
TYPE Original Research

PUBLISHED 17 February 2023

DOI 10.3389/fninf.2023.1092967

OPEN ACCESS

EDITED BY

Je�rey S. Grethe,

University of California, San Diego,

United States

REVIEWED BY

Sotiris Kotsiantis,

University of Patras, Greece

Zhijun Yang,

Middlesex University, United Kingdom

*CORRESPONDENCE

José Luis Moreno-Rodríguez

joseluis.moreno.rodriguez@upm.es

RECEIVED 08 November 2022

ACCEPTED 31 January 2023

PUBLISHED 17 February 2023

CITATION

Moreno-Rodríguez JL, Larrañaga P and Bielza C

(2023) NeuroSuites: An online platform for

running neuroscience, statistical, and machine

learning tools. Front. Neuroinform. 17:1092967.

doi: 10.3389/fninf.2023.1092967

COPYRIGHT

© 2023 Moreno-Rodríguez, Larrañaga and

Bielza. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

RETRACTED: NeuroSuites: An
online platform for running
neuroscience, statistical, and
machine learning tools

José Luis Moreno-Rodríguez*, Pedro Larrañaga and

Concha Bielza

Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de

Madrid, Madrid, Spain

Nowadays, an enormous amount of high dimensional data is available in the

field of neuroscience. Handling these data is complex and requires the use

of e�cient tools to transform them into useful knowledge. In this work we

present NeuroSuites, an easy-access web platform with its own architecture.

We compare our platform with other software currently available, highlighting

its main strengths. Thanks to its defined architecture, it is able to handle large-

scale problems common in some neuroscience fields. NeuroSuites has di�erent

neuroscience-oriented applications and tools to integrate statistical data analysis

and machine learning algorithms commonly used in this field. As future work, we

want to further expand the list of available software tools as well as improve the

platform interface according to user demands.

KEYWORDS

web application, statistical analysis, machine learning, supervised classification,

unsupervised classification, Bayesian networks, neuroscience

1. Introduction

There is a vast amount of data available today, and consequently, various software exists

that aims to transform data into new knowledge. In particular, the analysis of neuroscience

data can be especially complex, as some of these datasets (such as those from microarrays)

can have tens of thousands of variables creating a need to develop powerful and efficient

tools to handle the high dimensionality of these problems.

This motivated the development of NeuroSuites,1 a web application platform with

numerous tools to help data scientists, and in particular neuroscientists, use specialized

software to handle problems in their application domain. This platform is specifically

designed to manage large-scale problems, which are common in some neuroscience fields.

In NeuroSuites we can find different parts related to a specific tool or set of processing

tools, with emphasis on the field of neuroscience, such as morphological reconstructions

and visualization of microscopy data. However, many other tools have a more generic aim

and can also be used by data scientists from other research fields. In addition, no software

installation is required on the computer, since it is designed as a web application, and all

algorithms are executed on the backend of the deployed server, rather than requiring local

computers with a large computational capacity to run the experiments. The web access is

open and can be consulted from different devices as a result of its responsive web design.

The paper is organized as follows. In Section 2, we compare our platform with other

currently available software, highlighting its main strengths compared to its competitors.

This comparison will help us identify the most convenient type of users on our platform.

1 https://neurosuites.com

Frontiers inNeuroinformatics 01 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1092967
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1092967&domain=pdf&date_stamp=2023-02-17
mailto:joseluis.moreno.rodriguez@upm.es
https://doi.org/10.3389/fninf.2023.1092967
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1092967/full
https://neurosuites.com
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

Section 3 analyzes how NeuroSuites is implemented by reviewing

the main technologies that make up its architecture. We also

describe the services available on the platform and the main

workflow when selecting a data source to use for a software

tool. Section 4 focuses on the use of applications specifically

oriented to neuroscience, where depending on the application,

a previous selection of neuron reconstructions by the user may

be needed. In Section 5 we present statistical tools aimed at

exploratory data analysis and finding insights from this dataset,

both with discrete and continuous variables. Section 6 focuses on

the machine learning part of NeuroSuites, including various data

preprocessing techniques, available supervised or unsupervised

learning algorithms, and Bayesian networks. Finally, Section 7

concludes the paper with the main features of NeuroSuites and its

great potential as an online platform. Possible improvements for

future work are also discussed, such as implementing new tools in

the platform.

2. Background

NeuroSuites is targeted at neuroscientists and any type of user

who is seeking to perform data analysis quickly and easily through

the different tools available. Currently, we can find some platforms

with similar purposes. We selected some of them identified in

different web reviews of machine learning and statistical service

providers. To do so, we carried out a web review process of different

rankings, comparisons and analyzes. The popularity or size of the

companymaintaining the service was also one of the factors that we

considered, together with the existing documentation andmeans of

support.

Next, we highlight the main features of our selected options:

• BigML2 is a machine learning platform that provides a service

for developers to build great applications and perform real-

time predictions. It also enables users to be productive and

efficient regardless of the device they are using. However, to

obtain all its functionalities in addition to those offered in free

mode, a user must pay a monthly fee to access it.

• The KNIME Analytics Platform (Berthold et al., 2009) is

an enterprise-level analytics solution for data scientists that

utilizes the power of the Eclipse platform and a set of other

powerful extensions designed for machine learning and data

mining. Some of the key features included are workflow

differentiation, big data extensions, meta node linking, robust

statistical analysis and data blending. Nevertheless, it requires

prior installation depending on the operating system of the

local machine and monthly financial outlay as there is no

lasting free version available.

• RapidMiner (Hofmann and Klinkenberg, 2016) is a toolset

that provides a centralized solution ensuring a seamless

process from modeling to implementation. It works not

only for predictive analytics, but also for application

integration, data integration, statistics, machine learning and

transformation. It has a free version as well as paid plans. The

core of RapidMiner stays open source.

2 https://bigml.com

• Weka (Hall et al., 2009) is a software platform that features a

collection of machine learning algorithms to run data mining

tasks. It stands out for being free software and a rather

minimalist interface, where algorithms can be applied directly

to a dataset or called from its own Java code. It is also well

suited for developing new machine learning schemes and

performing statistical experiments on different datasets. It is

necessary to download the application on our local machine,

rather than having a web version at the moment.

• Azure Machine Learning Studio (Barnes, 2015) is a Microsoft-

backed professional predictive analytics programming

solution that enables users to create effective machine learning

models, which can be easily delivered as services. Users have

to drag and drop objects into the platform interface and

use a number of cloud-based tools to interactively run their

experiments. It has a free version and a paid subscription to

obtain all possible functionalities.

