence of noise (see Appendix: generating neural trajectories in

Supplementary material). The synaptic currents were then used as

the target functions, and external noise was used instead of static

recurrent connections (K = 0, σ > 0; see Appendix: network

dynamics in Supplementary material). As our goal was to show

the scalability of the code and not to study the trained network,

we did not use any prior knowledge on mesoscopic connectivity

between or within brain regions, but simply initialized the plastic

weights by randomly connecting neurons in an Erdos-Rényi graph.

In addition, the trained plastic weights in our network were allowed

to flip signs, and hence possibly violate Dale’s law. However, in

principle one could use mesoscopic connectivity to constrain the

plastic weights and the RLS algorithm could be further developed

to obey Dale’s law (Kim and Chow, 2018).

We then used the RLS algorithm to train the neurons in the

spiking network to follow the target functions. The correlation

between the learned and target synaptic currents increased with

the number of plastic inputs (L), and reached a plateau in half an

hour (Figure 2B). 256 plastic synapses was the largest that would

fit in the 80 GB of memory in an A100 GPU with N = 66,002.

For comparison, a model of that size would take multiple days on

a single thread of a CPU using the reference code of Kim et al.

(2023). After training, we ran the spiking network multiple times,

with the plastic weights kept frozen to the trained values (i.e.,

the weights are no longer changed with the RLS algorithm), and

compared the learned synaptic currents (Figure 2D) and PSTHs

(Figures 2C, E). The activity of neurons in the trained network

showed a close correspondence with the activity patterns of the

recorded neurons.

Note that in this experiment each trained neuron successfully

learned two activity patterns corresponding to lick right and lick

left trials. Learning more than two patterns would likely require

additional plastic synapses, which could potentially limit the task

complexity that can be achieved using a single GPU.

3. Discussion

We present optimized CPU and GPU implementations of the

recursive least-square (RLS) algorithm for training spiking neural

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2023.1099510
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Arthur et al. 10.3389/fninf.2023.1099510

FIGURE 2

Application to Neuropixels data. (A) Top: Schematic of experimental setup. Mice learned to lick to one of two directions (left/right) after a delay

period, depending on which of two tones were played. Bottom: Multiple Neuropixels probes, each with hundreds of recording sites, were placed in

the brain while a mouse was performing the task (Chen et al., 2023). (B) A recurrent spiking neural network with 66,002 neurons and no static

connections (K = 0, σ > 0) was trained to learn the neural activity patterns. Initial learning rate and final plateau level both increased with the number

of plastic connections (L). The number of training iterations was 375, 330, 235, and 110, respectively, for L = 32, 64, 128, and 256. (C) Heat maps of

the peri-stimulus time histograms (PSTHs) of the activity patterns in the data (left) and the trained network from B with L = 256 (middle) and one

realization of spike trains of the same trained network (right). Fifty neurons are shown for each of five brain areas. Vertical blue lines are the same as

in (A), where a time of 0 s corresponds to the Go cue. (D) Learned synaptic currents averaged over 1,000 trials for one exemplar neuron from each of

the five brain areas. Vertical blue lines are the same as in (A), and the time axis is the same as in (C). A single realization (non-averaged over trials) is

also shown (model1). (E) Same as (D) but for PSTHs.

networks. Our code can simulate and train a spiking network

consisting of about one million neurons and 100 million synapses

on a single modern high-end workstation.

Our updated code is significantly faster than the previous

version (Kim et al., 2023), as demonstrated by the green line

in Figure 1B. Networks consisting of millions of neurons can be

trained 1,000 times faster using the new code. We benchmarked

the code for various scaling numbers (N, K, L) and also expanded

its capabilities to include external noise (σ ), allowing for training

of both balanced (Van Vreeswijk and Sompolinsky, 1996; Darshan

et al., 2018) and generic spiking neural networks. This increased

efficiency means that large networks of a million neurons can now

be trained in a matter of hours instead of weeks, thereby greatly

speeding up the scientific discovery process and more efficiently

using resources. Additionally, fast training times enables models to

be created on the fly, allowing for in-silico training while in-vivo

experiments are being conducted, thus closing the loop between

modeling and experiments. For example, predictions could be

made about perturbation experiments by fitting models to data and

suggesting perturbation protocols in real-time.

While we used simple integrate-and-fire neurons, our code

can be easily extended to include more realistic neurons using a

cell-model plugin system that provides users the means to provide

custom code. A simple integrate-and-fire neuron allowed us to

easily convert PSTHs to synaptic currents using the known F-I

curve (Equation A1 in Supplementary material; Roxin et al., 2011).