• Orange (Demšar et al., 2013) is an open source software for

data mining and machine learning. The user can visualize

large data like data flows and variable flows. Orange supports

hands-on training and visual illustrations of concepts from

data science, useful for teaching. There is no installation

needed if you download a portable version, extracting the data

file and opening the shortcut in the corresponding folder.

Table 1 shows a comparison of the main functionalities of

each of the technologies described in this section. NeuroSuites

(at the right most column) is a platform that encompasses

several statistical and machine learning tools for neuroscience data.

Moreover, there is no need to install any software on the local

machine, as all algorithms run on a powerful stand-alone server.

It is also important to note that it is hosted on a website where

we developed all the necessary architecture to be able to deploy

the different modules that make up NeuroSuites. Users can access

it online simply through their web browsers, with no specific

technical requirements on the users’ end. There are no plans to

include paid versions in our platform, and the complete code is

accessible to everyone and can be found on GitLab. According to all

of these functionalities, NeuroSuites is the most complete solution.

3. NeuroSuites framework

3.1. NeuroSuites architecture

NeuroSuites aims to be a user-friendly application where

everyone can use it, but regarding neuroscience, we intend to give

data scientists and neuroscientists in particular the tools that they

could need in a quick and easy way without installing several

software tools in their computers. Furthermore, no computer

science or programming knowledge is needed. Moreover, the

software tries to comply with a responsive web design approach to

make web pages render well on a variety of devices, contributing to

the usability and satisfaction of the user experience.

Next, we describe some important characteristics of the

architecture of NeuroSuites (see Figure 1). It follows the model-

view-controller architecture. When the workload is very intense in

heavy operations, the number of workers will be increased and the

Frontiers inNeuroinformatics 02 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://bigml.com
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

TABLE 1 Comparison between di�erent machine learning software solutions.

BigML KNIME RapidMiner Weka Azure ML Orange NeuroSuites

No local installation required X X X

Web browser accessibility X X X

Responsive web design X X

Free availability X X X X X X

No pricing plans X X X

Open source X X X X X X

FIGURE 1

NeuroSuites main architecture: frontend technologies (A) and

backend technologies (B).

queuing system will automatically distribute the workload. Thus,

it can run heavy operations in the backend providing a quick and

lightweight experience in the frontend. However, it is important to

note that despite the implementation of this system, it is possible

that certain operations will have a high execution time due to

hardware limitations of the server itself on which our NeuroSuites

instance is currently deployed.

Users can access NeuroSuites through a web browser (Google

Chrome, Firefox, Microsoft Edge, Opera...). The connection is

made to the Nginx web server (Reese, 2008), which provides the

entry point for web requests and acts as a load balancer in case the

server has multiple instances running the web application.

For the frontend (Figure 1A) we use the Django CMS (George,

2015) to implement the different views, HTML, CSS with Bootstrap

(Spurlock, 2013) and JavaScript with Jquery (Bibeault et al., 2015).

On the client-side, the application creates asynchronous web

applications using Ajax (Garrett, 2005) to send and retrieve data

from a server asynchronously in the backend. To transmit the

requests and responses from the frontend to the backend, we

employ the uWSGI3 software which acts as a web server gateway

interface to communicate with the backend.

For the backend (Figure 1B), we use Python4 and the Django

REST framework (Rubio, 2017) to implement the different

algorithms using some of Python’s main optimized scientific

libraries, highlighting NumPy (Harris et al., 2020), SciPy (Virtanen

et al., 2020), or Scikit-learn (Pedregosa et al., 2011) among others.

We also include bindings to the R5 programming language due

to the wrappers provided with the rpy26 package. However,

since standard HTTP requests and responses have temporal and

computational limitations that prevent them from executing long-

running tasks, we included a work queuing system using RabbitMQ

(Dossot, 2014), which is a message-broker for long-term requests,

and Celery,7 an open-source asynchronous task queue based

on distributed message passing. In addition, to achieve greater

memory efficiency, loaded datasets are stored internally on our

server using the Apache Parquet format (Vohra, 2016), and to store

the internal state of an application, the user’s data session is stored

in a PostgreSQL (Momjian, 2001) database connected to Django

REST. It is important to note that the Django framework, compared

to other alternatives with other programming languages, it allows

an easy and fast deployment thanks to the use of Python libraries

specific for machine learning.

All these technologies follow a modular architecture, where

each fundamental component is isolated as a Docker microservice.

Therefore, the system can be easily scalable horizontally and

work as a whole given that platform as a service and its OS-

level virtualization (the installed Docker container includes all the

project images, so it can run without further configurations). In

addition, multiple monitoring tools have been included (because

the architecture became huge), such as logs to control the state of

the hardware, task queues to check the current running tasks and

possible issues, and several warnings on the backend side to provide

us information about security problems and performance errors.

Due to the computational limitations of our production server,

we cannot provide more than one computing node. However,

3 https://uwsgi-docs.readthedocs.io

4 https://www.python.org

5 https://www.r-project.org

6 https://rpy2.github.io

7 https://docs.celeryq.dev

Frontiers inNeuroinformatics 03 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://uwsgi-docs.readthedocs.io
https://www.python.org
https://www.r-project.org
https://rpy2.github.io
https://docs.celeryq.dev
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

developers can install their own NeuroSuites instance and use

this parallelization capability by deploying multiple computing

nodes to run their Docker containers. We consider Docker to be

a good solution for our project thanks to its rapid deployment,

its simplicity in configuring new developments in each image

facilitating the continuous integration of new functionalities.

Finally, we use Git as a distributed version control; GitLab, in

particular, as a service repository.

Finally, note that a user does not need to install anything to

run the tools provided because everything is online. Additionally,

when you finish a task, you can export and download your

results to your own computer. Below, we focus on the

capabilities and the steps needed to load data and run the

different models.

3.2. Services available and general
workflow

To provide an interoperable ecosystem, we designed a well-

defined workflow consisting of first uploading the raw dataset and

then selecting the desired tools to analyze it. Thus, different tools

can be found on NeuroSuites, each referring to a specific set of

processing units. In NeuroSuites, the main functionality is in the

Services tab (Figure 2).

For the first step (Figure 2A), the user must select the

data source. When selecting a data source, we present three

different cases:

• Upload a dataset: we can “Upload a dataset” in csv or parquet

format (there is available a “CSV dataset example from the

Allen Brain Atlas”) or “Upload neuron reconstructions” in

swc, dat, asc or json format.

• Continue without a dataset: if the user does not load any data

source of his or her own, it is still possible to access some

software tools (such as some neuro apps).

• Demo data: load a set of NeuroMorpho.org neurons to

test all available tools in NeuroSuites. NeuroMorpho is

a centrally curated inventory of digitally reconstructed

neurons publicly accessible associated with peer-

reviewed publications and created by George Mason

University. You can browse their website, download

FIGURE 2

NeuroSuites’ services tab. First, the data source to be used must be specified in step 1 (A). Then, an application can be selected from the menu on

step 2 (B).

Frontiers inNeuroinformatics 04 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://neuromorpho.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

a specific set of neurons and then upload the data in

NeuroSuites.

Once we have the data source loaded in the platform, we

are able to see a list of all the applications currently available

in NeuroSuites. We can also group them according to different

themes, such as neuroscience, general purpose or software

with/without the required dataset (Figure 2B).

4. Neuroscience applications

After selecting the data that we are going to use, we have

different options in regard to analyzing our data. Figure 3

shows all neuroscience tools available after previously selecting a

data source.

4.1. Neuro apps with neurons required

Some applications are enabled only when we previously set the

neurons we want to analyze. After that, in a new window, we can

see an overview with a list of all neurons to analyze them one-by-

one. When selecting a specific neuron, we can see some neuro app

software tools that can be applied to the selected neurons to view

them (bottom-up approach). Conversely, we can select a specific

software tool from the NeuroSuites side menu and then apply it to

our neurons (top-down approach).

FIGURE 3

Neuroscience applications in NeuroSuites: L-Measure (A), NeuroViewer (B), NeuroSTR (C), 3DBasalRM (D), GabaClassifier (E), 3DspineS (F),

3DSomaMS (G), 3DSynapsesSA (H), Dendritic arborisation simulation (I), and MultiMap (J).

Frontiers inNeuroinformatics 05 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 4

(A) 3D reconstruction of 02a_pyramidal2aFI_CNG neuron with NeuroViewer and (B) its repaired neuron using the 3DBasalRM tool. (C) NeuroSTR

validator for 10 neurons selected from the demo data.

For example, suppose that we select one neuron available in

the overview (table with our set of neurons) using the demo data

from NeuroMorpho. A new window can showmore specific details

about the neuron along with a number of software tools that can be

applied to the selected neuron.

First, we can use the L-Measure (Figure 3A), a tool that allows

researchers to extract quantitative morphological measurements

from neuronal reconstructions (Scorcioni et al., 2008). Second,

we can also use NeuroViewer8 (Figure 3B), a 3D neuron

reconstruction visualization package. There are some camera,

render and animation options, together with the possibility of

setting the neurite values we want to reconstruct and plot from the

selected neuron.

Moreover, we have 3DBasalRM (Figure 3C), a data-driven

repair model that detects cut-points in the basal arborisation

and then repairs them using a growth model learned from full

3D neuron reconstructions. Figure 4A shows the reconstruction

8 https://github.com/lrodriguezlujan/neuroviewer

of the 02a_pyramidal2aFI_CNG neuron with NeuroViewer using

the demo data from NeuroMorpho. Then, Figure 4B shows the

repaired neuron 02a_pyramidal2aFI_CNG after applying this

model. Finally, it is possible to save these results in swc and

json formats.

Another application available is NeuroSTR9 (Figure 3D), a

neuroanatomy toolbox created in our lab that can read and process

3D neuron reconstructions in the most common file formats,

offering a very large set of utilities to work with. For instance, we

can check wether neurites are attached or not to the soma and some

validators, such as a trifurcation on nodes that cannot have more

than two descendants. Figure 4C shows the checks and validators

for 10 neurons. The checks and validators available are the

following: neurites are attached to soma, neuron has soma, planar

neurite validation, basal dendrite count, strict apical dendrite

count, strict axon count, trifurcation validator, linear branch

validator, zero length segments validator, the length smaller than

9 https://computationalintelligencegroup.github.io/neurostr

Frontiers inNeuroinformatics 06 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://github.com/lrodriguezlujan/neuroviewer
https://computationalintelligencegroup.github.io/neurostr
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 5

Pearson, Kendall, and Spearman correlation coe�cents (A) with a 2D histogram contour plot (B) for the variables average_contraction and

average_diameter. Note their negative correlation.

the radius validator, non-decreasing diameter validator, branch

collision validator, and extreme angles validator. In addition, a

format converter of reconstruction file translates it into swc or

json (optionally, it tries to correct errors in the reconstruction and

applies a simplification algorithm over the branches).

Finally, GabaClassifier10 (Figure 3E) can be used to classify

a given interneuron morphology into one of the seven possible

classes described in Markram et al. (2004). The output is a

short string code representing the following possible class names:

bitufted cell, chandelier cell, double bouquet cell, large basket cell,

Martinotti cell, nest basket cell, and small basket cell.

It should be noted that all the tools described in this

section, with the exception of L-Measure, have been developed in

our laboratory.

4.2. Neuro apps without neurons required

In NeuroSuites, we can also access some tools that do not

require prior data loading (all of them developed in our laboratory):

• 3DspineS (Figure 3F), a model-based clustering of dendritic

spines from their 3D morphological features. Moreover, the

clustering model also allows us to accurately simulate spines

from human pyramidal neurons to suggest new hypotheses

of the functional organization of these cells (Luengo-Sanchez

et al., 2018).

10 https://github.com/ComputationalIntelligenceGroup/gabaclassifier

• 3DSomaMS (Figure 3G), a software that provides a

mathematical definition and an automatic segmentation

method to delimit the neuronal soma due to its fuzzy

definition, as there is no clear line demarcating the soma

of a labeled neuron and the origin of dendrites and axon

(Luengo-Sanchez et al., 2015).

• 3DSynapsesSA (Figure 3H), a tool designed to process and

analyze patterns of the 3D spatial distribution of cortical

synapses. It brings a variety of both innovative and well-

known techniques from the spatial statistics (and more

specifically, spatial point processes) field (Anton-Sanchez

et al., 2017).

• Dendritic arborisation simulation (Figure 3I), a simulation

for generating synthetic arbors of neurons with soma and

dendrites (López-Cruz et al., 2011). These computational

models are important for studying dendritic morphology and

its role in brain function.

• MultiMap (Figure 3J), an extensible application to deal with

large stacks of confocal microscopic images at different levels

of resolutions (Varando et al., 2018). The possibility of creating

regions of interest (of any shape and size) is a great advantage

of the tool.