It remains as future work to develop principled methods to convert

the PSTHs to synaptic currents in more complex neuron models

that include slow dynamic variables, such as adaptation currents or

time-dependent spike thresholds (Teeter et al., 2018). However, the

RLS algorithm used here allows one to train the synaptic currents

of GLIF neurons, if the target synaptic currents are already available

(see Kim and Chow, 2018 for training a network of Izhikevich

neurons).

Additionally, although the plastic weights in our networks were

random, our framework does not exclude adding complexity to the

network architecture, such as including layered cortical networks or

even different cell types, or using known mesoscopic connectivity

when initializing the plastic weights in the network. This flexibility

is again achieved through a set of plugins through which the user

can provide custom code to define the adjacency matrices.

The RLS algorithm is designed to minimize the discrepancy

between the PSTHs generated by the model neurons and the

recorded neurons. It does not optimize for other spiking statistics,

such as the coefficients of variation for interspike-intervals or Fano

factors. These statistics can be influenced by adjusting the network’s

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.1099510
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Arthur et al. 10.3389/fninf.2023.1099510

hyper-parameters, such as the level of noise applied to each neuron

(σ ). Tools are available to assess the network’s performance against

these other measures while varying the hyper-parameters (e.g.,

https://github.com/INM-6/NetworkUnit).

The size of the networks is limited by memory usage, which

mainly depends on the size of the matrix P used in the RLS

algorithm (see Equation A18 in Supplementary material). This

matrix scales linearly with the number of neurons and quadratically

with the number of plastic synapses (N × L2). We found that about

L ≈ 100 synapses per neuron suffices to train the network to

reproduce the activity of neurons recorded in mice performing a

delayed response task (Figure 2B). However, the number of plastic

synapses needed to train the network is expected to increase with

the number of tasks to be learned, as well as the complexity of

neuronal dynamics in each task. Therefore, how large the network

model would have to be could depend on the number and the

complexity of the tasks to be learned.

Advances in GPU computing and strong interest in

neuromorphic computing have led to various efficient

implementations of spiking neural networks. Recent work

that implements simulations of spiking neural networks in GPUs

include the following: a code-generation based system that

generates CUDA code for GPU (GeNN, Knight and Nowotny,

2018) and a popular Python-based simulator for spiking neural

networks, Brian2, extended for generating CUDA code directly

(Brian2CUDA, Alevi et al., 2022) or through GeNN (Brian2GeNN,

Stimberg et al., 2020). Similarly, highly efficient CPU-based

simulations of spiking neural networks can be implemented

in NEST (NEural Simulation Tool, Gewaltig and Diesmann,

2007). Spiking neural networks can also be implemented in

neuromorphic hardware as demonstrated in SpiNNaker (Furber

et al., 2014), Intel’s Loihi (Davies et al., 2018), and TrueNorth

(Merolla et al., 2014). See Steffen et al. (2021) and references therein

for benchmarks for these systems. We note that, although the

aforementioned systems allow for biologically plausible plasticity

(Stimberg et al., 2020) and for learning complex tasks (Merolla

et al., 2014; Davies et al., 2018), the contribution of our work is

different in that we developed an efficient algorithm for learning to

generate activity patterns in recurrently connected spiking neural

networks.

Finally, our code implementation was tailored to be used on

a single computer, instead of on multiple computers, such as in

Jordan et al. (2018). This enabled fast execution speed, thanks to

the absence of inter-process communication overhead, but limited

the network size due to memory limitations. Specifically, the CPU

implementation uses threads (not processes), which have precisely

zero communication overhead because they share memory. The

GPU implementation has currently only been tested on a single

GPU. However, modern hardware and the associated software

toolkits support an abstraction of a unified memory across multiple

GPUs within a single computer that is backed by high-speed

interconnects. If in future, the size of GPU memory does not

increase at a rate comparable with advances in neural recording

technology, we plan to investigate how much performance is

decremented if our code is refactored to use multiple GPUs within

the same workstation.

Data availability statement

Publicly available datasets were analyzed in this study. Our

code can be found here: https://github.com/SpikingNetwork/

TrainSpikingNet.jl; https://github.com/JaneliaSciComp/Batched

BLAS.jl; https://github.com/JaneliaSciComp/SymmetricFormats.jl.

Author contributions

CK and RD conceived of the algorithm. CK provided and

helped understand the reference implementation. BA optimized

the code for performance, with the assistance of CK and RD and

prepared the figures. SC did the experiments and collected and

analyzed the Neuropixels data. BA, CK, SP, and RD wrote the

manuscript. All authors contributed to the article and approved the

submitted version.

Funding

This work was supported by the Howard Hughes Medical

Institute, the Visiting Scientist Program at Janelia Research

Campus, and the Intramural Research Program of National

Institute of Diabetes and Digestive and Kidney Diseases at the

National Institutes of Health.

Acknowledgments

We would like to thank Shaul Druckmann, Nuo Li,

Yi Liu, and Karel Svoboda for sharing the Neuropixels

data set.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fninf.2023.

1099510/full#supplementary-material

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2023.1099510
https://github.com/INM-6/NetworkUnit
https://github.com/SpikingNetwork/TrainSpikingNet.jl
https://github.com/SpikingNetwork/TrainSpikingNet.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/SymmetricFormats.jl
https://www.frontiersin.org/articles/10.3389/fninf.2023.1099510/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Arthur et al. 10.3389/fninf.2023.1099510

References

Alevi, D., Stimberg, M., Sprekeler, H., Obermayer, K., and Augustin, M. (2022).
Brian2CUDA: flexible and efficient simulation of spiking neural network models on
GPUs. Front. Neuroinform. 16, 883700. doi: 10.3389/fninf.2022.883700

Amsalem, O., Inagaki, H., Yu, J., Svoboda, K., and Darshan, R. (2022). Sub-
threshold neuronal activity and the dynamical regime of cerebral cortex. bioRxiv.
doi: 10.1101/2022.07.14.500004

Andalman, A. S., Burns, V.M., Lovett-Barron, M., Broxton,M., Poole, B., Yang, S. J.,
et al. (2019). Neuronal dynamics regulating brain and behavioral state transitions. Cell
177, 970–985. doi: 10.1016/j.cell.2019.02.037

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: a fresh
approach to numerical computing. SIAM Rev. 59, 65–98. doi: 10.1137/141000671

Brunel, N. (2000). Dynamics of sparsely connected networks of
excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Chen, S., Liu, Y., Wang, Z., Colonell, J., Liu, L. D., Hou, H., et al.
(2023). Brain-wide neural activity underlying memory-guided movement. bioRxiv.
doi: 10.1101/2023.03.01.530520

Daie, K., Svoboda, K., and Druckmann, S. (2021). Targeted photostimulation
uncovers circuit motifs supporting short-term memory. Nat. Neurosci. 24, 259–265.
doi: 10.1038/s41593-020-00776-3

Darshan, R., Van Vreeswijk, C., and Hansel, D. (2018). Strength of
correlations in strongly recurrent neuronal networks. Phys. Rev. X 8, 031072.
doi: 10.1103/PhysRevX.8.031072

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

DePasquale, B., Cueva, C. J., Rajan, K., Escola, G. S., and Abbott, L. (2018). full-
force: a target-based method for training recurrent networks. PLoS ONE 13, e0191527.
doi: 10.1371/journal.pone.0191527

Finkelstein, A., Fontolan, L., Economo, M. N., Li, N., Romani, S., and Svoboda,
K. (2021). Attractor dynamics gate cortical information flow during decision-making.
Nat. Neurosci. 24, 843–850. doi: 10.1038/s41593-021-00840-6

Fisher, D., Olasagasti, I., Tank, D. W., Aksay, E. R., and Goldman, M. S. (2013).
A modeling framework for deriving the structural and functional architecture of a
short-term memory microcircuit. Neuron 79, 987–1000. doi: 10.1016/j.neuron.2013.
06.041

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker project.
Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O. and Diesmann, M. (2007). Nest (neural simulation tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Guo, Z. V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J. T., et al. (2014).
Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194.
doi: 10.1016/j.neuron.2013.10.020

Haykin, S. (1996). Adaptive Filter Theory, 3rd Edn.. Upper Saddle River, NJ:
Prentice-Hall, Inc.

Hofer, S. B., Ko, H., Pichler, B., Vogelstein, J., Ros, H., Zeng, H., et al. (2011).
Differential connectivity and response dynamics of excitatory and inhibitory neurons
in visual cortex. Nat. Neurosci. 14, 1045–1052. doi: 10.1038/nn.2876

Inagaki, H. K., Chen, S., Ridder, M. C., Sah, P., Li, N., Yang, Z., et al. (2022). A
midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement.
Cell 185, 1065–1081. doi: 10.1016/j.cell.2022.02.006

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops to exascale
computers. Front. Neuroinform. 12, 2. doi: 10.3389/fninf.2018.00002

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., et al.
(2017). Fully integrated silicon probes for high-density recording of neural activity.
Nature 551, 232–236. doi: 10.1038/nature24636