5. Statistical analysis

Next, the neuroscientist may be interested in descriptive

and inferential statistics, given a dataset. We differentiate

between discrete or continuous data to perform different

Frontiers inNeuroinformatics 07 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://github.com/ComputationalIntelligenceGroup/gabaclassifier
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 6

(A) Scatter bubble plot and (B) 3D scatter plot with the variables average_contraction, average_diameter and average_fragmentation. (C) Radar chart

and (D) Andrews plot with the same set of variables. (E) RadViz plot for the variables average_contraction, average_diameter, average_fragmentation,

average_parent_daughter_ratio and avg_isi.

statistical analyzes. Additionally, we distinguish between statistical

calculations on a single variable (univariate statistics), and

a multivariate analysis (multivariate statistics) where two or

more variables are analyzed to determine their relationship.

Several examples can be seen using a dataset from the

Allen Human Brain Atlas dataset (Hawrylycz et al., 2012),

available as demo data (Figure 2A) in NeuroSuites. These

tools were developed using the rpy2 package for the use of

statistical functions.

5.1. Statistical tools with categorical data

NeuroSuites has a side menu where a user can select statistics

for discrete or continuous data. Several use cases for these options

are introduced below. First, the number of rows and columns of our

previously loaded dataset is indicated. Next, we can find two tabs,

one for descriptive statistics and the other for inferential statistics.

In descriptive statistics, we can select the discrete or categorical

variables we wish to visualize graphically in pie charts. For

Frontiers inNeuroinformatics 08 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 7

(A) Ranking of the fittest distributions using two goodness-of-fit measures, the Akaike information criterion and the Kolmogorov-Smirnov test. (B)

Probability density functions with their fittest distributions. (C) Cumulative distribution functions with their fittest distributions. (D) Q-Q plot with the

exponentiated Weibull distribution. (E) P-P plot with the exponentiated Weibull distribution. In all of these cases, we use the variable

average_contraction and a significance level of 5%.

example, if we select neuron_reconstruction_type, the number and

percentage of instances for each value or category of that variable

are shown. In this case, the variable has three possible values: full,

dendrite-only, and none. It is also possible to view this frequency

distribution via tabular summary of data for a single variable. The

tabular data can be downloaded in different file formats. Within the

bivariate analysis, it is possible to display a stacked bar chart and a

grouped bar chart on the selected variables instead of a single pie

chart for one variable.

Regarding inferential statistics, we can estimate probability

distribution parameters, both as confidence intervals and point

estimations. After specifying the confidence level of the interval, the

point estimation and interval estimation will be displayed. We can

also visualize the plot of the Gaussian distribution for the sample

mean (i.e., the proportion point estimate with their tabular stats).

It is also possible to perform statistical hypothesis tests,

specifying the population proportion for the null hypothesis. In

addition, it is also possible to compare two proportions from two

Frontiers inNeuroinformatics 09 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

TABLE 2 Machine learning tools in NeuroSuites.

Type Name Function name

Preprocessing data

• Feature subset selection Chi squared feature_selection.chi2

Mutual information feature_selection.mutual_info_classif

ANOVA F-test feature_selection.f_classif

• Dimensionality reduction Sparse PCA decomposition.PCA

Nonlinear PCA decomposition.KernelPCA

ICA decomposition.FastICA

t-SNE manifold.TSNE

Multidimensional scaling manifold.MDS

Unsupervised learning

Hierarchical clustering sklearn.tree.DecisionTreeClassifier

K-means wittgenstein.RIPPER

Bayesian networks

See Table 3

Supervised learning

Naive Bayes classifier bnlearn.naive.bayes

TAN classifier bnlearn.tree.bayes

Decision tree classifier sklearn.tree.DecisionTreeClassifier

k-NN sklearn.neighbors.KNeighborsClassifier

Linear/Nonlinear SVM libsvm.svmutil

Rule induction wittgenstein.RIPPER

LDA sklearn.discriminant_analysis.LinearDiscriminantAnalysis

QDA sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

Logistic regression sklearn.linear_model.LogisticRegression

Multidimensional classifiers

• Problem transformation Binary relevance skmultilearn.problem_transform.BinaryRelevance

Classifier chain skmultilearn.problem_transform.ClassifierChain

Label powerset skmultilearn.problem_transform.LabelPowerset

RAndom k-labELsets skmultilearn.ensemble.RakelD

• Algorithm adaptation Multi-label k-NN skmultilearn.adapt.MLkNN

Multi-label SVM skmultilearn.adapt.MLTSVM

independent populations. However, this type of McNemar’s test is

only possible with binary variables.

Finally, the distribution of the data can also be checked by

either automatically finding the fittest distribution or by selecting

only the distribution we want to check, all with a given significance

level. Performing these tests, the χ
2 statistic is used to calculate the

goodness of fit. This test is not valid when the observed or expected

frequencies in each category are too small (a typical rule of thumb

is that all observed and expected frequencies should be at least 5).

5.2. Statistical tools with continuous data

Following a similar structure to that presented in the

previous section, in this case, we can see other functionalities

with continuous variables. If we select the continuous variables

average_contraction and average_diameter, it is possible to have

univariate plots, such as the histogram and the fitted probability

density function, box plot and a scatter plot. In the case of

performing bivariate statistics, we can obtain the Pearson, Kendall

and Spearman correlation coefficients (Figure 5A), and visualize

the scatter plot matrix together with its 2D histogram contour plot

(Figure 5B).

We can perform analyzes with three or more variables.

In that case, we can visualize a scatter bubble plot

(Figure 6A) and a 3D scatter plot (Figure 6B) of the

selected variables average_contraction, average_diameter and

average_fragmentation.

As an example where multiple variables are needed, suppose

the data scientist is interesting in finding which observations are

the most similar and those that are possibly outliers. The structure

of the data has a high dimensionality, meaning that it is necessary

to use different techniques to visualize as many dimensions as

possible in a given graph. Figure 6C shows a radar chart to compare

Frontiers inNeuroinformatics 10 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 8

Agglomerative hierarchical clustering dendrogram for instances using Ward’s linkage and Euclidean distance with the variables average_contraction,

average_diameter, average_fragmentation, average_parent_daughter_ratio and average_isi.

different variables in an easy way, Figure 6D is an Andrews plot to

visualize and check the structure of the variables (possible groups),

and Figure 6E a RadViz plot to visualize each variable around a

circumference of a circle with normalized values. These plots use

multiple selected variables (for the latter we use five variables for

visualization purposes). We can also visualize all their probability

density functions in the same plot, parallel coordinate plots, or

Chernoff faces for multiple variables.

For categorical variables, we can also apply inferential statistics

to continuous data. It is also possible to obtain point and

confidence interval estimates. The variance estimate is Bessel-

corrected (unbiased), and a Student’s t-distribution is used to

calculate the confidence interval for the expected mean of a

variable that is assumed to follow a normal distribution (since the

population variance is generally unknown). After selecting one or

more variables and specifying a confidence level, graphs and tabular

statistics appear in the web interface.

It is also possible to perform hypothesis testing in the same

way as for categorical variables. To test the mean, we specify a

given value of the population mean (null hypothesis), a variable

from our dataset, and a significance level. After running the

hypothesis test, we can see the hypothesis result with some

statistical measures. We accept or reject the null hypothesis in

favor of the alternative hypothesis, thus concluding the test. We

can visualize the probability density function of the Student’s t-

distribution associated with the test statistic.

Finally, to check the distribution of the data, we can either

automatically find the fittest distribution or set a null hypothesis

test (e.g., data following a Gaussian distribution) and an alternative

hypothesis test (e.g., data does not follow a Gaussian distribution).

Figure 7 shows an example of the best distribution of a fixed

and finite set of possible probability density functions for the

variable average_contraction that was found using a significance

level of 5%. Two goodness-of-fit measures are taken, the Akaike

information criterion and the Kolmogorov-Smirnov test. The ranks

of the different distributions are sorted in tabular form with some

statistical measures (Figure 7A). In this case, the exponentiated

Weibull is the fittest distribution, ranking first in the hypothesis

ranking. Moreover, we can see the probability density function

(Figure 7B) and the cumulative distribution function (Figure 7C),

both with the fitted distributions. Finally, we can also see the Q-

Q plot (Figure 7D) and the P-P plot (Figure 7E) comparing the

probability distributions of our variable (empirical) with its fittest

distribution (theoretical).

6. Machine learning

This section reviews some machine learning algorithms that

can provide us with more insights into our dataset. The behavior

in all windows is very similar; a user selects the data source

differentiating the variables that are discrete or continuous, the

multiple variables a user wants to analyze and, optionally, class

variables when necessary.

Table 2 shows all the available machine learning algorithms

available in NeuroSuites. Each tool selected in NeuroSuites has

its own parameters that can be configured in the same tab. Once

the algorithm and the desired parameters have been selected,

Frontiers inNeuroinformatics 11 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 9

K-means clustering algorithm with the variables average_contraction, average_diameter, average_fragmentation, average_parent_daughter_ratio

and average_isi. (A) Elbow method plot suggesting five clusters. (B) Clustering plot on a 2D map using PCA. (C) Tabular data with the cluster centroids.

the results obtained are displayed in a new tab in tabular and

graphical form, although it varies depending on the tool we

are handling.

6.1. Data preprocessing techniques

We can handle missing values via row deletion or by an

imputation process to replace missing data with the imputed values

(such as the mean substitution technique). It is also possible to

remove constant irrelevant variables. It is remarkable that for all

these options, users have listboxes and checkboxes to select the

desired functionality.

Another option available is normalization, using well-known

techniques such as the min-max variable scaling (used to bring all

values into the range [0, 1]).Moreover, there are some discretisation

methods of continuous values, such as the equal-frequency binning

or Fayyad & Irani’s algorithm (Fayyad and Irani, 1993).

As part of the data preprocessing, we can apply a filter feature

subset selection algorithm, such as chi squared, mutual information

or ANOVA F-test, with their specific filter criteria (selecting the k

best features, a selected percentile of features or the features that

pass a family-wise error test).

Additionally, the techniques of dimensionality reduction to

obtain a lower dimension dataset are sparse and nonlinear

principal component analysis (PCA), independent component

analysis (ICA), t-SNE (Van der Maaten and Hinton, 2008) and

multidimensional scaling. A user can also use these methods either

before or after the feature subset selection, and specify a desired

number of dimensions.

Frontiers inNeuroinformatics 12 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

6.2. Unsupervised classification

It is useful to see some plots when handling clustering

problems. In this sense, NeuroSuites has the implementation

of some non-probabilistic clustering algorithms (see

Table 2). Figure 8 shows the dendrogram after applying the

agglomerative hierarchical clustering algorithm to the variables

average_contraction, average_diameter, average_fragmentation,

average_parent_daughter_ratio and average_isi. In this case, the

number of clusters is 16, using Ward’s linkage and Euclidean

distance. A user can also set a distance to cut the dendrogram tree

with a horizontal line without intersecting the merging point.

The user can modify the available configurations, and choose

other types of clustering algorithms such as partitional clustering

using K-means, DBSCAN (Ester et al., 1996) or spectral clustering.

Suppose we are going to use the K-means algorithm for the same

variables mentioned above. We can view the elbow method plot to

help determine the number of clusters (Figure 9A), a clustering plot

with its instances on a 2D map (Figure 9B) and the overall tabular

data with cluster centroids (Figure 9C).

6.3. Bayesian networks

For this type of probabilistic graphical model, we use BayeSuites

(embedded within NeuroSuites), a web framework developed in

our lab for massive Bayesian networks focused on neuroscience

(Michiels et al., 2021). Once the desired variables have been

selected, we can learn the structure graph and the parameters from

a dataset by selecting a structure and parameter learning algorithm.

Table 3 shows the structure and parameter learning algorithms

currently available in NeuroSuites. Some of these algorithms have

been coded internally (backend NeuroSuites) since they are novel

contributions, while others have been directly imported from

external libraries, adapting the functions so that they can run on

the selected data. The graph obtained after running the learning

algorithm is displayed in the viewer.

When visualizing a Bayesian network, there are several layouts

(tree-based, force-directed, circular, grid, image) and viewing

options (zooming in/out, scale and filtering options). Moreover,

a user can also create groups of nodes or highlight the nodes of

the Markov blanket of a given node or its parents or children.

An example of a (Gaussian) Bayesian network representing a gene

regulatory network (GRN) of the full human genome (Hawrylycz

et al., 2012) is shown in Figure 10A, where we select the ForceAtlas2

layout (Jacomy et al., 2014) and the Louvain algorithm (Blondel

et al., 2008) to generate groups of nodes colored for community

detection. In addition, a user can make some probabilistic queries,

introduce the evidence to perform inference, and check the d-

separation between three groups of nodes (Koller and Friedman,

2009). Figure 10B shows a selection of one random node associated

with schizophrenia disease subset of nodes. After visualizing the

TABLE 3 Structure and parameter learning algorithms for Bayesian networks in NeuroSuites (and BayeSuites).