Kim, C. M., and Chow, C. C. (2018). Learning recurrent dynamics in spiking
networks. eLife 7, e37124. doi: 10.7554/eLife.37124

Kim, C. M., and Chow, C. C. (2021). Training spiking neural networks in the strong
coupling regime. Neural Comput. 33, 1199–1233. doi: 10.1162/neco_a_01379

Kim, C. M., Finkelstein, A., Chow, C. C., Svoboda, K., and Darshan, R.
(2023). Distributing task-related neural activity across a cortical network
through task-independent connections. Nature Communications. 14:2851.
doi: 10.1101/2022.06.17.496618

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC and
neuromorphic solutions in terms of speed and energy when simulating a highly-
connected cortical model. Front. Neurosci. 12, 941. doi: 10.3389/fnins.2018.00941

Laje, R., and Buonomano, D. V. (2013). Robust timing and motor patterns
by taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925–933.
doi: 10.1038/nn.3405

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Nicola, W., and Clopath, C. (2017). Supervised learning in spiking neural networks
with force training. Nat. Commun. 8, 2208. doi: 10.1038/s41467-017-01827-3

Rajan, K., Harvey, C. D., and Tank, D. W. (2016). Recurrent network
models of sequence generation and memory. Neuron 90, 128–142.
doi: 10.1016/j.neuron.2016.02.009

Roxin, A., Brunel, N., Hansel, D., Mongillo, G., and van Vreeswijk, C. (2011).
On the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31,
16217–16226. doi: 10.1523/JNEUROSCI.1677-11.2011

Steffen, L., Koch, R., Ulbrich, S., Nitzsche, S., Roennau, A., and Dillmann, R. (2021).
Benchmarking highly parallel hardware for spiking neural networks in robotics. Front.
Neurosci. 15, 667011. doi: 10.3389/fnins.2021.667011

Stevenson, I. H., and Kording, K. P. (2011). How advances in neural recording affect
data analysis. Nat. Neurosci. 14, 139–142. doi: 10.1038/nn.2731

Stimberg, M., Goodman, D. F., and Nowotny, T. (2020). Brian2GENN: accelerating
spiking neural network simulations with graphics hardware. Sci. Rep. 10, 410.
doi: 10.1038/s41598-019-54957-7

Sussillo, D., and Abbott, L. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron 63, 544–557. doi: 10.1016/j.neuron.2009.07.018

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., et al. (2018).
Generalized leaky integrate-and-fire models classify multiple neuron types. Nat.
Commun. 9, 709. doi: 10.1038/s41467-017-02717-4

Urai, A. E., Doiron, B., Leifer, A. M., and Churchland, A. K. (2022). Large-scale
neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25,
11–19. doi: 10.1038/s41593-021-00980-9

Van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274, 1724–1726.
doi: 10.1126/science.274.5293.1724

Frontiers inNeuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2023.1099510
https://doi.org/10.3389/fninf.2022.883700
https://doi.org/10.1101/2022.07.14.500004
https://doi.org/10.1016/j.cell.2019.02.037
https://doi.org/10.1137/141000671
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1101/2023.03.01.530520
https://doi.org/10.1038/s41593-020-00776-3
https://doi.org/10.1103/PhysRevX.8.031072
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1371/journal.pone.0191527
https://doi.org/10.1038/s41593-021-00840-6
https://doi.org/10.1016/j.neuron.2013.06.041
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.neuron.2013.10.020
https://doi.org/10.1038/nn.2876
https://doi.org/10.1016/j.cell.2022.02.006
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1038/nature24636
https://doi.org/10.7554/eLife.37124
https://doi.org/10.1162/neco_a_01379
https://doi.org/10.1101/2022.06.17.496618
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1038/nn.3405
https://doi.org/10.1126/science.1254642
https://doi.org/10.1038/s41467-017-01827-3
https://doi.org/10.1016/j.neuron.2016.02.009
https://doi.org/10.1523/JNEUROSCI.1677-11.2011
https://doi.org/10.3389/fnins.2021.667011
https://doi.org/10.1038/nn.2731
https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1038/s41467-017-02717-4
https://doi.org/10.1038/s41593-021-00980-9
https://doi.org/10.1126/science.274.5293.1724
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	A scalable implementation of the recursive least-squares algorithm for training spiking neural networks
	1. Introduction
	2. Results
	2.1. Optimization strategies
	2.1.1. Parallel updates of the state variables
	2.1.2. Symmetric and packed arrays
	2.1.3. BLAS, pre-allocated memory, and pre-computed division
	2.1.4. Reduced precision number formats

	2.2. Application

	3. Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