Type Name Backend Function name

Structure learning

• Statistical-based Pearson correlation NeuroSuites Pearson.run_pearson_neurosuites

Mutual information Scikit-learn feature_selection.mutual_info_regression

Linear regression Scikit-learn linear_model.LinearRegression

Glasso Scikit-learn covariance.graphical_lasso

Genie3 (Huynh-Thu et al., 2010) Genie3 GENIE3.py

• Constraint-based PC NeuroSuites PC.run_pc_neurosuites

Grow-shrink bnlearn bnlearn.gs

Incremental association bnlearn bnlearn.iamb

Fast incremental association bnlearn bnlearn.fast_iamb

Interleaved incremental association bnlearn bnlearn.inter_iamb

• Score-and-search Hill climbing bnlearn bnlearn.hc

Tabu search bnlearn bnlearn.tabu

Chow-Liu tree bnlearn bnlearn.chow_liu

HITON-PC (Aliferis et al., 2003) bnlearn bnlearn.si_hiton_pc

sparsebn (Aragam et al., 2019) sparsebn sparsebn.py

FGES-Merge (Bernaola et al., 2020) NeuroSuites FGES.py_iamb

•Hybrid Max-min hill-climbing bnlearn bnlearn.mmhc

Max-min parents and children bnlearn bnlearn.mmpc

Parameter learning

MLE Gaussian distribution NeuroSuites run_mle_neurosuites.py

MLE discrete distribution pgmpy pgmpy_estimators.MaximumLikelihoodEstimator

Discrete Bayesian estimation pgmpy pgmpy_estimators.BayesianEstimator

Frontiers inNeuroinformatics 13 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 10

(A) BayeSuites viewer example of the structure of a Bayesian network representing a large GRN with the ForceAtlas2 force-directed layout and using

the Louvain algorithm to generate groups of nodes colored for communities detection. (B) Parameter visualization and inference for a node (KIF17)

associated with the schizophrenia disease subset of nodes. Taken from Michiels et al. (2021).

node parameters (mean and standard deviation) and transforming

it to an evidence node (with a value fixed), then a user can start the

inference process and see the resulting new (Gaussian) distribution.

6.4. Supervised classification

When a class variable is present, many algorithms are available

in NeuroSuites (see Table 2). First, it is possible to run some

Bayesian classifiers (Bielza and Larrañaga, 2014) already coded

using the bnlearn package, such as the naive Bayes and the tree

augmented naive Bayes (TAN) classifiers (Friedman et al., 1997).

These classifiers are based on Bayesian networks, standing out for

their interpretability and the existence of efficient algorithms for

learning and classification tasks.

Classification tree algorithms have been implemented on the

backend using the Scikit-learn library (built on NumPy, SciPy, and

Matplotlib), together with Graphviz for frontend visualization of

graphs representing structural information. The classification tree

algorithm used is an optimized version of the classification and

regression trees (CART) algorithm, similar to the C4.5 algorithm,

with a 10-fold stratified cross-validation. It is possible to modify

other options, such as the criterion, to measure the quality of a

split (Gini index or entropy-based), the strategy used to choose the

split at each node (best or random) or the maximum depth of the

tree. Moreover, a user can visualize a text report showing the rules

of a decision tree with their main performance measures, such as

accuracy, sensitivity, specificity or F1-measure.

To illustrate some examples, the dataset we selected comes from

Bielza and Larrañaga (2020), which seeks to distinguish pyramidal

cells (class P) from interneurons (class I) in the mouse neocortex.

Figure 11 shows the classification tree for the selected subset of

three variables: X1 (somatic perimeter), X8 (total axon length) and

X38 (total dendritic length), all measured in µm. As we go deeper

into the classification tree toward the leaf nodes, we obtain a more

precise classification according to the new rules for moving toward

one node or another. In this example, if the instance is classified

as interneuron, the node is colored orange; if it is classified as

a pyramidal cell, the node is colored blue. Thus, for example, if

the value of X38 ≤ 3, 580.25, the classification tree will classify

the instance as an interneuron (class I). Moreover, if the value of.

X8 > 12, 626.4, we can see that the tree has correctly classified

almost all the samples (low Gini impurity).

For the k-nearest neighbors (k-NN) algorithm, we can specify

parameters, such as the number of neighbors we want to use or

the weight function used in prediction, which can be uniform (all

points in each neighborhood are weighted equally) or based on the

distance (weighting points by the inverse of their distance to the

target point).

NeuroSuites can determine the optimal value of k at a glance.

Figure 12 shows an example of the mean error for each value of

k after applying the k-NN algorithm. In this case, we specified a

holdout scheme for estimating the different performance metrics,

with 90% of the data for training and the remaining 10% for testing.

It can be seen how from k = 13, we can obtain good results with a

mean error of less than 0.25. For a high value of k, it seems that the

mean error worsens.

The implementation of support vector machines (SVMs) is

based on LIBSVM (Chang and Lin, 2011). For these models, we

can specify that the kernel is linear (for the linear SVM case) or

Frontiers inNeuroinformatics 14 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 11

Classification tree yielded by the CART algorithm for predictor variables X1 (somatic perimeter), X8 (total axon length) and X38 (total dendritic length),

using the Gini criterion and a 10-fold stratified cross-validation. In each node, a user can see the following: attribute test, samples, value (how many

samples belong to each category) and the class classified up to that depth level.

nonlinear, including the polynomial (degree parameter required),

radial basis function, and sigmoid as different options. As with the

rest of the supervised models, after running the algorithm, one can

see the main performance measures with the confusion matrix.

It is also possible to run the RIPPER rule induction algorithm to

obtain the rules. This type of algorithm together with classification

trees, can be of great help to data scientists when making decisions

as they are algorithms with high interpretability, following the

current trend of explainable artificial intelligence (Gunning et al.,

2019) as opposed to other types of black box models, such as deep

neural networks.

The RIPPER algorithm available in NeuroSuites is based on

the wittgenstein package, written in Python. Figure 12 shows an

example for the same dataset we are using thus far with the

output rules, their main performance measures and the confusion

matrix for this binary classification example. In this case, the rules

shown consider the X38 and X1 variables (ˆ represents the logical

conjunction, whereas Vdenotes the logical disjunction). If the rules

of the variables are met, it is classified as a pyramidal cell (⇒ P);

otherwise, it is an interneuron (⇒ I).

Bayes’ rule is used in some classifiers, such as linear

discriminant analysis (LDA) and quadratic discriminant analysis

(QDA), creating decision boundaries of different complexity to

classify the new data. LDA uses a singular value decomposition as

a solver. Both models fit a Gaussian probability density function

for each class value. Finally, we can run a logistic regression

classifier. L2 regularization is applied by default, adding an L2

penalty term.

6.5. Multidimensional classifiers

There are some multidimensional classifiers currently available

in our platform, where the aim is to predict more than one

class variable at the same time. With this type of classifier,

we included learning methods of the two main approaches:

(1) problem transformation methods, where the multi-label

problem is turned into many single-label problems; and (2)

algorithm adaptation methods, where uni-dimensional supervised

classification techniques are adapted to directly manage multi-label

(when all class variables are binary) or multidimensional data.

All of these available classifiers are categorized by

their method type and function implementation using

Sklearn as backend. After defining the target classes and,

optionally, whether to use a number of k-folds for cross-

validation, depending on the type of problem transformation,

users are able to set different parameters. For the case of

transforming the problem to binary or multi-class classification,

a user can specify the classification algorithm with a few

hyperparameters. The following classifiers are currently

available: k-NN, classification tree, SVM, LDA, QDA, logistic

regression and naive Bayes. Once selected, their performance

Frontiers inNeuroinformatics 15 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

FIGURE 12

(A) Mean error for each k value of the k-NN algorithm for the variables X1 (somatic perimeter), X8 (total axon length) and X38 (total dendritic length) as

predictors, using uniform weights and a train-test split scheme of 90%-10%. (B) RIPPER algorithm output for variables X1 (somatic perimeter), X8

(total axon length) and X38 (total dendritic length) as predictors, with their confusion matrix (left), performance evaluation metrics (top right) and

ruleset (bottom right).

evaluation measures adapted to multidimensional classification

are shown.

7. Conclusions

In this paper we presented NeuroSuites, a powerful open access

web platform with a wide range of software tools devoted to

statistics and machine learning. It also has several applications and

tools specifically dedicated to the neuroscience domain, as well as

more general ones oriented to help any data scientist in his or her

application domain.

We developed the entire web interface to provide the best

user experience for devices connecting to the domain on which

NeuroSuites is deployed. In addition to neuroscience applications,

it is possible to perform statistical analysis and machine learning

modeling for large amounts of data without being limited by the

computational capacity of personal devices.

Finally, we would like to emphasize our intention to

continue expanding the list of available software tools, as

well as improving the platform interface according to user

demands. The maintenance of the web and the correct

functioning of the servers are something important that we

will continue to consider to reinforce the robustness of the

platform. The architecture has been designed to be able to

easily implement future updates and improvements on the

different tools.

In future work, we plan to implement probabilistic clustering

algorithms to complement what we already have in NeuroSuites.

Furthermore, we are also considering including a section on

artificial neural networks to visualize the network structure and

train different deep learning models, although we think that the

interpretability of the model has a greater relevance in the field

of neuroscience and post-hoc explainability issues should also

be incorporated.

Frontiers inNeuroinformatics 16 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://gitlab.com/mmichiels/neurosuite;

https://github.com/ComputationalIntelligenceGroup.

Author contributions

JLM-R worked on the development of the platform and the

first version of the manuscript. PL and CB have conceived the

project by helping in its conceptualization and supervision of the

manuscript. All authors contributed to the article and approved the

submitted version.

Funding

This project had received funding from the European Union’s

Horizon 2020 Framework Programme for Research and Innovation

under Specific Grant Agreement No. 785907 (HBP SGA3) and

from the Spanish Ministry of Science and Innovation through the

PID2019-109247GB-I00 project.

Acknowledgments

We thank all the members of our Computational

Intelligence Group who have contributed in the development

of NeuroSuites directly or indirectly, especially Mario Michiels

and Hugo Nugra.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Aliferis, C. F., Tsamardinos, I., and Statnikov, A. (2003). “HITON: a novel
Markov blanket algorithm for optimal variable selection,” in AMIA Annual Symposium
Proceedings, Vol. 2003 (Washington, DC: American Medical Informatics Association),
21.

Anton-Sanchez, L., Larrañaga, P., Benavides-Piccione, R., Fernaud-Espinosa, I.,
DeFelipe, J., and Bielza, C. (2017). Three-dimensional spatial modeling of spines along
dendritic networks in human cortical pyramidal neurons. PLoS ONE 12, e0180400.
doi: 10.1371/journal.pone.0180400

Aragam, B., Gu, J., and Zhou, Q. (2019). Learning large-scale Bayesian
networks with the sparsebn package. J. Stat. Softw. 91, e12776. doi: 10.18637/jss.
v091.i11

Barnes, J. (2015). Azure Machine Learning. Redmond, WA: Microsoft Press.

Bernaola, N., Michiels, M., Larrañaga, P., and Bielza, C. (2020). Learning massive
interpretable gene regulatory networks of the human brain by merging Bayesian
networks. bioRxiv. doi: 10.1101/2020.02.05.935007

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl,
T., et al. (2009). KNIME-the Konstanz information miner: version 2.0 and
beyond. ACM SIGKDD Explorat. Newslett. 11, 26–31. doi: 10.1145/1656274.
1656280

Bibeault, B., De Rosa, A., and Katz, Y. (2015). jQuery in Action. Shelter Island, NY:
Simon & Schuster.

Bielza, C., and Larrañaga, P. (2014). Discrete Bayesian network classifiers: a survey.
ACM Comput. Surveys 47, 1–43. doi: 10.1145/2576868

Bielza, C., and Larrañaga, P. (2020). Data-Driven Computational Neuroscience:
Machine Learning and Statistical Models. Cambridge: Cambridge University Press.

Blondel, V. D., Guillaume, J. L., Lambiotte, R., and Lefebvre, E. (2008).
Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008.
doi: 10.1088/1742-5468/2008/10/P10008

Chang, C. C., and Lin, C. J. (2011). LIBSVM: A library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2, 1–27. doi: 10.1145/1961189.1961199

Demšar, J., Curk, T., Erjavec, A., Gorup, C., Hočevar, T., Milutinovič, M., et al.
(2013). Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 2349–2353.
Available online at: https://jmlr.org/papers/volume14/demsar13a/demsar13a.pdf

Dossot, D. (2014). RabbitMQ Essentials. Birmingham: Packt.

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. Knowl. Disc. Data Min. 96,
226–231.

Fayyad, U., and Irani, K. (1993). “Multi-interval discretization of continuous-valued
attributes for classification learning,” in International Joint Conference on Artificial
Intelligence (Chambéry), 1022–1027.

Friedman, N., Geiger, D., and Goldszmit, M. (1997). Bayesian network classifiers.
Mach. Learn. 29, 131–163. doi: 10.1023/A:1007465528199

Garrett, J. J. (2005). “Ajax: a new approach to web applications,” in Adaptive Path
(San Francisco, CA), 1–5.

George, N. (2015). Beginning Django CMS. New York, NY: Springer.
doi: 10.1007/978-1-4842-1669-9

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G.
Z. (2019). XAI–Explainable artificial intelligence. Sci. Robot. 4, eaay7120.
doi: 10.1126/scirobotics.aay7120

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). TheWEKA data mining software: an update.ACM SIGKDD Explorat. Newslett.
11, 10–18. doi: 10.1145/1656274.1656278

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585, 357–362.
doi: 10.1038/s41586-020-2649-2

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller,
J. A., et al. (2012). An anatomically comprehensive atlas of the adult human brain
transcriptome. Nature 489, 391–399. doi: 10.1038/nature11405

Hofmann, M., and Klinkenberg, R. (2016). RapidMiner: Data Mining Use Cases and
Business Analytics Applications. Boca Raton, FL: CRC Press.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring
regulatory networks from expression data using tree-based methods. PLoS ONE 5,
e12776. doi: 10.1371/journal.pone.0012776

Jacomy, M., Venturini, T., Heymann, S., and Bastian, M. (2014). ForceAtlas2, a
continuous graph layout algorithm for handy network visualization designed for the
Gephi software. PLoS ONE 9, e98679. doi: 10.1371/journal.pone.0098679

Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. London: MIT Press.

López-Cruz, P. L., Bielza, C., Larrañaga, P., Benavides-Piccione, R., and
DeFelipe, J. (2011). Models and simulation of 3D neuronal dendritic trees
using Bayesian networks. Neuroinformatics 9, 347–369. doi: 10.1007/s12021-011-
9103-4

Luengo-Sanchez, S., Bielza, C., Benavides-Piccione, R., Fernaud-Espinosa, I.,
DeFelipe, J., and Larrañaga, P. (2015). A univocal definition of the neuronal

Frontiers inNeuroinformatics 17 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://gitlab.com/mmichiels/neurosuite
https://github.com/ComputationalIntelligenceGroup
https://doi.org/10.1371/journal.pone.0180400
https://doi.org/10.18637/jss.v091.i11
https://doi.org/10.1101/2020.02.05.935007
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/2576868
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1145/1961189.1961199
https://jmlr.org/papers/volume14/demsar13a/demsar13a.pdf
https://doi.org/10.1023/A:1007465528199
https://doi.org/10.1007/978-1-4842-1669-9
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/nature11405
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1007/s12021-011-9103-4
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Moreno-Rodríguez et al. 10.3389/fninf.2023.1092967

soma morphology using Gaussian mixture models. Front. Neuroanat. 9, 137.
doi: 10.3389/fnana.2015.00137

Luengo-Sanchez, S., Fernaud-Espinosa, I., Bielza, C., Benavides-Piccione, R.,
Larrañaga, P., and DeFelipe, J. (2018). 3Dmorphology-based clustering and simulation
of human pyramidal cell dendritic spines. PLoS Comput. Biol. 14, e1006221.
doi: 10.1371/journal.pcbi.1006221

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu,
C. (2004). Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5,
793–807. doi: 10.1038/nrn1519

Michiels, M., Larrañaga, P., and Bielza, C. (2021). BayeSuites: an open web
framework for massive Bayesian networks focused on neuroscience. Neurocomputing
428, 166–181. doi: 10.1016/j.neucom.2020.11.066

Momjian, B. (2001). PostgreSQL: Introduction and Concepts, Vol. 192. Boston, MA:
Addison-Wesley.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
Available online at: https://dl.acm.org/doi/10.5555/1953048.2078195

Reese, W. (2008). Nginx: the high-performance web server and reverse proxy.
Linux J. 2008, 2. Available online at: https://dl.acm.org/doi/fullHtml/10.5555/1412202.
1412204

Rubio, D. (2017). “REST services with Django,” in Beginning Django (Berkeley, CA:
Apress), 549–566.

Scorcioni, R., Polavaram, S., and Ascoli, G. A. (2008). L-Measure: A web-accessible
tool for the analysis, comparison and search of digital reconstructions of neuronal
morphologies. Nat. Protoc. 3, 866–876. doi: 10.1038/nprot.2008.51

Spurlock, J. (2013). Bootstrap: Responsive Web Development. Sebastopol, CA:
O’Reilly Media.

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J.
Mach. Learn. Res. 9, 2579–2605. Available online at: https://www.jmlr.org/papers/v9/
vandermaaten08a.html

Varando, G., Benavides-Piccione, R., Muñoz, A., Kastanauskaite, A., Bielza, C.,
Larrañaga, P., et al. (2018). MultiMap: a tool to automatically extract and analyse spatial
microscopic data from large stacks of confocal microscopy images. Front. Neuroanat.
12, 37. doi: 10.3389/fnana.2018.00037

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific
computing in Python. Nat. Methods 13, 261–272. doi: 10.1038/s41592-019-
0686-2

Vohra, D. (2016). “Apache parquet,” in Practical Hadoop Ecosystem (Berkeley, CA:
Apress), 325–335.

Frontiers inNeuroinformatics 18 frontiersin.org

fncel-14-542552 December 16, 2020 Time: 15:27 # 1

R
ET

R
A

C
T

ED

https://doi.org/10.3389/fninf.2023.1092967
https://doi.org/10.3389/fnana.2015.00137
https://doi.org/10.1371/journal.pcbi.1006221
https://doi.org/10.1038/nrn1519
https://doi.org/10.1016/j.neucom.2020.11.066
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/fullHtml/10.5555/1412202.1412204
https://dl.acm.org/doi/fullHtml/10.5555/1412202.1412204
https://doi.org/10.1038/nprot.2008.51
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.3389/fnana.2018.00037
https://doi.org/10.1038/s41592-019-0686-2
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	RETRACTED: NeuroSuites: An online platform for running neuroscience, statistical, and machine learning tools
	1. Introduction
	2. Background
	3. NeuroSuites framework
	3.1. NeuroSuites architecture
	3.2. Services available and general workflow

	4. Neuroscience applications
	4.1. Neuro apps with neurons required
	4.2. Neuro apps without neurons required

	5. Statistical analysis
	5.1. Statistical tools with categorical data
	5.2. Statistical tools with continuous data

	6. Machine learning
	6.1. Data preprocessing techniques
	6.2. Unsupervised classification
	6.3. Bayesian networks
	6.4. Supervised classification
	6.5. Multidimensional classifiers

	7. Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


